

Available online on 15.04.2024 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Full Text Article

Research Article

UV Spectrophotometric Method Development and Validation of Butorphanol Tartrate in Bulk Drug and Pharmaceutical Formulation

Sonu Ahirwar 1*, Varsha Kashaw 2, Ravish Sahu 1, Surbhi Chourasia 3, Vaibhav Rajoria 3, Prakash Kushwaha 1

- ¹ Vedic College of Pharmacy, Rehli Rd, Bapupura, Sironja, Sagar (M.P), 470228
- ² Sagar Institute of Pharmaceutical Sciences (SIPS), Patheriya Jat, Sagar, MP, 470003
- ³ Vedic Institute of Pharmaceutical Education and Research, University, Rehli Rd, Bapupura, Sironja, Sagar (M.P), 470228

Article Info:

Article History:

Received 03 Feb 2024 Reviewed 09 March 2024 Accepted 27 March 2024 Published 15 April 2024

Cite this article as:

Ahirwar S, Kashaw V, Sahu R, Chourasia S, Rajoria V, Kushwaha P, UV Spectrophotometric Method Development and Validation of Butorphanol Tartrate in Bulk Drug and Pharmaceutical Formulation, Journal of Drug Delivery and Therapeutics. 2024; 14(4):77-80

DOI: http://dx.doi.org/10.22270/jddt.v14i4.6521

*Address for Correspondence:

Sonu Ahirwar, Vedic College of Pharmacy, Rehli Rd, Bapupura, Sironja, Sagar (M.P), 470228

Abstract

The present research work discusses the development and validation of a UV spectrophotometric method for butorphanol tartrate. Simple, accurate and cost efficient spectrophotometric method has been developed for the estimation of butorphanol tartrate in tablet dosage form. The optimum conditions for the analysis of the drug were established. The maximum wavelength (λ max) was found to be 278nm. The percentage recovery of butorphanol tartrate was in the 100.016 ± 0.68 . Beers law was obeyed in the concentration range of 2- 12μ g/ml. Calibration curves shows a linear relationship between the absorbance and concentration. The line equation y = 0.0674x - 0.0057 with r2 of 0.9998was obtained. Validation was performed according to ICH guidelines for linearity, accuracy, precision, LOD and LOQ. The sample solution was stable up to 36 hours. The proposed method may be suitable for the analysis of butorphanol tartrate in tablet formulation for quality control purposes.

Keywords: Butorphanol tartrate, Validation, Precision, Accuracy, LOQ, LOD, ICH guidelines.

INTRODUCTION

An effective postoperative pain management regimen is vital to patient recovery after surgery. Multi-modal analgesia, using different classes of analgesics, is the currently recommended method to obtain this goal^{1,2}. Of the multi-modal approach, adding an adjunct to an opioid-based intravenous (i.v.) patient-controlled analgesia (PCA) as a convenient regimen for moderately severe pain control is popularity used worldwide clinical practice3. Various adjunct drugs, such as nonsteroidal anti-inflammatory drugs^{4,5}, aspartate (NMDA) antagonists6, antiemetic7, alpha-2 adrenergic agonists8, and glucocorticoids9 have been used in these multi-modal protocols. Butorphanol tartrate (Figure 1) is a mixed agonist-antagonist opioid with strong κ-receptor agonist and weak µ-receptor antagonist activity. Chemically, it is morphinan-3,14-diol,17-(cyclobutylmethyl)-, (-)-, [S-(R*,R*)]-2,3-dihydroxy butanedioate (1:1) (salt). Butorphanol tartrate is commonly used for the management of cancer, postoperative, gynecologic, and obstetric pain. As with other opioid analgesics, patient-controlled analgesia (PCA) butorphanol tartrate is associated with troublesome side effects such as nausea and/or vomiting, somnolence, and dizziness10,11. To the best of our knowledge, few data are available about compatibility and stability of butorphanol in

combination with other drugs¹²⁻¹⁶. Most of these methods are uneconomic and involving complex sample preparation. So, there is a need for the development of simple sensitive effective and economic methods and hence the present work was planned to validate the UV spectroscopic method for butorphanol tartrate in tablet formulations by using following parameter like accuracy, precision, linearity and range, limit of detection, limit of quantification, specificity, robustness, ruggedness and system suitability as per ICH guidelines^{17,18}. The aim of present work is to find out a simple, sensitive, specific, spectrophotometric method for the detection of butorphanol tartrate in pharmaceutical tablet formulation.

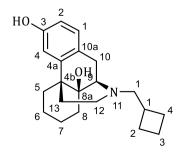


Figure 1 Chemical structure of butorphanol tartrate

ISSN: 2250-1177 [77] CODEN (USA): JDDTA0

EXPERIMENTAL

Reagents and chemicals

Butorphanol tartrate (Pure drug) was received as gift sample from Pfizer, India. All the other chemicals and solvents used were of analytical grade. Marketed formulation of butorphanol tartrate is *Torbutrol* 10 mg tablet (*Torbutrol* is a registered trademark of Zoetis, Canada) is purchased from GNH India. Triple distilled water was generated in house. All solvents and reagents were of analytical grade. All the solutions were protected for light and were analyzed on the day of preparations.

Instrument

A double beam UV/Visible model 1800, Shimadzu, Japan, with software UV Probe 2.10 and 1 cm quartz cell, was used for analysis. For weighing, Wenser (max 200g, sensitive = 0.1 mg) balance was used.

Determination of wavelength of maximum absorbance (λ_{max}) of butorphanol tartrate

Wavelength of maximum absorption was determined by scanning $10\mu g/ml$ solution of butorphanol tartrate using UV spectrophotometer from 200 to 400 nm. This showed maximum absorbance at 278 nm (Fig. 2).

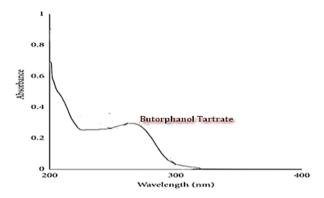


Figure 2: Determination of λ max of butorphanol tartrate Preparation of standard stock solution (Stock-A)

Standard stock solutions were prepared by dissolving 100 mg of drug in 100 ml of 0.05 M sulfuric acid: distilled water (70:30;

%v/v) and the flask was sonicated for about 10 min to solubilized the drug and the volume was made up to the mark with 0.05M sulfuric acid: distilled water (70:30; %v/v) to get a concentration of 1000 µg/ml (Stock-A) for drug.

Preparation of working standard solution

From stock solutions of butorphanol tartrate 1 ml was taken and diluted up to 100 ml separate volumetric flask. From this solution 0.2 to1.2ml solutions were transferred to 100ml volumetric flasks and make up the volume up to 100 ml with 0.05M sulfuric acid: distilled water (70:30; %v/v), gives standard drug solution of 2-12 μ g/ml concentrations of butorphanol tartrate.

Preparation of the calibration curves of the drug

The calibration curve was prepared by scanning test samples ranging from $2\text{-}12\mu\text{g}/\text{ml}$ at 278nm for butorphanol tartrate. The calibration curve was tested by validating it with interday and intra-day measurements. Mean of n =5 determinations was plotted as the standard curve (Fig.3).

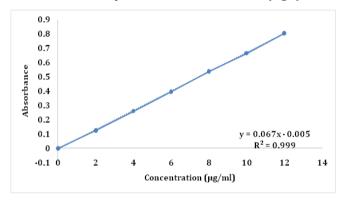


Figure 3: Calibration curve of butorphanol tartrate

Validation of calibration curve method

Linearity

Linearity of drug was established by response ratios of drug. Response ratio of drug calculated by dividing the absorbance with respective concentration. Then a graph was plotted between concentration and response ratio table 1.

S. No.	Butorphanol tartrate			
	Conc. (µg/ml)	ABS	Response Ratio	
1.	0	0	0	
2.	2	0.125	0.062	
3.	4	0.260	0.065	
4.	6	0.397	0.066	
5.	8	0.537	0.067	
6.	10	0.665	0.066	
7.	12	0.806	0.067	

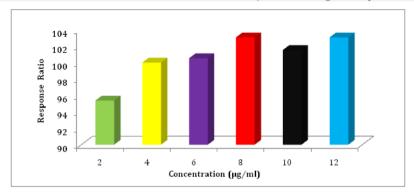


Figure 4: Response ratio curve of butorphanol tartrate

Accuracy

The accuracy of the proposed methods was assessed by recovery studies at three different levels i.e. 80%, 100%, 120%. The recovery studies were carried out by adding known amount of standard solution of raloxifene to preanalysed tablet solutions. The resulting solutions were then re-analysed by proposed methods. Whole analysis procedure was repeated to find out the recovery of the added drug sample. This recovery analysis was repeated at 3 replicate of 5 concentrations levels table 2.

Table 2: Results of recovery studies

Recovery Level %	% Recovery (Mean±SD)*
80	100.02±0.103
100	100.01±0.051
120	100.17±0.316

Precision

Precision of the methods was studied at three level as at repeatability, intermediate precision (Day to Day and analyst to analyst) and reproducibility. Repeatability was performed by analyzing same concentration of drugs for five times. Day to Day was performed by analyzing 5 different concentration of the drug for three days in a week. The results are shown in table 3.

Table 3 Results of precision (%R.S.D.)

Paramo	Mean±SD	
	Repeatability	99.06±0.036
Precision (%R.S.D.)*	Day to Day	98.81±0.021
Frecision (%0K.S.D.)	Analyst to Analyst	98.83±0.027
	Reproducibility	99.74±0.56

Limit of detection (LOD) & limit of quantification (LOQ)

Table 4 shown the result of LOD & LOQ of butorphanol tartrate by UV spectrophotometric method, according to ICH guideline which was shows limit of detection (LOD) was $0.1019\mu g/ml$ and LOQ value was $0.3089\mu g/ml$ for butorphanol tartrate at 278 nm.

Table 4: Result of LOD & LOQ

	Butorphanol Tartrate	
	at 278 nm	
LOD	0.101938 μg/ml	
LOQ	LOQ 0.308902 μg/ml	

Robustness

As per ICH norms, small, but deliberate variations in concentration of the mobile phase were made to check the method's capacity to remain unaffected. The ratio of mobile phase was change from, 0.05M Sulfuric acid: distilled water (70:30; %v/v) to (75:25 % V/V).Result of robustness are reported in table 5.

Table 5: Result of Robustness

CONC	C.	Concentration found (µg/ml)			
REP	2	4	6	8	10
Replicate-1	1.95	3.95	6.02	8.98	9.98
Replicate-2	1.96	3.98	5.98	8.95	9.86
Replicate-3	1.99	3.90	5.99	8.95	9.68
Replicate-4	1.89	4.01	5.98	8.96	9.78
Replicate-5	1.99	3.96	5.95	8.95	9.98
Mean	1.89	3.96	5.98	8.96	9.88
% Mean	97.80	99.66	99.91	99.82	99.52
SD	0.041	0.040	0.023	0.021	0.026
% RSD	0.021	0.010	0.038	0.023	0.020
				Mean % RSD	0.022

ISSN: 2250-1177 [79] CODEN (USA): JDDTAO

Analysis of tablet sample

Twenty marketed tablets of butorphanol tartrate were weighed and ground to a fine powder; amount equal to 10 mg of butorphanol tartrate was taken in 100 ml volumetric flask and sonicated for about 10 min to solubilized the drug present in tablet powder and the volume was made up to the mark with 0.05M sulfuric acid: distilled water (70:30;

%v/v). After sonication filtration was done through Whatman filter paper No. 41. Filtrate was collected and further diluted with 0.05M sulfuric acid: distilled water (70:30; %v/v) to get the final concentrations of drug in the working range. The absorbances of final dilutions were observed at selected wavelengths and the concentrations were obtained from calibration curve method. The procedure was repeated for five times table 6.

Table 6: Analysis of tablet formulation

S. No.	Absorbance	Conc. found	Amount claimed per	Amount found per tablet
		(μg /ml)	tablet (mg)	(mg)
	278 nm	Conc.		
1.	0.665	9.95	10	9.95
2.	0.662	9.90	10	9.90
3.	0.660	9.87	10	9.87
4.	0.665	9.95	10	9.95
5.	0.662	9.90	10	9.90
6.	0.665	9.95	10	9.95
			Mean	9.92
			S.D.	0.34641
			%R.S.D.	0.003492

CONCLUSION

The results and the statistical parameters demonstrate that the proposed UV spectrophotometric method is simple, rapid, specific, accurate and precise. Therefore, this method can be used for the determination of butorphanol tartrate either in bulk or in the dosage formulations without interference with commonly used excipients and related substances.

REFERENCES

- 1. Joshi GP. Multimodal analgesia techniques and postoperative rehabilita¬tion. Anesthesiol Clin North America, 2005; 23: 185-202. https://doi.org/10.1016/j.atc.2004.11.010 PMid:15763418
- Jin F, Chung F. Multimodal analgesia for postoperative pain control. J Clin Anesth, 2001; 13: 524-39. https://doi.org/10.1016/S0952-8180(01)00320-8 PMid:11704453
- 3. Buvanendran A, Kroin JS. Useful adjuvants for postoperative pain manage¬ment. Best Pract Res Clin Anaesthesiol, 2007; 21: 31-49. https://doi.org/10.1016/j.bpa.2006.12.003 PMid:17489218
- 4. Chen JY, Wu GJ, Mok MS et al. Effect of adding ketorolac to intravenous mor¬phine patient- controlled analgesia on bowel function in colorectal surgery patients-a prospective, randomized double-blind study. Acta Anaesthesiol Scand, 2005; 49: 546-51. https://doi.org/10.1111/j.1399-6576.2005.00674.x PMid:15777304
- 5. Wang ZY, Wang CQ, Yang JJ et al. Which has the least immunity depression during postoperative analgesia morphine, tramadol, or tramadol with lor¬noxicam? Clin Chim Acta, 2006; 369: 40-45. https://doi.org/10.1016/j.cca.2006.01.008 PMid:16487501
- 6. Song JW, Shim JK, Song Y et al. Effect of ketamine as an adjunct to intra¬venous patient controlled analgesia, in patients at high risk of postopera¬tive nausea and vomiting undergoing lumbar spinal surgery. Br J Anaesth, 2013; 111: 630-35. https://doi.org/10.1093/bja/aet192 PMid:23744819
- Trissel LA, Trusley C, Ben M, Kupiec TC. Physical and chemical stability of palonosetron hydrochloride with five opiate agonists during simulated Y-site administration. Am J Health Syst Pharm, 2007; 64: 1209-13. https://doi.org/10.2146/ajhp060355 PMid:17519464

- 8. Sadhasivam S, Boat A, Mahmoud M. Comparison of patient-controlled an¬algesia with and without dexmedetomidine following spine surgery in chil¬dren. J Clin Anesth, 2009; 21: 493-501. https://doi.org/10.1016/j.jclinane.2008.12.017 PMid:20006257
- 9. Waldron NH, Jones CA, Gan TJ et al. Habit impact of preoperative dexa¬methasone on postoperative analgesia and side-effects: systematic review and meta-analysis. Br J Anaesth, 2013; 110: 191-200. https://doi.org/10.1093/bja/aes431 PMid:23220857 PMCid:PMC3544008
- Wang, F. Z.; Shen, X. F.; Liu, Y. S.; et al. Eur. J. Anaesthesiol. 2009, 26, 28-34. https://doi.org/10.1097/EJA.0b013e32831a6aa2 PMid:19122548
- 11. Thakore, B.; D'Mello, J.; Saksena, S.; et al. Acute Pain 2009, 11, 93-99. https://doi.org/10.1016/j.acpain.2009.09.001
- 12. Chen FC, Li P, Zhou BH et al. Stability of an epidural analgesic admixture containing butorphanol tartrate and ropivacaine hydrochloride. Eur J Hosp Pharm, 2015; 22: 7-11. https://doi.org/10.1136/ejhpharm-2014-000450
- 13. Chen FC, Fang BX, Li P et al. Compatibility of butorphanol and droperidol in 0.9% sodium chloride injection. Am J Health Syst Pharm, 2013; 70: 515-19. https://doi.org/10.2146/ajhp120324
- 14. Fang BX, Zhu J, Chen FC et al. Stability of butorphanol tartrate injection with lornoxicam injection in patient controlled analgesia pump. Cent South Pharm, 2013; 11: 732-34.
- 15. Parker WA: Compatibility of perphenazine and butorphanol admixtures. Can J Hosp Pharm, 1980; 33: 152.
- 16. Chen F, Fang B, Li P et al: Physico-chemical stability of butorphanol-tram¬adol and butorphanol-fentanyl patient-controlled analgesia infusion solu¬tions over 168 hours. Pharmazie, 2014; 69: 585-88.
- International Conference on Harmonisation (2005) Validation of analytical procedures: Text and Methodology, Geneva, Switzerland.
- International Conference on Harmonization (ICH), Q2A: Text on Validation of Analytical Procedures: Definitions and Terminology, US FDA Federal Register, Vol. 60, 1995.