Advancements In Pharmacotherapy for Hyperlipidemia: A Comprehensive Review of Recent Drug Innovations and Clinical Outcomes

Hrithik Dey *, Vatsala Agarwal , MD Naushad Ali , Astha Upadhyay , Sufia Shafieq , Bhupender Dixit , Sahil Tomar , Mahewish Tarannum

Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India-201306

Abstract

Hyperlipidemia, characterized by elevated blood lipid levels, significantly contributes to cardiovascular diseases (CVDs), the leading cause of global mortality per the World Health Organization (WHO). Studies reveal a 20-30% increase in coronary heart disease risk for every 1 mmol/L rise in LDL-C levels. While statins are widely used, novel pharmacotherapeutic approaches are necessary for effective hyperlipidemia management and CVD risk reduction. Recent clinical trials demonstrate the efficacy of innovative drugs like proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors in lowering LDL-C levels and reducing adverse cardiovascular events. These findings highlight the potential of new therapies to enhance existing treatments for hyperlipidemia. Additionally, safety evaluations of emerging lipid-lowering agents address concerns about adverse effects and long-term risks. Despite progress, challenges persist in refining treatment strategies and ensuring equitable access to advanced therapies, especially for marginalized populations. Incorporating innovative pharmacotherapies into current approaches offers personalized and efficient hyperlipidemia management. Continued research and interdisciplinary collaborations are vital for advancing our understanding of lipid metabolism and translating scientific discoveries into improved patient outcomes and cardiovascular health. Ongoing innovation and investment in tailored hyperlipidemia therapies are crucial for better outcomes in individuals at risk of CVDs.

Keywords: hyperlipidemia, pcsk9 inhibitors, bempedoic acid, evinacumab, inclisiran mipomersen, volanesorsen

Introduction

Hyperlipidemia, a metabolic disorder marked by heightened lipid levels in the bloodstream, stands as a notable global health concern. Its intricate interplay with genetic predisposition, lifestyle choices, and underlying health conditions has propelled its prevalence, affecting millions worldwide. This condition encompasses various lipid irregularities, including elevated LDL-C and triglycerides, alongside reduced HDL-C levels, collectively contributing to heightened cardiovascular disease risks like coronary artery disease, stroke, peripheral vascular issues, and other symptoms as shown in Figure 1. The surge in hyperlipidemia mirrors the alarming trends of obesity, sedentary behaviors, and poor dietary habits pervasive in contemporary society. Epidemiological studies highlight its pervasive impact, with estimates revealing that over one-third of adults globally grapple with elevated LDL-C levels. This widespread occurrence underscores the urgency for effective management strategies to curtail associated CVD risks and avert adverse health outcomes. While lifestyle modifications, including dietary adjustments, regular exercise, and smoking cessation, form pivotal pillars of hyperlipidemia management, pharmacotherapy emerges as a cornerstone for individuals at heightened CVD risk. Present treatment modalities predominantly rely on lipid-lowering medications like statins, fibrates, and cholesterol absorption inhibitors to mitigate LDL-C levels and enhance lipid profiles. Despite their proven efficacy in cholesterol reduction and CVD risk minimization, there exists a compelling need for further drug innovations to tackle the constraints of existing therapies and optimize outcomes for hyperlipidemia patients. Despite notable strides in lipid-lowering drug development, challenges persist in attaining optimal lipid control and mitigating residual CVD risk, particularly among populations grappling with genetic lipid disorders or statin intolerance. Furthermore, emerging evidence suggests the potential as shown in Table 1 show various targets and drugs unlocking novel therapeutic avenues for bolstering cardiovascular outcomes. Hence, there's an imperative to explore innovative pharmacotherapeutic approaches and propel the treatment landscape to align with the evolving needs of hyperlipidemia individuals.
Pathophysiology

Hyperlipidemia, a complex metabolic disorder, arises from disruptions in lipid metabolism, specifically involving cholesterol and triglycerides. These lipids play crucial roles in cellular function, hormone synthesis, and energy storage. The transportation of lipids in the bloodstream is facilitated by lipoproteins, such as LDL and HDL cholesterol. LDL cholesterol, often termed "bad" cholesterol, transports cholesterol from the liver to peripheral tissues. High levels of LDL cholesterol contribute to the formation of atherosclerosis, a condition characterized by the buildup of plaque in arterial walls, leading to narrowed arteries and increased risk of heart disease and stroke. On the other hand, HDL cholesterol, known as "good" cholesterol, removes excess cholesterol from the bloodstream and transports it back to the liver for excretion, thereby reducing the risk of cardiovascular events. These lipid abnormalities promote the development of atherosclerosis and increase the risk of cardiovascular diseases. Elevated triglyceride levels are also associated with insulin resistance, metabolic syndrome, and inflammation, further exacerbating cardiovascular risk. A flowchart of the pathophysiology of hyperlipidemia is shown in Figure 2. Additionally, dyslipidemia can contribute to other health conditions such as pancreatitis and fatty liver disease. Research focusing on elucidating the mechanisms underlying dyslipidemia and its associated complications is crucial for advancing our understanding and improving patient outcomes.

Figure 1: Hyperlipidemia-associated diseases

Figure 2: Flowchart for pathophysiology of hyperlipidemia
Table 1: Comprehensive summary of various drug therapies for hyperlipidemia, including their mechanism of action, dosage, common adverse effects, and key clinical trials supporting their efficacy.

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Mechanism of Action</th>
<th>Dosage</th>
<th>Adverse Effects</th>
<th>Key Clinical Trials</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins (Atorvastatin)</td>
<td>Inhibits HMG−CoA reductase</td>
<td>10−80 mg daily</td>
<td>Myopathy, Hepatotoxicity</td>
<td>Prove−it, TNT</td>
<td>27, 28</td>
</tr>
<tr>
<td>Ezetimibe</td>
<td>Inhibits cholesterol absorption</td>
<td>10 mg daily</td>
<td>Diarrhea, Myalgia</td>
<td>Improve−it, Sharp</td>
<td>29, 30</td>
</tr>
<tr>
<td>PCSK9 Inhibitors (Alirocumab)</td>
<td>Inhibits PCSK9, increases LDL receptor</td>
<td>75−150 mg every 2 weeks</td>
<td>Injection site reactions, flu−like symptoms</td>
<td>Odyssey outcomes</td>
<td>31</td>
</tr>
<tr>
<td>Bempedoic Acid</td>
<td>Inhibits ATP citrate lyase</td>
<td>180 mg daily</td>
<td>Hyperuricemia, Musculoskeletal pain</td>
<td>Clear harmony, clear wisdom</td>
<td>32, 33</td>
</tr>
<tr>
<td>Mipomersen</td>
<td>Antisense oligonucleotide, Inhibits ApoB production</td>
<td>200 mg weekly</td>
<td>Injection site reactions, flu−like symptoms</td>
<td>Approach, isis−301012</td>
<td>34</td>
</tr>
</tbody>
</table>

Current Standard of Care

In recent years, substantial attention has been focused on developing efficient management approaches for hyperlipidemia, which involve a combination of lifestyle adjustments and pharmacotherapy. The prevailing approach as shown in Figure 3 for treating patients with hyperlipidemia is guided by established guidelines and evidence-based practices. This approach underscores the importance of a comprehensive strategy that harmonizes lifestyle modifications with pharmacological interventions as shown in Figure 3. A key focus lies in adopting a heart-healthy diet replete with fruits, vegetables, whole grains, and lean proteins while moderating the consumption of saturated and trans fats, cholesterol, and sodium. Additionally, incorporating regular physical activity, including aerobic exercise for a minimum of 150 minutes per week, alongside strength training exercises, is integral. Moreover, cessation of smoking is strongly urged, given its adverse impact on lipid metabolism and cardiovascular well-being. Pharmacotherapy plays a central role in managing hyperlipidemia, especially for individuals at heightened cardiovascular risk or those with insufficient lipid control despite lifestyle adjustments. Statins, the primary pharmacological intervention, are widely administered due to their potent ability to lower LDL cholesterol levels and establish cardiovascular advantages. Additionally, adjunctive treatments like ezetimibe, which impedes intestinal cholesterol absorption, may be employed to further decrease LDL cholesterol levels, particularly in individuals who are intolerant to statins or with inadequate LDL reduction. Notably, for individuals with exceedingly high LDL cholesterol levels or resistant hyperlipidemia, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors offer an innovative therapeutic avenue by enhancing LDL receptor recycling and diminishing LDL cholesterol levels.

![Figure 3: Current standard of care for Hyperlipidemia](image-url)
Recent Drug Advances and Mechanisms of Action

1. Bempedoic Acid:

Bempedoic acid, a novel therapeutic agent, has emerged as a promising option for managing hyperlipidemia, particularly in individuals with elevated LDL cholesterol levels. Clinical trials evaluating the efficacy of bempedoic acid have consistently demonstrated significant reductions in LDL cholesterol levels compared to placebo. These reductions typically range from 15% to 30%, depending on the dosage and duration of treatment. The CLEAR Harmony trial, for instance, reported a mean reduction of 18% in LDL cholesterol levels among patients receiving bempedoic acid. Beyond LDL cholesterol reduction, bempedoic acid has been associated with favorable changes in other lipid parameters. Studies have documented decreases in total cholesterol, non-HDL cholesterol, and apolipoprotein B levels, all of which are indicative of atherogenic lipoproteins. Evidence from clinical trials suggests that treatment with bempedoic acid may lead to a reduction in major adverse cardiovascular events (MACE).

![Mechanism of action of Bempedoic acid](image)

Figure 4: Mechanism of action (Bempedoic acid) inhibits ATP-citrate lyase, reducing the production of cholesterol precursors. This inhibition leads to decreased hepatic cholesterol synthesis, resulting in lower levels of LDL cholesterol in the bloodstream.

2. PCSK9 Inhibitors:

Clinical trials have consistently demonstrated the efficacy of PCSK9 inhibitors in significantly reducing low-density lipoprotein (LDL) cholesterol levels. Studies have shown up to 60-70% reductions in LDL cholesterol levels using PCSK9 inhibitors. PCSK9 inhibitors have been associated with a reduction in cardiovascular events, including myocardial infarction, stroke, and cardiovascular mortality. The FOURIER trial, for example, reported a significant reduction in major adverse cardiovascular events (MACE) among patients treated with evolocumab compared to placebo. The ODYSSEY OUTCOMES trial also demonstrated a reduction in cardiovascular events, including cardiovascular death, non-fatal myocardial infarction, non-fatal stroke, and coronary revascularization. The CLEAR Harmony trial demonstrated a 32% relative risk reduction in MACE among patients receiving bempedoic acid compared to placebo. Bempedoic acid has exhibited a favorable safety profile in clinical trials, with adverse events comparable to those observed with a placebo. Muscle-related symptoms, such as myalgia and weakness, have been reported, although they are generally mild and transient. Notably, bempedoic acid does not appear to induce the same degree of muscle-related adverse effects as statins, making it a viable alternative for individuals intolerant to statin therapy. While most clinical trials have been of relatively short duration, ongoing studies are investigating the long-term safety and efficacy of bempedoic acid. Preliminary data suggest that the LDL-lowering effects of bempedoic acid are sustained over time, with no evidence of diminished efficacy or safety concerns with prolonged use. The mechanism of action of Bempedoic acid is shown in Figure 4.

![Mechanism of action of PCSK9 inhibitors](image)

Figure 5: Mechanism of action of PCSK9 inhibitors showing their effects on cardiovascular morbidity and mortality.
3. Evinacumab:

Evinacumab, a monoclonal antibody targeting angiopoietin-like protein 3 (ANGPTL3)\(^{71}\), has demonstrated remarkable efficacy in reducing plasma triglyceride and LDL cholesterol levels in individuals with familial hypercholesterolemia (FH)\(^{72}\) and severe hypertriglyceridemia.\(^{73}\) Clinical trials investigating the efficacy of evinacumab have consistently shown significant reductions in triglyceride levels by up to 70% and LDL cholesterol levels by up to 50%, compared to baseline levels.\(^{74}\) Importantly, these reductions have been observed in both heterozygous FH (HeFH) and homozygous FH (HoFH) patients\(^{75}\), as well as individuals with refractory hypercholesterolemia\(^{76}\), indicating the broad applicability of evinacumab across different patient populations.\(^{77}\) Moreover, the magnitude of triglyceride and LDL cholesterol lowering achieved with evinacumab has been unprecedented, surpassing the effects of conventional lipid-lowering therapies.\(^{75}\) In addition to its potent lipid-lowering effects, evinacumab has shown promise in reducing the risk of cardiovascular events in high-risk patient populations.\(^{78}\) Clinical studies have suggested a potential benefit of evinacumab in improving endothelial function, reducing vascular inflammation, and stabilizing atherosclerotic plaques\(^{79}\), which may contribute to its cardiovascular protective effects.\(^{78}\) These findings highlight the multifaceted therapeutic potential of evinacumab beyond lipid modulation, offering the possibility of addressing underlying mechanisms implicated in cardiovascular disease progression.\(^{80}\) Furthermore, evinacumab has exhibited a favorable safety profile in clinical trials, with minimal adverse effects reported.\(^{81}\) Common adverse events associated with evinacumab treatment include mild injection-site reactions\(^{82}\) and transient elevations in liver enzymes, which are typically well-tolerated and resolve spontaneously.\(^{83}\) Importantly, no significant safety concerns, such as hepatotoxicity or immune-related adverse events, have been reported with evinacumab administration, further supporting its safety and tolerability in clinical use.\(^{84}\) Overall, the clinical outcomes of evinacumab highlight its potential as a transformative therapeutic option for individuals with refractory hyperlipidemia, FH, and severe hypertriglyceridemia.\(^{85}\) Its potent lipid-lowering effects, potential cardiovascular benefits, and favorable safety profile position evinacumab as a promising agent in the management of lipid disorders and prevention of cardiovascular events, warranting further investigation and clinical implementation.\(^{86}\) The mechanism of action of evinacumab is shown in Figure 6.

4. Inclisiran:

In clinical trials evaluating inclisiran, a novel RNA-targeted therapeutic agent\(^{88}\), significant reductions in low-density lipoprotein (LDL) cholesterol levels have been consistently observed across various patient populations.\(^{89}\) These reductions have been reported to range from 30% to 50% from baseline levels, indicating a robust and dose-dependent efficacy of inclisiran in lowering LDL cholesterol.\(^{90}\) Importantly, these reductions have been sustained over the long term, with follow-up studies demonstrating consistent efficacy in maintaining lowered LDL cholesterol levels over extended periods.\(^{91}\) Beyond its LDL-lowering effects\(^{92}\), inclisiran has demonstrated a favorable safety profile in clinical trials, with minimal adverse effects reported.\(^{93}\) Common adverse events observed with inclisiran treatment include mild injection-site reactions, which are typically transient and resolve spontaneously.\(^{93}\) In addition to its efficacy in reducing LDL cholesterol levels and favorable safety
profile, inclisiran has shown promise in mitigating the risk of cardiovascular events.94 Clinical trials assessing inclisiran's impact on cardiovascular outcomes have indicated a potential reduction in the incidence of major adverse cardiovascular events, including myocardial infarction, stroke, and cardiovascular-related mortality.95 These findings suggest that inclisiran may not only address lipid-related risk factors but also provide cardiovascular protection, making it a valuable therapeutic option for individuals with hypercholesterolemia96 and high cardiovascular risk.97 Its robust LDL-lowering effects, favorable safety profile, and potential cardiovascular benefits position inclisiran as a promising agent in the armamentarium against cardiovascular diseases, warranting further investigation and clinical implementation.98 The mechanism of action of inclisiran is shown in Figure 7.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure7}
\caption{Mechanism of action (Inclisiran) a small interfering RNA (siRNA) therapy exerts its mechanism of action by specifically targeting hepatic proprotein convertase subtilisin/kexin type 9 (PCSK9) mRNA, thus reducing PCSK9 protein synthesis. This inhibition leads to an upregulation of hepatic LDL receptor expression, promoting LDL cholesterol clearance from the bloodstream and consequently resulting in lowered LDL cholesterol levels.99}
\end{figure}

5. **Mipomersen:**

Mipomersen, an antisense oligonucleotide100, has demonstrated notable clinical outcomes in the management of hypercholesterolemia, particularly in individuals with familial hypercholesterolemia (FH)101 and severe hypercholesterolemia unresponsive to traditional lipid-lowering therapies.102 Clinical trials evaluating the efficacy of mipomersen have shown significant reductions in low-density lipoprotein cholesterol (LDL-C) levels, which are a key risk factor for cardiovascular disease (CVD).103 Additionally, mipomersen has been associated with improvements in other lipid parameters, including total cholesterol, apolipoprotein B, and non-high-density lipoprotein cholesterol (non-HDL-C), further contributing to its overall effectiveness in lipid management.104 One of the remarkable clinical outcomes of mipomersen therapy is its ability to achieve substantial LDL-C reductions of up to 25-30\% beyond what is typically achieved with conventional lipid-lowering agents alone.105 This reduction in LDL-C levels has been shown to translate into a significant reduction in the risk of CVD events, including myocardial infarction, stroke, and coronary revascularization procedures.106 Moreover, mipomersen therapy has demonstrated efficacy in improving other cardiovascular risk markers, such as high-sensitivity C-reactive protein (hs-CRP)107, which is a marker of inflammation associated with atherosclerosis and CVD progression.108 Despite its promising lipid-lowering effects, mipomersen therapy has also been associated with certain adverse effects, including injection site reactions, flu-like symptoms, and hepatic abnormalities, which necessitate close monitoring during treatment.109 However, with appropriate patient selection and monitoring, the clinical benefits of mipomersen therapy outweigh the potential risks, particularly in individuals with severe hypercholesterolemia who are at high risk of CVD events.110 The mechanism of action of mipomersen is shown in Figure 8.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure8}
\caption{Mechanism of action (Mipomersen) inhibits the production of apolipoprotein B-100 by binding to its mRNA, thereby preventing its translation into the protein. As apoB-100 is essential for the assembly and secretion of VLDL and LDL particles, mipomersen reduces the hepatic production of LDL cholesterol.111}
\end{figure}

6. **Volanesorsen:**

Volanesorsen has demonstrated notable clinical efficacy in treating familial chylomicronemia syndrome (FCS)112, a rare genetic disorder characterized by extremely high levels of triglycerides in the blood.113 Clinical studies and trials have consistently shown that volanesorsen effectively reduces plasma triglyceride levels, addressing the underlying cause of familial chylomicronemia syndrome114 and reducing the risk of pancreatitis, a potentially life-threatening complication.115
Additionally, volanesorsen therapy has been associated with improvements in FCS-related symptoms such as abdominal pain, hepatosplenomegaly, and eruptive xanthomas, thereby enhancing the overall quality of life for patients. Long-term follow-up studies have confirmed the sustained benefits of volanesorsen treatment, with a favorable safety profile and minimal adverse effects. Overall, volanesorsen represents a promising therapeutic option for individuals with FCS, offering hope for improved disease management and symptom relief. The mechanism of action of volanesorsen is shown in Figure 9.

![Volanesorsen Mechanism](image)

Future Directions and Challenges

Emerging inhibitors targeting angiopoietin-like proteins (ANGPTLs), lipoprotein(a) [(Lp[a])], and other promising targets show encouraging results in preclinical and early clinical studies. Advances in gene therapy and gene editing technologies present fresh avenues for addressing genetic causes of hyperlipidemia, including familial hypercholesterolemia (FH). Strategies such as CRISPR/Cas9-mediated gene editing and adeno-associated virus (AAV) vector delivery hold promise for rectifying genetic mutations associated with FH and other monogenic lipid disorders. Investigation into antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) as potential therapeutic agents for lowering LDL cholesterol levels by targeting specific genes involved in cholesterol metabolism, such as PCSK9 and apoB, signifies a novel approach to LDL cholesterol reduction. RNA-based therapies offer a potential alternative treatment avenue for patients who are intolerant to statins or other lipid-lowering drugs. Delving into combination therapies that target multiple pathways implicated in lipid metabolism is an emerging strategy to achieve more substantial reductions in LDL cholesterol and triglyceride levels.

In tandem with these advancements, several challenges demand attention in future drug development endeavors that are safeguarding the safety and tolerability of novel lipid-lowering therapies. Mitigating concerns related to off-target effects, immune responses, and drug interactions is crucial for successful therapeautic development and clinical application. The substantial cost associated with innovative lipid-lowering drugs poses challenges to their widespread adoption and affordability, particularly in resource-limited healthcare settings. Long-term studies and post-marketing surveillance are imperative to assess the real-world safety, effectiveness, and durability of new lipid-lowering therapies. Continuous monitoring of patients receiving novel treatments is vital for evaluating their impact on cardiovascular outcomes, lipid levels, and adverse events over time.

Conclusion

Recent advancements in drug therapies for hyperlipidemia have brought significant improvements in patient care, offering novel treatments to manage lipid levels and mitigate cardiovascular risk. Drugs such as PCSK9 inhibitors, RNA-based therapies, and gene-editing techniques have demonstrated efficacy in reducing LDL cholesterol levels and enhancing cardiovascular outcomes, especially in individuals with familial hypercholesterolemia or those resistant to conventional therapies. These breakthroughs represent a beacon of hope for patients who have previously struggled to attain target lipid levels or experienced adverse reactions to existing medications. Moreover, ongoing research endeavors in hyperlipidemia continue to drive innovation and shape the landscape of patient care. Studies are focusing on refining treatment approaches to make them more tailored and individualized, exploring the utility of emerging biomarkers, and investigating the potential synergistic effects of combining different therapeutic modalities. Additionally, advancements in technology, such as artificial intelligence and big data analytics, are being harnessed to refine risk prediction models and optimize treatment strategies. In summary, recent strides in drug therapies and the continuous pursuit of scientific inquiry in hyperlipidemia offer promising prospects for improving cardiovascular health outcomes and alleviating the global burden of cardiovascular disease. By fostering collaboration and innovation across various disciplines, healthcare professionals and researchers can further deepen our understanding of hyperlipidemia and develop more effective interventions to benefit patients in the future.

Acknowledgment

We extend our sincere gratitude to the individuals who contributed to this review paper. We thank the research participants for their valuable insights and contributions. We also appreciate the feedback provided by our colleagues and reviewers, which greatly enhanced the quality of this paper. Lastly, we would like to express our heartfelt thanks to our families for their continuous support and encouragement.

Conflict of Interest

The authors declare that they have no conflicts of interest related to this review paper.

References

Swastini DA, Wiryanthini IA, Ariastuti NL, Muliantara A. Atherosclerosis prediction with high sensitivity C-reactive protein (hs-CRP) and related risk factor in patient with dyslipidemia.