

REVIEW ARTICLE

CURRENT UPDATES ON ANTI-DIABETIC THERAPY

Deopa Deepika *, Sharma Kumar Satish, Singh Lalit

Sunder Deep Pharmacy College, Ghaziabad, UP, India- 201001

*Corresponding Author's E-mail: deepikadeopa1@gmail.com, Mobile: 09999674590

ABSTRACT

Diabetes globally has become one of the chronic public health problems and is related to group of metabolic defects resulting due to defect in insulin secretion and its action. As the disease progress micro and macro vascular damage may lead to retinopathy, neuropathy, nephropathy and various cardiovascular like complications. It is estimated that by the year of 2030 about 439 million adults would be suffering from any form of diabetes. There are mainly two types of diabetes which is because of their occurrence rate. The current review covers the basic aspect of types of diabetes, insulin molecular, chemical basis, and its secretion, hypoglycemic drugs used and their mode of action, what are the recent advancement in terms of new drugs finding, and the herbal plants. Thus, the information will help researchers for development of combination medication which involve both recent medication and herbal medication for combating various complication associated with diabetes.

Key-Words: Hyperglycemia, insulin, glucose, phyto-constituents.

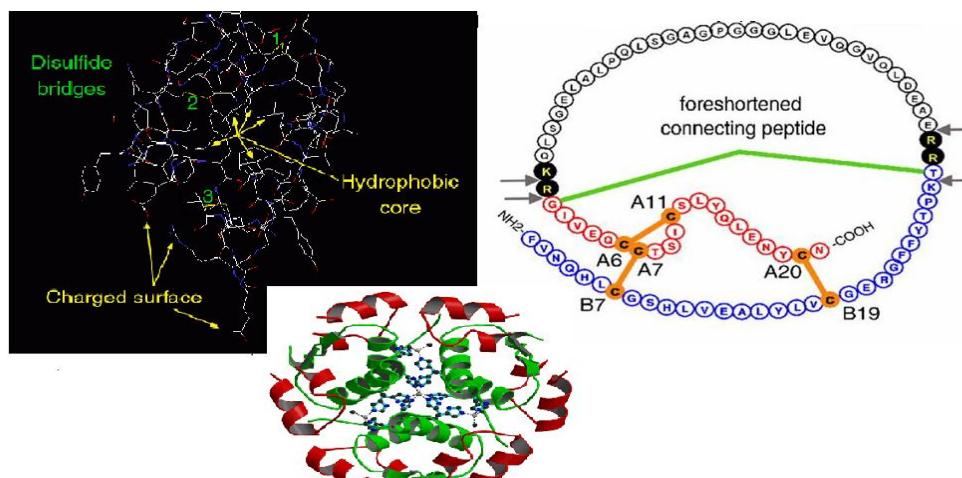
INTRODUCTION

Diabetes mellitus is defined by a group of metabolic disorder caused by altered metabolism of carbohydrate, lipid and lipoprotein resulting from the defect in insulin secretion and action; it is characterized by symptom like hyperglycemia, glycosuria, polyphagia, polyuria, polydipsia, gradual loss of weight, fatigue, cramps, blurred vision, constipation, and candidiasis are prominent. It is the most prevalent chronic disease in the world affecting nearly 100 million persons of the population where 5-10% having type 1 while 90-95% of them suffers from type 2 diabetes mellitus. Diabetes leads to many health complications such as hyperlipidemia, hypertension and atherosclerosis^{1,2}.

Categorization of Diabetes

There are mainly four types of diabetes mellitus i.e. Type I diabetes or insulin dependent diabetes mellitus (IDDM), type II diabetes or non insulin dependent diabetes mellitus (NIDDM), the other two diabetes mellitus are not much common i.e. gestational diabetes and genetically modified diabetes⁴. Type I diabetes can occur in any age but priorly seen in young adult. It is an immune mediated disease resulting from destruction in β -cells of pancreas which leads to insufficient endogenous insulin production. Type II diabetes or non insulin dependent diabetes mellitus (NIDDM) is the most common type affecting elderly and obese person caused either by insulin resistance or deficient insulin secretion. It is characterized by hyperglycemia in the presence of hyperinsulinemia due to peripheral insulin resistance. Type 2 diabetes mellitus is most encountered form of diabetes accounting for more than 80% of total case of diabetes while in western countries it affects 7% of the population in particular⁵. A third type of diabetes GDM (gestation diabetes mellitus) is first recognize during pregnancy where hyperglycemic condition develops in women who doesn't have diabetes result from an inadequate insulin supply to meet tissue demand for normal blood glucose regulation. Fourth type of diabetes is genetically modified DM there occur defects

in β cell function or mutation of insulin receptor and may lead to diabetes. Other rare types of diabetes include those caused by surgery, drug used (e.g. antihypertensive vasodilator diazoxide, corticosteroids in high doses, lower dose of thiazides, oral contraceptives, high dose of anabolic androgens, streptozotocin, alloxan, theophylline, aspirin, isoniazid, nalidixic acid), malnutrition, infection and other illness.⁶


Acute and long-term occurrence of type 1 and type 2 diabetes mellitus can result in macrovascular (coronary artery disease, atherosclerosis and peripheral vascular disease) and microvascular (retinopathy, nephropathy, and neuropathy) complications⁷. Chronic hyperglycemia is an important factor leading to complications of DM causing diverse cellular and organ dysfunction which may lead to autonomic dysfunction, potential blindness, renal failure (due to nephropathy), and foot ulcers, amputation, Charcot joints (due to neuropathy).

Insulin and its secretion

The insulin is a polypeptide hormone having a molecular weight of 6000 Da. It is originally produced as a single molecule (pre-proinsulin) consists of 110 amino acids released by the pancreatic β -cells which are responsible for glucose homeostasis. It consists of two polypeptide chains A and B containing 21 and 30 amino acid residue respectively.⁸ Two disulfide bridges (residue A 7 to B 7 and A 20 to B 19) covalently bind the chain where chain A contains an internal disulfide bridge (residue A 6 to A 11). Hormone insulin is synthesized as pre-proinsulin in rough endoplasmic reticulum further by proteolysis it converts to pro-insulin and then to insulin. The A chain has an amino terminal helix (A 1 - A 8) linked to an anti-parallel carboxy-terminal helix (A 12 - A 20). The B chain has a central helix (B 8 - B 19), flanked by extended amino and carbonyl terminal strands. This arrangement is called the T conformation. After pre-proinsulin has passed through the endoplasmic reticulum, 24 amino acids are removed by enzymatic action from one end of chain, leaving another

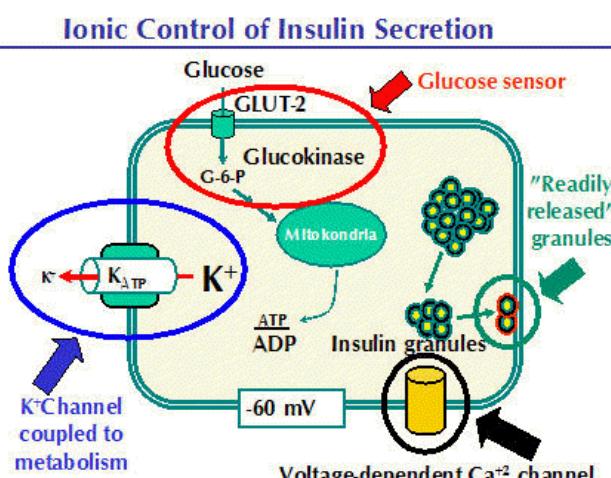
form pro-insulin that undergoes folds and bonds to passes towards Golgi body where the middle section (C chain) of 33 amino acids is removed by the action of the enzymes

pro-hormone convertase 1 and 2 converting to final structure of insulin.⁹

Figure 1: Insulin structure showing its disulfide bridge, its hexameric structure and describing its A and B chain with its amino acid sequence

Insulin stimulates hepatocytes, myocytes and adipocyte to uptake glucose for circulatory system. Insulin is needed to move blood glucose into cell where it stored (and depending on the need glucose can either be stored as glycogen inside muscles or liver cells. The inappropriate utilization of insulin leads to insulin resistance, which is characterized by inability of cells to respond to normal level of circulating insulin, thus leads to occurrence of disease. Histologically there is not much difference in islet of diabetic pancreas and the normal pancreas apart from the presence of amyloid^{4,6}.

potassium ions lead to depolarization of cell. This in turn activates the voltage gated calcium channel and facilitates extracellular calcium influx into the β cell. Ultimately by the process of exocytosis insulin is exported from the insulin storing granules and diffuses into nearby vessels.


Insulin is the sole therapy currently available to treat acute hyperglycemia. It's have multiple metabolic and cellular actions firstly it lowers plasma glucose level, along with that it helps in maintaining normal cell metabolism by increasing glucose uptake and adenosine triphosphate (ATP) production in by glycolysis. Insulin provides protection from endothelial dysfunction, inflammation (by reducing levels of proinflammatory cytokines, adhesion molecule) and thrombosis. Insulin injections is effective in T2DM for controlling blood sugar prescribed when glucose target cannot be attained with standard regimen, it causes weight gain specifically abdominal fat which can lead to insulin resistance and various cardiovascular risk.

Hypoglycemic Drugs

Anti-diabetic drug acts through two main mechanisms by stimulating β -cells of pancreatic islet to release insulin and increase the sensitivity or number of insulin receptor. Preoperatively, oral hypoglycemic agents, especially those that stimulate insulin secretion, such as sulfonylureal and meglitinide agents, have potential for producing hypoglycemia during fasting prior to surgery.

The sulfonylurea agents (e.g. glipizide, glyburide, glimepiride) are commonly prescribed oral hypoglycemic agents for the treatment of type 2 diabetes. These agents act by bind to the ATP-dependent potassium (KATP) channel in the pancreatic β -cells, leading to closure of these channels and stimulating insulin release. Thus, pancreatic β -cells are increasingly responsive to glucose concentrations and insulin release is augmented.

Metformin, a biguanide oral hypoglycemic agent, is commonly used for treatment of type II diabetes mellitus.

Figure 2: Insulin Releasing Pathway

The insulin release is a complex process involving the integration and interaction of multiple external and internal stimuli. Glucose is mediated into the β cell with the help of GLUT- 2 for the glycolysis (energy producing pathway). Glucose is further phosphorylated with the help of glucokinase enzyme and further metabolized to form ATP. Elevation in ATP ADP ratio causes the ATP-gated potassium channels in cellular membrane to close, preventing potassium ions from being shunted across the cell membrane. This increase intracellular conc. of

Metformin primary mode of action appears to be that of increasing hepatic insulin sensitivity, resulting in decreased hepatic glucose output through suppression of gluconeogenesis and glycogenolysis.¹⁶ Sulfonylurea and metformin are used although they have several side effects (weight gain, hypoglycemia) because they are cost effective. α -glucosidase inhibitors are another class of drugs that includes compound like acarbose which delay the intraluminal production of monosaccharide (glucose). Acarbose competitively inhibits α -glucosidase that is associated with the brush border membrane of the small intestine and are responsible for the digestion of complex polysaccharides and sucrose. This slows carbohydrate digestion and lowers post-prandial hyperglycemia. Biguanides (metformin), sulphonyl urea, thiazolidine and meglitinides are the main class of drugs used in diabetes they have various side effects like weight gain, lactic acidosis, heart failure and hepatotoxicity which will lead to other serious complications. Natural compounds may be an alternative treatment as they can be included in daily diet and can be taken in larger amount without any risk. Many plants are known in folk medicine of different culture to be used for their antidiabetic property. The plant and biomolecule have been reviewed for prophylaxis and treatment of type 2 diabetes.

Recent advancement in Diabetes treatment

Rimonabant is first drug which act through endocannabinoid system (ECS) that play an important role in appetite and carbohydrate and fat metabolism in brain as well as adipose tissue. Animal studies show that it acts through blocking the ECS leading to weight loss and improve insulin sensitivity by reducing the level of adiponectin. It result in weight loss, improve insulin release and sensitivity and suppresses appetite and acts by blocking CB 1 and CB 2 receptor¹⁴.

Exenatide, a synthetic version of Exendin-4a peptide discovered in the salivary secretions of the reptile *Heloderma suspectum*. Exenatide belongs to GLP 1 class that plays an important role in weight loss and as seen in animal studies it act by HbA1c reduction. Exenatide resulted in a hemoglobin A1c (HbA1c) reduction reduction of 1.0% with placebo treatment. It is used with metformin and sulfonyl urea alone or in combination.¹⁵

Sitagliptin, a DPP- IV inhibitor it hypoglycemic action is due to increase in GLP 1 and GIP level. It act by suppressing appetite it target prandial and fasting glucose level, improve marker of β cell function. Vildagliptin also belongs to DPP-IV inhibitor group which is well tolerated drug.¹⁶

Another new anti- hyperglycemic used in T1DM is the injectable pramlintide (amylin mimetics), a synthetic analogue of human amylin, a β cell peptide cosecreted with insulin act as. It suppresses glucagon secretion from pancreatic α cells, thereby attenuating glucose production. The RYpramlintide in T2DM is not so clear. Liraglutide is an acylated human GLP 1 analogue while is nearly identical to it with lysine 34 to arginine substitution and an addition of a C-16 free fatty acid derivative at lysine 26. The free fatty acid side chain promotes binding to albumin and other plasma proteins leading to delayed absorption rate from the injection site and extended plasma half life of 11-

13 h. Dapagliflozin anew drug for treatment of T2DM aims to lower blood sugar by improving glycemic control independent of insulin action. The drug reduces renal glucose reabsorption and increases glucose elimination in urine.

A Scottish medicine consortium have work on lixisenatide (brand name Lyxumia) a short-acting GLP-1-receptor agonist is a modified exendin 4 base molecule with 2-4 hr short half life it shown beneficial effects on HbA1c when combined with commonly used anti-diabetic agents on the health care service to people suffering from T2DM, studies shows that adding lixisenatide to insulin or taking it with other glucose lowering medicine controlled patient diabetes and also reduction in body weight. A series of clinical trials with 5000 participants began in May 2008. Results showed that lixisenatide was well-tolerated, with mild nausea and vomiting being the most common side effects. It is recommended for patients whose existing treatments, combined with a calorie-controlled diet and exercise; do not provide adequate glycemic control. By maintaining blood sugar level as near to normal as possible is vital to reduce the risk of long term complications such as heart disease, blindness, strokes and kidney failure. Gempingliptin is another DPP4 that has been approved by the Korean food and drug administration on june 2012 as a treatment for T2DM patient and is under phase III clinical trial to be approved by US FDA for its safety and efficacy.

Herbal remedies for treatment of diabetes

Plants have been a good source of drugs. There are more than 800 plants that possess potent anti-diabetic activity and have been used as a dietary adjuvant or as a drug which have a traditional history in India. This treatment is the safe, cost effective and with least of side effect than that of synthetic hypoglycemic agent. The plant originated products act through two mechanism either insulinomimetic or as secretagogues. There are various types of phytoconstituents like alkaloids, flavonoids and saponins glycosides present in the plants responsible for its anti-diabetic activity. Alkaloids acts by inhibiting α -glucosidase and decrease glucose transport through intestinal epithelium. Flavonoids suppresses glucose level, reduces plasma cholesterol and triglyceride significantly and increases hepatic glucokinase activity probably by enhancing insulin from β cells.

Achyranthes aspera L produced a significant dose-related hypoglycemic effect in normoglycaemic in alloxan-induced diabetic rabbits. In these animals, water and methanol extracts also decreased blood sugar levels.²¹

Aloe(A.barbida) leaves orally (500mg/kg) along with its bitter principle(5 mg/kg) .i.p. was very highly significant in reducing plasma glucose level and significant effect was seen within 5 days it work by stimulating synthesis and release of insulin from cell of langerhans²². *Andrographis paniculata* results in significant reduction of blood glucose compare to un-treated it acts by inhibiting glucose absorption. *Aronia melenocarpa* berries possess numerous biological and medicinal effects²³ they are rich in phenolic antioxidants, especially anthocyanins. Their fruit juices have significant effect on plasma glucose and lipid level in streptozotocin induced diabetic rat. It act by lowering triglyceride level²⁴.

Artemisia dracunculus L. has been reported to have hypoglycaemic effects by several researchers^{25, 26}. Wang *et al.* found that *Artemisia dracunculus* L. improved insulin sensitivity and IR signaling in insulin-resistant KK-Ay mice models. 4,5-di-O-caffeoylelquinic acid, 6-demethoxycapillarisin, and 2',4'-dihydroxy-4-methoxy-dihydrochalcone was extracted from the ethanolic extract of *Artemisia dracunculus* L.²⁷ The compounds showed inhibitory effects towards the enzyme aldose reductase (enzyme involved in diabetic complications), which may explain the antidiabetic effect. Oral administration of extract of *Asteracantha longifolia* (20 g/kg of starting material) can significantly improve glucose tolerance in healthy human subjects and diabetic patients. Dried *Allium cepa* when extracted in petroleum ether control diabetes in alloxan induced diabetes rat.

Azadirachta indica has been used in ayurvedic medical tradition as a treatment for diabetic mellitus its in-vivo antidiabetic activity was seen in streptozotocin-nicotinamide induced diabetes mice. It contains meliacinolin; a potent α -Glucosidase and α -Amylase inhibitor²⁸ which reduces oxidative stress and act as an insulogenic. It acts by inhibiting glucose absorption.

Anemarrhena asphodeloides exhibits antidiabetic effect in streptozotocin induced mice model. It contain prototimosaponin A-III and pseudo-prototimusaponin A -III they act by inhibiting hepatic glycogenesis and glycogenolysis.

Ethanolic extract of the root part of *Bambusa arundinacea* (Poaceae) was evaluated for its hypoglycemic potential in normoglycemic rats followed by alloxan and glucose loaded hyperglycemic rats by single dose and multidose administration; the plant extract significantly reduces blood glucose level both in normoglycemic and hyperglycemic rats induced by alloxan and oral glucose loaded methods till the end of the course of experiment. The preliminary phytochemical study report revealed that the test extract contain flavonoids, tannins and phenolic compounds as phytoconstituents²⁹.

Hot water extract of *Bixa orellana* plant have potent inhibitory activity toward rat lens aldose reductase³⁰. *Bougainvillea spectabilis* leaves oral administration significantly lowers hyperglycemic response in alloxan-induced diabetes rats reduce blood sugar level and increase insulin level³¹.

Seeds of *Coriandrum sativum* L (Coriander), when supplied in the diet (6.25 % by weight) and infusion (1 g/400 ml) in place of drinking, reduced the hyperglycemia during the development of streptozotocin-induced diabetes in mice^{30, 32}.

In a study conducted over type 2 diabetic mice, administration of *Curcuma longa* L. rhizomes extract led to the activation of the peroxisome proliferator-activated receptor- γ (PPAR- γ)³³ through the ligand binding activity of the extract towards the receptor. PPAR- γ is a key receptor in lipid and glucose homeostasis because of its ability to reduce the plasma free fatty acids (FFAs)^{34, 35}. The receptor is currently used as a target for the treatment of T2DM³⁶; the antidiabetic thiazolidinediones drugs exert their insulin sensitizing action through their high affinity for the receptor PPAR- γ . Thus, *Curcuma longa* is a

promising therapeutic agent in the prevention and/or amelioration of T2DM. Lee *et al.* (2008) tested a combined hypoglycaemic mixture of *Melissa officinalis* L., *Morus alba* L., and *Artemisia capillaris* Thunb that resulted in changes in the expression of the PPAR- α , another key receptor in lipid and lipoprotein metabolism³⁷. By conducting *in vitro* experiments on rat pancreatic β -cells using *Cornus officinalis* extracts, Chen *et al.* (2008) found that the extracts possessed insulin-mimetic activity and stimulated β -cell function by enhancing insulin secretion and protecting β -cells against toxic damage^{38, 39}.

Daucus carota L extract was prepared by boiling the dried material with water or macerating it with 80 % ethanol. It was shown that the extract improved the glucose tolerance⁴⁰.

Emblica officinalis fruits and seed extracted in different solvent act as α - amylase and α - glucosidase inhibitors have significant hypoglycemic activity⁴¹. *Ficus bengalensis* (banyan tree) result in significant decrease in blood and urine sugar level, certain lipid content in serum⁴². *Fructus arctii* was investigated to its hypoglycemic activity in alloxan induced diabetic mice and hyperglycemic hyperlipidemic diabetic rats. It shows significant reduction in plasma glucose, triglycerides and total cholesterol after treatment with total lignin from plant.

Hibiscus vitifolius flower petals contain 3, 4, 6, 8 tetrahydroxy flavonol -5- (-methyl ether 7-0 neosperidoside) which as an active compound having hypoglycemic activity well demonstrated in albino rats⁴³.

Ginseng Radix (GR) to normal and adrenaline-induced hyperglycemic mice caused a significant decrease in blood glucose level 4 h after its administration. The hepatic content of the facilitative glucose transporter isoform 2, liver type glucose transporter (GLUT 2) protein significantly increased in the orally GR-treated healthy and adrenaline-induced hyperglycemic mice compared to that in the controls. Recently, ginseng, which is among five crude drugs included in the traditional Chinese prescription, Byakkoka- ninjin-to, was investigated using genetically obese diabetic KK-CA(y) mice and alloxan-diabetic mice⁴⁴. The water extract of ginseng, when individually tested, markedly lowered blood glucose level in diabetic animals.

Holarrhena antidysentrica bark aqueous and alcoholic extract reduces the blood sugar level in normal and alloxan-induced diabetic rats⁴⁵. *Inula racemosa* root petroleum extract result in lowering plasma insulin and glucose level when administered in adrenaline-induced hyperglycemia in albino rats.⁴⁶

Juniperus communis lowers the glycemic level by increasing peripheral glucose consumption and potentiation of glucose induced insulin secretion. *Lagerstroemia speciosa* showed slow glucose activity. *Momordica charantia* ethanolic extract decreases blood sugar in normal and diabetic rat model. *Morinda lucida* aqueous extract have potent hypoglycemic effect in normoglycemic and alloxan induced diabetic mice. *Momordica dioica* fruit ethanolic and ethyl acetate extract has been found to have hypoglycemic activity when studied in alloxan induced diabetic rat which was due to

presence of steroids, triterpenoids and their glucoside⁴⁸. *Nymphaea pubescens* ethanolic extract have significant activity in reducing blood glucose when study was conducted on diabetic rat histopathological examination of pancreas shows regenerative potential corroborating its anti diabetic potency. *Nicotiana glutinosa* leaves contain sucrose fatty acid compounds which are helpful in treatment of disease associated with diabetes.^{49, 50, 51}

Ocimum sanctum alcoholic extract led to mark reduction of blood sugar in glucose fed hyperglycemic and streptozotocin induced diabetic rat. *Ocimum gratissimum* methanolic extract have shown lowers the blood glucose level in diabetic male wistar rat⁵². *Papaver somniferum* extract seed extract when given orally reduces blood glucose level in alloxan induced diabetic rats. *Paspalum scrobiculatum* aqueous and ethanolic extract reduces blood glucose level and lipid parameters in diabetic rats. Methanolic extract of *Phyllanthus amarus* was found to have potent anti diabetic activity and it also inhibits lipid peroxidation and reduces blood sugar level in diabetic rats. *Scoparia dulcis* and *Scopari adulcis* extracts significantly reduces lipid peroxidation and possess anti diabetic activity and are widely used in Indian folk medicine. *Sephaerthus indicus* flower head petroleum ether extract anti diabetic activity was studied in alloxan induced diabetic wistar rat by reducing blood glucose level⁵⁴.

Terminalia chebula, *Emblica officinalis* and *Terminalia belerica* combination named triphala (equal portion of all the three) are found to inhibit lipid peroxidation and scavenge hydroxyl and superoxide free radical in vitro. Oral administration of the extract reduces the blood sugar level in normal and alloxan induced diabetic rats. *Tinospora cordifolia* stem extract significantly lowers blood glucose level, reduce glycosylated hemoglobin level, reduced glucokinase and increases G6-P activity. And along with that it increases insulin and C-peptide level which regenerates β cells activity^{49, 50, 51}.

Trigonella foenum-graecum (fenugreek) seeds contains alkaloid trigonelline that counteracted to hyperglycemic effect of cortisone in non diabetic rabbit by lowering blood glucose

REFERENCE:

1. American diabetes association. Clinical practice recommendation. Standard of medical care in diabetes. *Diabetes care* 30 (supl 1): S4- 41.2007.
2. Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR, Wiedmeyer H-M, Byrd-Holt DD: Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults: the Third National Health and Nutrition Examination Survey, 1988–1994. *Diabetes Care* 21:518–524, 1998.
3. Alemzadeh R, Ali O. Diabetes mellitus. In: Kliegman RM, ed. *Kliegman: Nelson Textbook of Pediatrics*. 19th ed. Philadelphia, Pa.: Elsevier Saunders; 2011: chapter 583.
4. Amorosa LF, Lee EJ, Swee DE. Diabetes mellitus. In: Rakel RE, Rakel DP, eds. *Textbook of Family Medicine*. 8th ed. Philadelphia, Pa.: Elsevier Saunders; 2011: chapter 34.
5. American Diabetes Association. Standards of medical care in diabetes. *Diabetes Care*. 2013; Jan; 33 Suppl 1:S11-S61.
6. Venkat Narayan K. M, Zhang P, Kanaya A M, Williams D E, Engelgau M M, Imperatore G, and Ramachandran A; Diabetes: The Pandemic and Potential Solutions. | Disease Control Priorities in Developing Countries chapter 30 (II edition) pg no591-630.
7. Fowler M J Microvascular and macrovascular complication of diabetes, clinical diabetes 2008; 26 (2): 77-82.
8. Seino S. Plenary Lecture: Molecular mechanisms of insulin secretion. Program and abstracts of the 62nd Scientific Sessions of the American Diabetes Association; June 14-18, 2002; San Francisco, California. *Diabetes*, Volume 51, Supplement 2.
9. Weir1 S B, O'Brien T D Islets in Type 2 Diabetes: In Honor of Dr. Robert C.Turner *Diabetes*, nov 2008(57) 2899-2904.
10. White J R, Davis S N, Cooppan R, Davidson M B, Mulcahy K, RN, Gary A. Clarifying the Role of Insulin in Type 2 Diabetes Management *Clinical Diabetes* 2003; 21 (1): 14-21.
11. Goodarzi MO, Bryer Ash M, Review metformin revisited: re-evaluation of its properties and role in the pharmacopoeia of modern antidiabetic agent. *Diabetes Obes metab*. 2005 nov 7(6) : 654-65.
12. Srinivasan B T, Jarvis J, Khunti K, Davies M J, Recent advances in the management of type 2 Diabetes mellitus: a review *Postgrad Med J* 2008;84:524–531.
13. Ganie M A, Kotwal Recent Advances in Management of Diabetes Mellitus *S JMSA* July-September 2012 Vol. 25 No. 3.
14. Leite C E, Mocelin C A, Peterson G O, Leal M B, Thiesen F V, Rimonabant: an antagonist drug of the endocannabinoid system for the treatment of obesity. *Pharmacol Rep*. 2009 mar april 61(2): 217-24.
15. Mikhail N Exenatide : a novel approach for treatment of type 2 diabetes. *South med J*. 2006 99(11): 1271-9.
16. Bailey CJ, Turner RC. Drug therapy: Metformin. *N Engl J Med*. 1996; 334(9):574–9.
17. Herman GA, Stevens C, Van Dyck K, Bergman A, Yi B, De Smet M, Snyder K, Hilliard D, Tanen M, Tanaka W, Wang AQ,

capacity. Other hypoglycemic compound present in the seeds are nicotinic acid, coumarin, and scopletine⁵³.

Vernonia amygdalina aqueous extract when given intraperitoneally produces a dose related fall in blood glucose when compared it effect along with tolbutamide by enhancing insulin secretion.

Zaleya decandra root ethanolic extract significantly restore the level of glucose, Total cholesterol, Triglycerides, Total protein, urea, creatinine, lipid peroxidation level and antioxidant enzyme when histopathological studies was conducted on alloxan induced diabetic rats⁵⁴.

Management of disease

Diabetes mellitus requires multidisciplinary approach for the management. It requires proper diet monitoring, exercise and stress management as a non-pharmacological approach.

A proper monitoring of diet is needed for diabetic patient. In type I and II DM caloric distribution of energy should be 55-60% carbohydrate, 10-15% protein and 20-25% from fat. Calories intake should be monitored by restricting diet. Fiber rich food should be included in the diet specially cellulose or hemicelluloses which are having beneficial effect on intestinal transit time and thereby slow down glucose absorption thus decreasing hyperglycemia. Fruits should be taken in moderate while very sweet fruits should be avoided. Fish oil has been reported for beneficial omega 3 which plays important role in reducing plasma triglycerides and lipoproteins level. Along with that alcohol and tobacco should be avoided. Artificial sweetener like saccharin and aspartame are advised in replacement of sugar. Further there is evidence that regular exercise and yoga can reduce the risk of obesity and further helps in controlling diabetes.

ACKNOWLEDGEMENT:

I am greatful to my Director SK Sharma (Sunder Deep Pharmacy Collage, Ghaziabad) and Prof. Lalit Singh for their guidance and encouragement throughout the writing procedure.

Zeng W, Musson D, Winchell G, Davies MJ, Ramael S, Gottesdiener KM, Wagner JA. Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. *Clin Pharmacol Ther.* 2005 Dec; 78(6):675-88.

18. Mc ardle H, Green light for new diabetes medicine. 2013 link: <http://www.heraldscotland.com/news/health/green-light-for-new-diabetes-medicine.22109547>

19. Inzucchi S E, Mc Guire D K. New drugs and technologies new drugs for the treatment of Diabetes part II: incretin based therapy and beyond. *Circulation.* 2008, 117: 574-584.

20. Herman GA, Stevens C, Van Dyck K, Bergman A, Yi B, et al. Pharmacokinetic and pharmacodynamic of sitagliptin, an inhibitor of dipeptidyl IV: results from two randomized, double – blind, placebo-controlled studies with single oral doses. *Clin Pharmacol Ther.* 2005 Dec; 78(6):675-88.

21. Targeting Incretins in Type 2 Diabetes: Role of GLP-1 Receptor Agonists and DPP-4 Inhibitors

22. Partley RE and Gilbert M .Rev diabet stud. 2008 Summer; 5(2): 73-94.

23. Ahren B. Review dipeptidyl peptidase-4 inhibitors: clinical data and clinical implications. *Diabetes care* 2007 jun 30(6): 1344-50.

24. Akhtar MS, Iqbal J, Evaluation of the hypoglycaemic effect of *Achyranthes aspera* in the normal and alloxan diabetes rabbits. *J Ethnopharmacol.* 1991 Jan; 31(1):49-57.

25. Yongchayudha S., Rungpitartangsi V., Bunyaphraphatsara N. and. Chokechajaroenporn O Antidiabetic activity of Aloe vera L. juice. I.Clinical trial in newcases of diabetes mellitus Phytomedicine 1996Vol. 3 (3), pp. 241-243.

26. Kulling SE, Rawel HM Chokeberry (*Aronia melanocarpa*) – A review on the characterstic components and potential health effects. *Planta Med* 2008 Oct; 74(13): 1625-34.

27. Valcheva-Kuzmanova S, Kuzmanov K, Tancheva S, Belcheva A; Hypoglycemic and hypolipidemic effects of *Aronia melanocarpa* fruit juice in streptozotocin induced diabetic rats. *Methods find exp clin pharmacol.* 2007 29(2): 101-5.

28. Ribnicky DM, Kuhn P, Poulev A, Logendra S, Zuberi A, Cefalu WT, Rakin I; Improved absorption and bioactivity of active compounds from an anti-diabetic extract of *Artemisia dracunculus L.* *Int J Pharm.* 2009 370(1-2) : 87-92.

29. Obanda DN, Hernandez A, Ribnicky D, Yu Y, Zhang XH, Wang ZQ, Cefalu WT. Bioactives of *Artemisia dracunculus L.* Mitigate the role of ceramides in attenuating insulin signaling in rat skeletal muscle cells. *Diabetes.* 2012 Feb 7. [Epub ahead of print] PMID: 22315320

30. Perez-Gutierrez R M, Damian-Guzman M, Meliacinolin: a potent α - glucosidase and α - amylase inhibitor isolated from *Azadirachta indica* leaves and in-vivo antidiabetic property in streptozotocin-nicotinamide –induced type 2 diabetes in mice. *Biol.pharm. bull.* 2012 35(9): 1516-1524.

31. Joshi RK, Patil PA , Mujawar MHK, Kumar D Kholkute SD; Hypoglycemic activity of bambusa arundinacea leaf aqueous extract in euglycemic and hyperglycemic wistar rats. *Pharmacologyonline* (2009)3: 789-795.

32. Coman C, Rugina O D, Socaciuc C, Plants and Natural Compounds with Antidiabetic Action, *Not Bot Horti Agrobo*, 2012, 40(1):314-325

33. Narayanan CR, Joshi DD, Mujumdar AM, Dhekne VV. Pinitol, A new antidiabetic compound from the leaves of *Bougainvillea spectabilis*. *Current Science.* 1987;56:139–141.

34. M. Aslam, Jafri M A, Javed K, Singh S; Evaluation of antidiabetic drugs from plant sources. Recent progress in medicinal plants. *Phytochemistry and pharmacology* (2): 83-104.

35. Narala VR, Smith MR, Adapala RK, Ranga R, Panati K, Moore BB, Leff T, Reddy VD, Kondapi AK, Reddy RC,; Curcumin is not a ligand for peroxisome proliferator activated receptor γ . *Gene ther boil.* 2009 13(1): 20-25.

36. Bajaj M, Suraamornkul S, Hardies LJ, Glass L, Musi N, DeFronzo RA Effects of peroxisome proliferator-activated receptor (PPAR)- α and PPAR- γ agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. *Diabetologia* (2007). 50:1723-173.

37. Kasuga J-I, Nakagome I, Aoyama A, Sako K, Ishizawa M, Ogura M, Makishima M, Hirono S, Hashimoto Y, Miyachia H Design, synthesis, and evaluation of potent, structurally novel peroxisome proliferator-activated receptor (PPAR) γ -selective agonists. *Bioorg Med Chem* (2007). 15:5177-5190.

38. Goldstein B J, Mueller-Wieland D; Type 2 Diabetes: Principles and Practice, Second Edition 2007.

39. Lee J, Chae K, Ha J, Park B-Y, Lee HS, Jeong S, Kim M-Y, Yoon M (2008). Regulation of obesity and lipid disorders by herbal extracts from *Morus alba*, *Melissa officinalis*, and *Artemisia capillaris* in high-fat diet-induced obese mice. *J Ethnopharmacol* 115:263-270.

40. Chen C-C, Hsu C-Y, Chen C-Y, Liu H-K (2008). *Fructus Corni* suppresses hepatic gluconeogenesis related gene transcription, enhances glucose responsiveness of pancreatic beta-cells, and prevents toxin induced beta-cell death. *J Ethnopharmacol* 117:483-490.

41. Nain P, Saini V, Sharma S; Antidiabetic activity of *Embelica officinalis* seed extract in streptozotocin induced type 2 diabetes mellitus in rats. *Int J of Natural prod. Sc.* 2012 splissue 1:135.

42. Chaturvedi N, Sharma S. Antidiabetic and antihyperlipidemic activity of water soluble solid extract of *Ficus bengalensis* Linn.bark in rats. *Biochem Cell Arch* 2010;10: 65-69.

43. Xu Z, Wang X, Zhou M, Ma L, Deng Y, Zhang H, Zhao A, Zhang Y, Jia W. The antidiabetic activity of total lignin from *Fructus Arctii* against alloxan- induced diabeted in mice and rats. *Phytother Res.* 2008; 22(1) : 97-101.

44. Ohnishi Y, Takagi S, Miura T, Usami M, Kako M, Ishihara E, Yano H, Tanigawa K, Seino Y. Effect of ginseng radix on GLUT 2 protein content in mouse liver in normal and epinephrine induced hyperglycemic mice. *O Biol Pharm Bull.* 1996; 19(9): 1238-40.

45. Jhalpure S S, Bamne S, Patil M B, Shah B, Md Salahuddin ; Anti diabetic activity of holarrhena antidysentrica wall, bark on alloxan induced diabetic rats.2006 ; 6(1) 26-30.

46. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A. Medicinal plants with potential antidiabetic activity-a review of ten years of herbal medicine research (1990–2000) *Int J Diabetes Metab.* 2006; 14:1-25.

47. Tripathi A K, . Bhoyer P K, . Baheti J R, . Biyani D M, Khalique M, Kothmire M S., Yogesh M. Amgaonkar, Anand B. Bhanarkar3Herbal Antidiabetics: A Review

48. Singh R, Seherawat A and Sharma P., Hypoglycemic, Antidiabetic and Toxicological Evaluation of *Momordica dioica*Fruit Extracts in Alloxan Induced Diabetic Rats. *J of Pharmacol and Toxicol.* 2011, 6: 454-467.

49. Chauhan A, Sharma PK, Srivastava P, Kumar N, Duehe R. Plants having potential antidiabetic activity: a review. *Der Pharm Lett.* 2010;2(3):369–387.

50. Patel DK, Prasad SK, Kumar R, Hemalatha S An overview on antidiabetic medicinal plants having insulin mimetic property. *Asian Pacific J of Tropical Biomed*2012:320-330.

51. Rossl A. Medicinal Plants of the World, Volume 3: Chemical Constituents, Traditional.

52. Bihari CG, Manaswini B, Keshari PS, Kumar TS. Phytochemical investigation & evaluation for antidiabetic activity of leafy extracts of various *Ocimum* (Tulsi) species by alloxan induced diabetic model. *J Pharm Res* 2011;4: 28-29

53. Abdalla M. Abdelfatif, Mariam Y. Ibrahim and Amal S. Mahmoud, Antidiabetic Effects of Fenugreek (*Trigonella foenum-graecum*) Seeds in the Domestic Rabbit (*Oryctolagus cuniculus*). *Research Journal of Medicinal Plant* 2012; 6: 449- 455.

54. Modak M, Dixit P, et al . Indian herbs and herbal drugs used for the treatment of diabetes. *J clin biochem nutr.* 2007; 40 (3):163-173.