Delivery ond Therabe

Available online on 15.04.2024 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Full Text Article

Review Article

Bridging Tradition and Modern Pharmacology of *Bergenia ciliata* (Haw.) Sternb: A Review

Upakar Rai 1* D, Barkha Rai 2

- ¹ Department of Botany, St. Joseph's College, Darjeeling 734104, India
- ² Department of Zoology, St. Joseph's College, Darjeeling, India

Article Info:

Article History:

Received 07 Feb 2024 Reviewed 03 March 2024 Accepted 19 March 2024 Published 15 April 2024

Cite this article as:

Rai U, Rai B, Bridging Tradition and Modern Pharmacology of *Bergenia ciliata* (Haw.) Sternb: A Review, Journal of Drug Delivery and Therapeutics. 2024; 14(4):86-91

DOI: http://dx.doi.org/10.22270/jddt.v14i4.6495

*Address for Correspondence:

Upakar Rai, Department of Botany, St. Joseph's College, Darjeeling – 734104, India

Abstract

Bergenia ciliata, a perennial rhizomatous herb holds a special place in the traditional herbal healthcare system due to its diverse therapeutic uses and potentials. Validation of its efficacy with scientific investigation is a prerequisite of any prospective herbal resource. The plant is a rich source of various bioactive chemical compounds. The present review is an attempt to consolidates comprehensive information sourced from 100 different literatures, exploring the plant's distribution, phytochemistry, traditional medicinal uses, and pharmacological activities specially focusing on some prevalent diseases of present day. The herb's antimicrobial, anticancer, antiulcer and antidiabetic properties signify its potential in modern pharmacology. The review underscores B. ciliata's relevance in drug development and nutraceutical formulations, bridging age-old wisdom with contemporary healthcare solutions. Further exploration into its bioactive compounds and clinical applications promises innovative avenues in therapeutic intervention.

Keywords: Bergenia ciliata, perennial rhizomatous herb, traditional herbal healthcare, age-old wisdom

Introduction

Bergenia ciliata (Haw.) Sternb. a perennial rhizomatous herb belonging to Saxifragaceae family holds significant ethnomedicinal importance. The name Bergenia was coined by Conrad Moench in 1794 in the name of a distinguished Botanist and Physician Karl August von Bergen¹. The plant is known by various names such as Shailagarbhaja, Pashanbheda (Ayurveda), Pakhanabeda (Hindi), Pakhanbed (Unani) Pakhanbed (Nepali) is a cornerstone among medicinal plants. It is found growing extensively in the Himalayan region from Kashmir to Arunachal Pradesh^{1,2,3,4,5} between 1000 – 3000 m above sea level. Its geographical extent reaches beyond the Indian Himalayas to neighboring countries like Nepal_{6,7,8}, Bhutan², Pakistan^{9,10,11}, Afghanistan¹² up to South Tibet¹³, mostly growing at higher altitudes. The name 'Pashanbheda' (Pashan meaning rockstone 'bheda' meaning piercing) aptly describes its prolific growth on the rocky surfaces.

Bergenia ciliata is a highly versatile medicinal herb renowned for its wide-ranging therapeutic value. Because of their medicinal properties it is traded in large amount, particularly from Sikkim and Kumaon Himalaya and Nepal^{3,8,14}. It is one of the most important folk medicines in Indian subcontinent including China^{13,15,16}, with medicinal roots tracing back to vedic times. The rhizome of Bergenia have been used for centuries in Ayurvedic, Unani, Amchi and Jadi-buti formulation to dissolve kidney and gall bladder stones, piles, abnormal leucorrhea, and pulmonary affections^{17,18,19}. It is also used in the treatment of many diseases like skin diseases,

gastrointestinal problems, heart diseases, opthalmic problems, worm infection, diarrhoea, respiratory diseases, fever, oral infections, cancer, and gynaecological disorders 1,12,16,20,21,22,23,24. Its historical remedial significance and broad applications highlight its enduring importance in the traditional practices and in modern drug development.

Herbal remedies hold significant value as a rich bioresource for preventing infections and diseases^{25,26}. The traditional herbal remedies serve as the primary sources for bioprospecting. Researches worldwide have explored the therapeutic potential of *B. ciliata* on various ailments. The present review is an attempt to gather information on the traditional use of *Bergenia ciliata* its phytochemistry, and pharmacology and also discuss research findings particularly focusing on the plant's effectiveness against some prevalent disease like diabetes, ulcers, antimicrobial and anti-cancer that prevalent now-a-days.

Methodology

The current review on *Bergenia ciliata* draws upon comprehensive collection of literature sources. A systematic approach was employed to meticulously review existing literature, aimed at consolidating pertinent information on the plant's distribution, phytochemical composition, traditional medicinal applications, and pharmacological activities, specifically focusing on its efficacy in addressing current prevalent diseases – microbial, cancer, diabetes and gastric ulcers afflicting the world populace. To achieve this, diverse bibliographic search engines and online databases (such as

ISSN: 2250-1177 [86] CODEN (USA): JDDTAO

Google Scholar, WoS, PubMed, CAB abstracts, INMEDPLAN, Scopus, NATTS, EMBASE, SciFinder, MEDLINE) were meticulously consulted, alongside pertinent websites, facilitating an in-depth and detail analysis.

Botanical description

Bergenia ciliata is a perennial rhizomatous herb that reaches a height of up to 35 cm tall with stout rhizomatous rootstock with intermittent axillary buds. The Leaves are sparse, spreading and leathery, glabrous or hirsute, suborbicular to orbicular or broadly obovate up to 30 cm long; Leaf margin sparsely hairy, Petiole 1-2(-5) cm long, glabrous or hirsute. Inflorescence a terminal corymb, often subtended by an ovate leafy bract; bract glabrous or sparsely ciliate; scape and inflorescence greenish or pink tinged. Peduncle up to 10 cm long; flowers pink to purplish, pedicellate. Sepals c. 7 mm long, oblong. Petals 10 x 4 mm, unguiculate, limb orbicular. Filaments c. 1 cm long, pink to red. Carpels 2. Styles c. 7 mm long. Carpels and styles green or pinkish. Capsule 13 x 6 mm, including styles. Seeds elongated, c. 1 mm long, brown, minutely tuberculate.

Habit of Bergenia ciliata

Traditional use:

Bergenia ciliata has a rich history in traditional medicine, maintaining a significant role in both Unani and Ayurvedic medicinal practices. Various plant parts including rhizomes, roots, leaves, stem, and entire plant have been integral in treating a diverse range of ailments from ancient times. These includes kidney and gallbladder stone, lungs and liver disease, spleen enlargement, tumors, diahhroea, dysentery, dysuria, eyesores, cough, fever, piles, gastero-intestinal disorders, fever^{20,27,28,29,30}.

Ethnobotanical studies involving local herbal healers and knowledgeable elderly people have provided substantial information about the use of the $B.\ ciliata$. Choudhury et al. 20 recorded 30 uses of $B.\ ciliata$ in the Kumaon Himalayan region. Similarly, Rafiq et al. 16 extensively documented 104 uses ranging from common to chronic ailments in the Kashmir Himalaya.

In Darjeeling and Sikkim Himalaya, local communities utilize *B. ciliata* in treating various conditions such as cuts and

wounds, diarrhoea, bone fractures, fever, cough, boils, and pulmonary infections^{31,32,33,34}. Among the local tribal communities in Kumaon Himalayas including Bhotiya, Van Rawat and Buxa communities, rhizome usage is prevalent for treating asthma, chronic ulcers, skin infection, dysentery, diarrhoea, gasterointestinal problems, piles, rheumatism, cuts and burns, urine disease, anthelmintic, fever, in kidney, and gall bladder²⁰. While in the Kashmir Himalaya, the Hakims and Bohris (herbal healers) treat 104 diseases and common ailments using *B. ciliata*¹⁶.

Traditional healers used rhizome, roots, leaves in diverse formulations to address various ailments. The decoction derived from the *B. ciliata* leaves serves as an effective remedy for eye infections, while crushed leaves serves as poultice for treating cuts and wounds^{20,24}. Rhizome and root paste is applied in the burns, wounds, and for pain relief, setting dislocated bones, skin diseases16,35,36,37. Rhizome decoction mixed with honey is prepared to treat diarrhoea^{36,38,39}. Additionally, post-partum women have historically used a combination of rhizome juice and honey as tonic and to treat digestive disorders^{16,40}. Fresh juice of rhizome is used to treat intermittent fever^{20,41}. Boiled roots and rhizomes, combined with salt, exhibited therapeutic effects in managing asthma^{12,20}. Furthermore, reports suggest its use in treating piles and cancer-related symptoms^{4,12,20,42}, an effective antipyretic and anthelminthic agent^{16,20,43}. The powder of rhizome and roots mixed with mustard oil is used for arthritis, gouts, urinary problems and rheumatisms¹⁶, higher dosage exhibited anti-diuretic property^{16,20}. The rhizome powder is aphrodisiac and is used to increase sperm count²⁰ in Kumaon Himalaya. Furthermore, crushed rhizome, roots, and leaves are administered to treat gastro-intestinal disorders like ulcers, colitis, indigestion etc16,20.

Phytochemistry of Bergenia ciliata

Literature review reveals large number of phytochemical compounds in Bergenia ciliata. These phytochemicals include wide range of constituents such as flavonoids, terpenoids, sterols, saponins, glucosides, phenols, tannins, coumarins, acids, carboxylic acids, and various others compounds^{44,45,46,47,48}. Notably, among these phytochemicals, key bioactive compound identified in B. ciliata comprise bergenin, catechin, gallic acid β-sitosterol, tannic acid, (-)-3-0galloylepicatechin, (-)-3-0-galloylcatechin, gallicin, afzelechin, $sito indo side ^{12,49,50,51}.\\$ paashanolactone, An performance liquid chromatography coupled to hybrid linear ion trap triple quadrupole mass spectrometry study by Pandey et al⁵² made a quantitative estimation of 8 major bio-active phenolic compounds from Bergenia. While, Gopane et al48 identified 12 bioactive flavonoids belonging to hydrocarbon, alcohol, fatty acids, lactones etc. using gas chromatographymass-spectrometry.

Bergenin a key bioactive compound exhibits hepatoprotective, immunomodulatory properties⁵³, alongside antioxidant capabilities^{54,55}. It is also effective in alleviating phlegm, cough inflammation^{54,56}, and has also shown promise in treating gastric ulcer⁵⁷. Gallic acid another constituent, displays antimicrobial activity⁵⁸. (-)-3-0-galloylepicatechin and (-)-3-0-galloylcatechin have been identified for their effectiveness against type 2 diabetes^{59,60,61}.

Pharmacology Action of Bergenia ciliata

Antimicrobial property

B. ciliata demonstrates strong antibacterial activity, as highlighted in various studies^{4,31,62,63,64}. Pharmacognostic analysis of the rhizome of B. ciliata has unveiled its significant inhibitory effect on pathogenic bacteria such as Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and

Staphyllococcus aureus infections31,63,64,65. Investigation into extracts derived from different parts of the plant and using various solvent4,58,65,66,67 have been conducted against pathogenic bacteria. Among the diverse solvents and plant parts utilized for extract preparation, methanol extract from the rhizome emerged as the most effective in controlling these pathogenic bacteria^{4,66}. The plant was also found to be effective in supressing the malarial parasites - Plasmodium falciparum and P. berghei68,69. Leaf extract exhibited considerable antimalarial activity against P. falciparum70. Recent in vivo studies of the ethanol extract of rhizome exhibited considerable inhibition of schizont maturation of two strains of P. falciparum⁶⁹. The efficacy of the rhizome extract was found to be comparatively higher than the chloroquine. Collectively, these studies strongly suggest that *B*. ciliata holds potential as a candidate for the treatment of various pathogenic microbes.

Anticancer Activity

Cancer is one of the most prevalent life-threatening diseases in modern times. The scientific community's focus has shifted towards plant-based compounds for developing new clinical drugs due to their lower costs and fewer associated side effects as compared to traditional chemotherapy⁷¹. Numerous plant species have exhibited anti-cancerous properties and are currently utilized in the treatment of various types of cancer⁷². These researchers are primarily based on traditional herbal medicine practices, particularly in developing countries^{73,74,75}. Investigation into the methanolic and aqueous extract derived from the rhizome of Bergenia ciliata on human breast, liver, and prostate cancer cell-lines have revealed concentrationdependent toxicity76. Recent studies conducted by Ozaira et al⁷⁷ used MTT assay on the methanolic extract of *B. ciliata* on MDA-MB-231 and C6-Glioma cancer cell-lines. Their immunoblotting and enzyme assay using spectrophotometric technique revealed promising anti-cancer properties of B. ciliata due to its ability to modulate Unfolded Protein Response (UPR) and Reactive Oxygen Species (ROS) pathways leading to UPR-induced apopstasis. Moreover, Zinc oxide Nanoparticle synthesised from the rhizome extract of *B. ciliata* have exhibited remarkable abilities in scavenge free radical and demonstrating selective cytotoxicity against cervical cancer (HeLa) and Human colon cancer (HT-29) cell line78. Consequently, Bergenia shows potential as an antineoplastic agent, suggesting potential clinical utility in preventive medicine.

Antiulcer Activity

Across the globe, extensive research has delved into the antiulcer potential of various traditional medicinal herbs^{79,80,81}. One such herbal remedy B. ciliata has gained attention for its reported efficacy in addressing stomach disorders and gastric ulcers82,83 because of its traditional usage in the treatment of stomach disorder. In a notable investigation by Kakub & Gulfraz⁸² and Pokhrel et al⁵⁸, using aqueous and methanolic extract of B. ciliata administered at different doses (15, 30, and 60 mg/kg), were evaluated in-vivo on ulcer-induced rats to ascertain gastro-protective effect. Their findings highlighted that the aquous extract showed remarkable reduction of stomach-ulcer lesion, indicating significant anti-ulcer properties attributed to the enhancement of the gastric mucosal barrier by the aqueous extract. Moreover, in a separate study conducted by Ali et al⁸³, bergenin isolated from the methanolic extract of B. ciliata rhizome, exhibited substantial inhibition similar to the standard amoxicillin antibiotic against Helicobacter pylori, the bacteria responsible for gastric ulcers. This led to the conclusion that B. ciliata's anti-ulcer activity primarily arises from its effective anti-Helicobacter pylori action.

Antidiabetic Activity (Insulin stimulated glucose uptake, enzyme dependent glucose transport and induces insulin production by pancreatic B-cell.)

Diabetes is one of the most prevalent lifestyle diseases worldwide, with the International Diabetes Federation (IDF) reporting approximately 537 million affected adults in 2021⁸⁴. The disease's prevalence has been rising rapidly across all economic strata^{85,86} exerting a significant burden on individuals, families, and nation alike. Ethnobotanical and pharmacological research through-out the developing countries, reveals a large number of plant species showing anti-diabetes potentials^{85,87,88,89,90,91,92}. These plants contain diverse bio-active chemicals for combat diabetes. *B. ciliata* is one such promising herb used in the diabetes treatment by herbal healers in traditional communities throughout Asia^{50,59}.

Recent studies have aimed to assess the efficacy and perform phytochemical characterization of the bioactive compounds within this herb^{50,57,60,61}. investigated the anti-diabetic properties using an in-virto model, and isolating two active compounds 3-0-galloylepicatechin and 3-0-galloylcatechin. These compounds exhibited significant dose-dependent enzyme inhibitory activity against rat intestinal α -glucosidase and porcine prancreatic α-amylase, showcasing *B. ciliata's* anti-diabetic potential. Subsequent studies on the rhizome extract (ethyl acetate) revealed higher concentration of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC), displaying significant inhibitory activity against α -glucosidase and α -amylase^{59,61}. Docking analysis further unveiled that catechin, a major bioactive compound in the plant, exhibited a notably higher affinity for the enzyme. These findings offer valuable insights into potential preparations, nutraceutical, and functional foods aimed at diabetes management and treatment.

Conclusion

Bergenia ciliata, a small perennial herb of the Himalayas exhibits profound therapeutic value, deeply rooted in traditional practices and validated through contemporary research. Its diverse medicinal uses ranging from the treatment of kidney and gall bladder stones, gastrointestinal issues, heart ailments, respiratory disorders, skin diseases, and gynecological problems among numerous others are well known. Historical relevance in Ayurveda, Unani, and other traditional medicinal systems resonates through its various formulations utilizing different parts such as rhizomes, roots, leaves, and their extracts, showcasing its efficacy against an array of ailments.

Pharmacological and toxicological studies on *Bergenia ciliata* has revealed a substantial antimicrobial efficacy against pathogenic bacteria and its anti-malarial potential. Exciting findings also emphasize its anticancer attributes, including its ability to induce apopstasis and exhibit selective cytotoxicity against cancer cell lines. Furthermore, its anti-ulcer properties, particularly against *Helicobacter pylori*, and its efficacy in managing diabetes through enzyme inhibition have shown promising therapeutic avenues.

The robust ethno-medicinal history coupled with contemporary scientific validation underscores *Bergenia ciliata's* immense potential in modern pharmacology. Its varied therapeutic properties, demonstrated through various studies, offer promising prospects for the development of novel drugs, nutraceuticals, and functional foods, reinforcing its relevance in the realm of preventive and curative healthcare. Further research and exploration into its bioactive compounds and clinical applications may pave the way for innovative treatments, substantiating its position as a formidable candidate in the pursuit of enhanced healthcare solutions.

References

- Koul B, Kumar A, Yadav D, Jin J. Bergenia Genus: Traditional Uses, Phytochemistry and Pharmacology. Molecules, 2020;25(23):5555. https://doi.org/10.3390/molecules25235555 PMid:33256153 PMCid:PMC7730924
- Grierson AJC, Long DG. Flora of Bhutan. Vol 1 Part 3. Royal Botanic Garden Kew, 1987 pp. 492.
- 3. Rai L, Prasad P, Sharma E. Conservation threats to some important medicinal plants of the Sikkim Himalaya, Biol. Conserv., 2000;93(1):27-33. https://doi.org/10.1016/S0006-3207(99)00116-0
- Singh M, Pandey N, Agnihotri V, Singh KK, Pandey A. Antioxidant, antimicrobial activity and bioactive compounds of Bergenia ciliata Sternb: A valuable medicinal herb of Sikkim Himalaya. J. Trad. Comp. Med., 2017;7(2):152-157. https://doi.org/10.1016/j.jtcme.2016.04.002 PMid:28417084 PMCid:PMC5388066
- Tiwari V, Meena B, Nair NK, Rana TS. Molecular analyses of genetic variability in the populations of Bergenia ciliata in Indian Himalayan Region (IHR). Phys. Mol. Bio. Pl., 2020;26(5):975-984 https://doi.org/10.1007/s12298-020-00797-z PMid:32377047 PMCid:PMC7196595
- Shrestha PM, Dhillion SS. Medicinal plant diversity and use in the highlands of Dolakha district, Nepal. J. Ethnopharmacol., 2003;86(1):81-96. https://doi.org/10.1016/S0378-8741(03)00051-5 PMid:12686446
- Hasan M, Gatto P, Jha P. Traditional uses of wild medicinal plants and their management practices in Nepal-a study in Makawanpur district, Int. J. Med. Aromat. Plants, 2013;3:102-112.
- Kunwar RM, Thapa-Magar KB, Subedi SC, Kutal DH, Baral B, Joshi, NR, Adhikari B, Upadhyaya KS, Thapa-Magar S, Ansari AS, Thapa GJ, Bhandari AR. Distribution of important medicinal plant species in Nepal under past, present, and future climatic conditions. Eco. Ind., 2023;146:109879. https://doi.org/10.1016/j.ecolind.2023.109879
- Hussain W, Hussain J, Ali R, Hussain S, Khan MA, Khan I, Lopes WA, Nascimento IA. Phytomedicinal studies of Kurram agency in the federally administered tribal areas (FATA) of Pakistan, J. Appl. Pharm. Sci., 2012;2(10):081-085. https://doi.org/10.7324/JAPS.2012.21016
- 10. Khan M, Khan MA, Mujtaba G, Hussain M. Ethnobotanical study about medicinal plants of Poonch valley Azad Kashmir, J. Anim. Plant Sci., 2012;22:493-500.
- 11. Khan N, Abbasi AM, Dastagir G, Nazir A, Shah GM, Shah MM, Shah MH. Ethnobotanical and antimicrobial study of some selected medicinal plants used in Khyber Pakhtunkhwa (KPK) as a potential source to cure infectious diseases, BMC Complement. Altern. Med., 2014;14(1):122. https://doi.org/10.1186/1472-6882-14-122 PMid:24708514 PMCid:PMC3977958
- Ahmad M, Butt MA, Zhang G, Sultana S, Tariq A, Zafar M. Bergenia ciliata: A comprehensive review of its traditional uses, phytochemistry, pharmacology and safety. Biomed. Pharmaco., 2018;97(5):708-721. https://doi.org/10.1016/j.biopha.2017.10.141 PMid:29102914
- 13. Qiu L, Fu QL, Jacquemyn H. et al. Contrasting range changes of Bergenia (Saxifragaceae) species under future climate change in the Himalaya and Hengduan Mountains Region. Theor. Appl. Climatol., 2023. https://doi.org/10.1007/s00704-023-04746-0
- Garbyal SS, Aggarwal KK, Balu CR. Traditionally used medicinal plants in Dharchula Himalayas of Pittoragarh district, Uttaranchal. Ind. J. Trad. Knowl., 2005;4(2):199-207.
- 15. Zhang Y, Liao C, Liu X, Li J, Fang S, Li Y, He D. Biological advances in Bergenia genus plant. Afr. J. Biotech., 2011;10(42):8166-8169. https://doi.org/10.5897/AJB11.342
- 16. Rafiq N, Bhatta BM, Islam MA, Sofi PA, Malik AR, Rather TAR, Pala NA. Ethno-medicinal utilization of Bergenia ciliata L. in Kashmir, Himalaya, India. J. Pharma. Phytochem., 2019;8(6):2181-2184.

- 17. Gehlot NK, Sharma VN, Vyas DS. Some pharmacological studies on ethanolic extract of root of Bergenia ligulata. Ind. J. Pharmacol., 1976;8:92-94.
- 18. Srivastava S. Rawat AKS. Botanical and phytochemical comparison of three Bergenia species. J. Sci. Ind. Res. 2008;67:65-72.
- 19. Sharma BC. Ethnomedicinal plants used against skin diseases by indigenous population of Darjeeling Himalayas, India. Ind. J. Fund. Appl. Sci., 2013a;3(3):299-303.
- 20. Chowdhary S, Verma D, Kumar H. Biodiversity and traditional knowledge of Bergenia spp. in Kumaun Himalaya. NY Sci. J., 2009;2(6):105-108.
- Singh N, Gupta A, Juyal V. A review on Bergenia ligulata Wall. IJCAS. 2010;1:71-73.
- 22. Ruby K, Chauhan R, Dwivedi J. Himalayan bergenia a comprehensive review. Int. J. Pharm. Sci., 2012;14:139-141.
- 23. Gaurav S, Gurav N. A comprehensive review: Bergenia ligulata Wall A controversial clinical candidate. Int. J. Pharm. Sci. Rev. Res., 2014;5:1630-1642.
- 24. Hussain A, Kanth M, Shrivastva PK, Sharma M, Tripath J, Khan MA. Phytochemical analysis of the rhizomes of Bergenia ciliata (How) Sternb. J. Drug Del. Therap., 2019;9(3): 412-416.
- 25. Latief U, Ahmad R. Herbal remedies for liver fibrosis: A review on the mode of action of fifty herbs. J. Trad. Compl. Med., 2018;8(3):352-360 https://doi.org/10.1016/j.jtcme.2017.07.002 PMid:29992106 PMCid:PMC6035307
- 26. Zain-ul-Abidin S, Khan R, Ahmad M, Bhatti MZ, Zafar M, Saeed A, Khan N. Ethnobotanical survey of highly effective medicinal plants and phytotherapies to treat diabetes mellitus II in South-West Pakistan. Ind. J. Trad. Knowl., 2018;17:682-690.
- 27. Bahu CP, Seshadri RT. "Pashanbedi" Drugs for Urinary Calculus. In: Udupa, K.N., Chaturvedi G.N. & Tripathi S.N. (eds.): Advances in Research in "Indian Medicine. Banaras Hindu University. Varanasi, India, 1970; p. 77-98.
- Rajbhandari M, Mentel R, Jha P, Chaudhary R, Bhattarai S, Gewali M, Karmacharya N, Hipper M, Lindequist U. Antiviral activity of some plants used in Nepalese traditional medicine. Evid. Based Complement. Alternat. Med., 2009;6(4):517-522. https://doi.org/10.1093/ecam/nem156 PMid:18955262 PMCid:PMC2781767
- 29. Alok S, Jain SK, Verma A, Kumar M, Sabharwal M. Pathophysiology of kidney, gallbladder and urinary stones treatment with herbal and allopathic medicine: A review. Asian Pac. J. Trop. Dis., 2013;3:496-504. https://doi.org/10.1016/S2222-1808(13)60107-3
- 30. Das C, Kumari B, Singh MP, Singh S. A Literary Review and Therapeutic Action of Pashanbheda (Bergenia ligulata Wall.) described by Shamita in Ashmari Roga. J. Ayurveda Integ. Med. Sci., 2022;7(6):105-114.
- 31. Sharma BC. In-vitro antibacterial activity of certain folk medicinal plants from Darjeeling Himalayas used to treat microbial infection. J. Pharma. Phytochem., 2013b;2(4):1-4.
- Rai LK, Sharma E. Medicinal Plants of Sikkim Himalaya: Status, Uses and Potential. Dehradun: Bhishen Singh Mahendra Pal Singh, 1994.
- Pradhan BK, Badola HK. Ethnomedicinal plant use by Lepcha tribe of Dzongu valley, bordering Khangchendzonga Biosphere Reserve, in North Sikkim. Ind. J. Ethnobiol. Ethnomed., 2008;4:22. https://doi.org/10.1186/1746-4269-4-22 PMid:18826658 PMCid:PMC2567294
- 34. Subba Y, Hazra S, Rahaman CH. Medicinal plants of Teesta Valley, Darjeeling district, West Bengal, India: A quantitative ethnomedicinal study. J. App. Pharma. Sci., 2023;13(1):93-108. https://doi.org/10.7324/JAPS.2023.130109
- 35. Raina R, Prawez S, Verma P, Pankaj N. Medicinal plants and their role in wound healing. Vet. Scan., 2008;3:1-7

- 36. Kumar V, Tyagi D. Review on phytochemical, ethnomedical and biological studies of medically useful genus Bergenia. Int. J. Curr. Microbiol. App. Sci., 2013;2:328-334.
- 37. Patel AM, Kurbetti S, Savadi R, Thorat V, Takale V, Horkeri S. Preparation and evaluation of wound healing activity of new polyherbal formulations in rats. Am. J. Phytomed. Clin. Ther., 2013;1(6):498-506.
- 38. Singh KJ, Thakur AK. Medicinal Plants of the Shimla Hills, Himachal Pradesh: A Survey. Int. J. Herbal Sci., 2014;2(2):118-127.
- Shakya AK. Medicinal plants: Future source of new drugs. Int. J. Herb. Med., 2016:4:59-64.
- Bhattarai NK. Folk Herbal Remedies for Gynecological Complaints in Central Nepal. Int. J. Pharma., 1994;32(1):13-26. https://doi.org/10.3109/13880209409082967
- 41. Bhattarai NK. Folk herbal medicines of Dolakha district, Nepal. Fitoterapia, 1993;66(5):387-395.
- 42. Saha S, Shrivastav PS, Verma RJ. Antioxidative mechanism involved in the preventive efficacy of Bergenia ciliata rhizomes against experimental nephrolithiasis in rats. Pharma. Bio., 2014;52(6):712-722. https://doi.org/10.3109/13880209.2013.865242 PMid:24824324
- 43. Manandhar NP. Medicinal folklore about the plants used as anthelmintic agents in Nepal. Fitoterapia, 1995;66(2):149-155.
- 44. Khan MY, Kumar V. Phytopharmacological profile of Bergenia ciliata. Int. J. phytopharm., 2016;6(5):90-98. https://doi.org/10.19045/bspab.2017.60081
- 45. Singh L, Kumar A, Paul A. Bergenia ciliata: The medicinal herb of cold desert. Int. J. Chem. Sci., 2018;6(3): 3609-3613.
- 46. Zafar R, Ullah H, Zahoor M, Sadiq A. Isolation of bioactive compounds from Bergenia ciliata (haw.) Sternb rhizome and their antioxidant and anticholinesterase activities. BMC Compl. Alt. Med., 2019;19(1):1-13. https://doi.org/10.1186/s12906-019-2679-1 PMid:31694704 PMCid:PMC6833214
- 47. Hussain A, Kanth M, Shrivastava P.K, Sharma M, Tripath J, Khan M.A. Phytochemical analysis of the rhizomes of Bergenia ciliata (How) Sternb. J. Drug Deliv Therap., 2019;9(3):412-416.
- 48. Gopane SR, Jadhao SR, Jamdhade PB. Bergenia ciliata: Isolation of active floavonoids GC-MS, ADME study and inhibition activity of oxalate synthesizing enzymes. Int. J. Pharm. Pharmaceu. Sci., 2021;13(11):42127 https://doi.org/10.22159/ijpps.2021v13i11.42127
- 49. Chandrareddy UD, Chawla AS, Mundkinajeddu D, Maurya R Handa SS. Paashaanolactone from Bergenia ligulata. Phytochem., 1998:47:907-09. https://doi.org/10.1016/S0031-9422(97)00628-6
- 50. Bhandari MR, Anurakkun NJ, Hong G, Kawabata J. α -Glucosidase and α -Amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem., 2008;106(1):247-252. https://doi.org/10.1016/j.foodchem.2007.05.077
- Kour H, Raina R, Verma PK, Pankaj NK, Singh SP. Phytochemical ingredients and pharmacological properties of Bergenia ciliata. J. Vet. Pharma. Toxi., 2019;18(1):1-10.
- 52. Pandey R, Kumar B, Meena B, Srivastava M, Mishra T, Tiwari V. et al. Major bioactive phenolics in Bergenia species from the Indian Himalayan region: Method development, validation and quantitative estimation using UHPLC-QqQLIT-MS/MS. PLoS ONE, 2017;12(7):e0180950. https://doi.org/10.1371/journal.pone.0180950 PMid:28749965 PMCid:PMC5531703
- 53. Samant S, Pant S. Diversity, distribution pattern and conservation status of the plants used in liver diseases/ailments in Indian himalayan region. J. Mt. Sci., 2006;3:28-47. https://doi.org/10.1007/s11629-006-0028-6
- 54. Nazir N, Koul S, Qurishi MA, Najar MH, Zargar MI. Evaluation of antioxidant and antimicrobial activities of bergenin and its

- derivatives obtained by chemoenzymatic synthesis. Eur. J. Med. Chem. 2011;46:2415-2420. https://doi.org/10.1016/j.ejmech.2011.03.025 PMid:21474216
- 55. Chauhan R, Ruby K, Dwivedi J. Secondary metabolites found in Bergenia species: a compendious review, Reactions. 2013;15:17.
- 56. Jiang H, Guo F, Zhang L, Chen Y, Yang S. Comparison of bergenin contents of Bergenia purpurascens among different regions in Yunnan province. J. Yunnan Agric. Univ., 2010;25:895-898.
- 57. Agsar MA. Anti-Diabetic Potential of Phenolic Compounds: A Review. Int. J. food prop., 2012;16(1):91-103. https://doi.org/10.1080/10942912.2011.595864
- 58. Pokhrel P, Parajuli RR, Tiwari AK, Banerjee J. A short glimpse on promising pharmacological effects of Bergenia ciliata. J. App. Pharma. Res., 2014;2(1):1-6.
- 59. Bohara M, Ghaju S, Sharma K, Kalauni SK, Khadayat K. In Vitro and In Silico Analysis of Bergenia ciliata and Mimosa pudica for inhibition of α-Amylase. J. Chem., 2022;2022. https://doi.org/10.1155/2022/6997173
- 60. Roychoudhury S, Das D, Das S, Jha NK, Pal M, Kolesarova A, Kesari KK, Kalita JC, Slama P. Clinical Potential of Himalayan Herb Bergenia ligulata: An Evidence Based Study. Molecules, 2022;27(20):7039. https://doi.org/10.3390/molecules27207039 PMid:36296631 PMCid:PMC9611975
- 61. Sapkota BK, Khadayat K, Sharma K, Raut BK, Aryal D, Thapa BB, Parajuli N. Phytochemical Analysis and Antioxidant and Antidiabetic Activities of Extracts from Bergenia ciliata, Mimosa pudica, and Phyllanthus emblica. Adv. Pharmacol.Pharma. Sci., 2022;2022(5) https://doi.org/10.1155/2022/4929824 PMid:35845257 PMCid:PMC9283070
- 62. Żbikowska B, Franiczek R, Sowa A, Połukord G, Krzyzanowska B, Sroka Z. Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Five Species of the Genus Bergenia: Identification of Antimicrobial Compounds. Micro. Drug Resis., 2017;23(6):771-780. https://doi.org/10.1089/mdr.2016.0251 PMid:28118088
- 63. Khan A, Jan G, Khan A, Jan FG, Danish M. Evaluation of antioxidant and antimicrobial activities of Bergenia ciliata Sternb (Rhizome) crude extract and fractions. Pak. J. Pharma Sci., 2018;31(1). 31+. https://doi.org/10.1155/2017/4040254 PMid:28491106 PMCid:PMC5405573
- 64. Sayed Sulaiman Shah SS, Dawood S, Ibrahim K, Muhammad I, Sohail AJ. Bergenia ciliata as antibacterial agent. GSC Bio. Pharma. Sci. 2020;12(2):37-45. https://doi.org/10.30574/gscbps.2020.12.2.0206
- 65. Shankar KG, Fleming AT, Vidhya R, Pradhan N. Synergistic efficacy of three plant extracts, Bergenia ciliata, Acorus calamus and Dioscorea bulbifera for antimicrobial activity. Int. J. of Pharma Bio Sci., 2016;7(4):619-628. https://doi.org/10.22376/ijpbs.2016.7.4.b619-628
- 66. Yousaf S, Kaukab G, Gul H, Khalid N, Kausar R, Ahmed H, Ajab H, Gulfraz M. Pharmacological and phytochemical analysis of Bergenia ciliata leaf and rhizome extracts. Pakistan J. Pharm. Sci., 2018;31(5):1911-1916.
- 67. Verma R, Tapwal A, Kumar D, Puri S. Assessment of Antimicrobial Potential and Phytochemical Profiling of Ethnomedicine Plant Bergenia ciliata (Haw.) Sternb. In Western Himalaya. J. Micro. Biotech. Food Sci., 2019;9(1): 15 20. https://doi.org/10.15414/jmbfs.2019.9.1.15-20
- 68. Walter NS, Bagai U, Kalia S. Antimalarial activity of Bergenia ciliata (Haw.) Sternb. against Plasmodium berghei. Parasitology Res., 2013;112:3123-3128. https://doi.org/10.1007/s00436-013-3487-z PMid:23793360
- 69. Gorki V, Walter NS, Chauhan M, Kaur M, Dhingra N, Bagai U, Kaur S. Ethanol extract of Bergenia ciliata (Haw.) Sternb. (Rhizome) impedes the propagation of malaria parasite. J. Ethnopharma. 2021;280. https://doi.org/10.1016/j.jep.2021.114417 PMid:34265382
- 70. Walter NS, Bagai U. Antimalarial Efficacy of Bergenia ciliata (Saxifragaceae) Leaf Extract In-vitro against Plasmodium

- falciparum and In vivo against Plasmodium berghi. Micro. Res. J. Int., 2016;17(6): https://doi.org/10.9734/BMRJ/2016/29262
- Greenwell M, Rahman PKSM. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res., 2015;6(10):4103-4112
- 72. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018;68:394-424. https://doi.org/10.3322/caac.21492 PMid:30207593
- 73. Shaikh R, Pund M, Dawane A, Ilias S. Evaluation of Anticancerous, Antioxidant, and Possible Anti-inflammatory Properties of Selected Medicinal Plants Used in Indian Traditional Medication. J. Trad. Compl. Med., 2016;4(4):253-257. https://doi.org/10.4103/2225-4110.128904 PMid:25379467 PMCid:PMC4220503
- 74. Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, Shinwari ZH. Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspect. Biomolecules, 2020;10(1):47. https://doi.org/10.3390/biom10010047 PMid:31892257 PMCid:PMC7022400
- 75. Taraphdar AK, Roy M, Bhattacharya R. Natural products as inducers of apoptosis: Implication for cancer therapy and prevention. Curr. Sci., 2001;80(10): 1387-1396.
- 76. Rajkumar V, Guha G, Kumar RA. Anti-neoplastic activities of Bergenia ciliata rhizome. J. Pharm. Res., 2011;4:443-445.
- 77. Ozaira Q, Hilal N, Fazili KM. Unveiling the Anti-cancer Potential of Bergenia ciliata (Haw.) Sternb.: A Mechanistic Study on UPR Modulation and ROS Generation. J. Bio. Act. Prodt. Nat., 2023;13(2):129-144. https://doi.org/10.1080/22311866.2023.2220312
- Dulta K, Agceli GK, Chauhan P, Jasrotia R, Chauhan PK. A Novel Approach of Synthesis Zinc Oxide Nanoparticles by Bergenia ciliata Rhizome Extract: Antibacterial and Anticancer Potential. J. Inorg. Organometallic Poly. Mat., 2021;31:180-190. https://doi.org/10.1007/s10904-020-01684-6
- Srinivas TL, Lakshmi SM, Shama SN, Reddy GK, Prasanna KR. Medicinal Plants as Anti-Ulcer Agents. J. Pharma. Phytochem., 2013;2(4):91-97.
- 80. Hussain L, Akash MSH, Naseem S, Rehman K, Ahmed KZ. Antiulcerogenic effect of Salmalia malabarica in Gastric Ulceration -Pilot Study. Adv. Clin. Exp. Med., 2015;24(4):595-605. https://doi.org/10.17219/acem/28115 PMid:26469103
- 81. Dinat S, Orchard A, Van VS. A scoping review of African natural products against gastric ulcers and Helicobacter pylori. J. Ethnopharmacol., 2023;301:115698. https://doi.org/10.1016/j.jep.2022.115698 PMid:36174808

- 82. Kakub G, Gulfraz M. Cytoprotective effects of Bergenia ciliata sternb, extract on gastric ulcer in rats. Phytother. Res. 2007;21:1217-1220.https://doi.org/10.1002/ptr.2242 PMid:17661334
- 83. Ali E, Arshad N, Bukhari NI, Tahir MN, Zafar S, Hussain A, Praveen S, Qamar S, Shehzadi N, Hussain K. Linking traditional anti-cancer use of rhizomes of Bergenia ciliata (Haw.) Sternb. to its anti-Helicobacter pylori constituents. Nat. Prod. Res., 2020;34(4):541-544. https://doi.org/10.1080/14786419.2018.1488711 PMid:30362366
- 84. https://idf.org/about-diabetes/diabetes-facts-figures/ accessed: 20 Nov. 2023.
- 85. Mitra A, Bhattacharya D. Dose-dependent effects of Fenugreek composite in diabetes with dislipidaemia. Int. J. Food Safety, 2006:8:49-55.
- WHO report on dibetes 2023. https://www.who.int/newsroom/fact-sheets/detail/diabetes accessed: 20th Nov. 2023.
- 87. Hussain HEMA. Reversal of diabetic retinopathy in streptozotocin induced diabetic rats using traditional Indian anti-diabetic plant, Azadirachta indica (L.). Ind. J. Clin. Biochem., 2002;17(2): 115 -123. https://doi.org/10.1007/BF02867983 PMid:23105362 PMCid:PMC3454118
- 88. Prince PSM, Kamalakkannan N, Menon VP. Antidiabetic and antihyperlipidaemic effect of alcoholic Syzygium cumini seeds in alloxan induced diabetic albino rats. J. Ethnopharmacol., 2004;19(2-3):209-213. https://doi.org/10.1016/j.jep.2003.11.001 PMid:15120440
- 89. Ponnusamy S, Ravindran R, Zinjarde S, Bhargava S, Ravi AK.
 Evaluation of Traditional Indian Antidiabetic Medicinal Plants for
 Human Pancreatic Amylase Inhibitory Effect In Vitro. Evid. Based
 Compl. Alternat. Med., 2010;2011: 515647.
 https://doi.org/10.1155/2011/515647 PMid:20953430
 PMCid:PMC2952308
- 90. Chakraborty R, Roy S, Mandal V. Assessment of traditional knowledge of the antidiabetic plants of Darjeeling and Sikkim Himalaya in the context of recent phytochemical and Pharmacological advances. J. Integ. Med., 2016;14(5): 336-358. https://doi.org/10.1016/S2095-4964(16)60267-4 PMid:27641606
- 91. Dixit S, Tiwari S. Investigation of anti-diabetic plants used among the ethnic communities of Kanpur Division, India. J. Ethnopharmacol., 2020;253:112639. https://doi.org/10.1016/j.jep.2020.112639 PMid:32032661
- 92. Mohammad A, Ibhrahim MA, Islam MdS. African Medicinal Plants with Antidiabetic Potentials: A Review. Planta Medica, 2014;80(05):254-377. https://doi.org/10.1055/s-0033-1360335 PMid:24535720