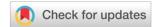


Available online on 15.03.2024 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics


Open Access to Pharmaceutical and Medical Research

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Full Text Article

Research Article

Prevalence of *Staphylococcus aureus* and *Enterococcus* sp. Among Pregnant Women Attending General Hospitals in Delta Central Senatorial District, Nigeria

Egbule Olivia Sochi 10, Morka Emmanuel 1*0, Omenogor Patricia Konye 20

- ¹ Department of Microbiology, Delta State University, Abraka, Nigeria
- ³ Department of Nursing Science, Delta State University, Abraka, Nigeria

Article Info:

Article History:

Received 03 Jan 2024 Reviewed 08 Feb 2024 Accepted 26 Feb 2024 Published 15 March 2024

Cite this article as:

Egbule OS, Morka E, Omenogor PK, Prevalence of Staphylococcus aureus and Enterococcus sp. Among Pregnant Women Attending General Hospitals in Delta Central Senatorial District, Nigeria, Journal of Drug Delivery and Therapeutics. 2024; 14(3):22-26

DOI: http://dx.doi.org/10.22270/jddt.v14i3.6441

*Address for Correspondence:

Morka Emmanuel, Department of Microbiology, Delta State University, Abraka, Nigeria

Abstract

This study aimed to assess the prevalence of Staphylococcus aureus and Enterococcus sp. among pregnant women who visit the General Hospital in Delta Central Senatorial District, Nigeria. Samples were collected from the vaginal and rectum areas of pregnant women attending the General Hospitals of Abraka, Oghara, Udu, Ughelli North and Ughelli South. Bacteriological and biochemical analyses were conducted to isolate, characterize, and identify the bacteria. Two types of bacteria were found; Enterococcus sp. and Staphylococcus sp. The study result showed that Staphylococcus aureus (13.7%) was more prevalent than other isolates and was found in samples obtained from Udu General Hospital. In comparison, Ughelli South General Hospital had the lowest prevalence for S. aureus (7.9%). Samples from Oghara General Hospital had the highest prevalence for Enterococcus sp. (3.7%) while the lowest prevalence for Enterococcus sp. (1.1%) was obtained from Ughelli South General Hospital. S. aureus (51.6%) was found to be the most prevalent bacterium, while Enterococcus sp. (11.1%) was the least prevalent. The bacterial load from the vaginal swab samples was higher than that of rectum swab samples, which suggests that pregnant women attending these hospitals may have infections. The total bacterial count among pregnant women was highest in samples obtained from Udu General Hospital (5.4±0.5), followed by Abraka (5.0±0.6), Oghara (4.8±0.2), and Ughelli North (4.5±0.15), and while the least count was recorded from samples obtained from Ughelli South General Hospital (3.0±0.2). This study helps manage and plan future medical treatments. Pregnant women should be screened early in their pregnancies, between the 12th and 16th weeks, which is the second trimester, and treated appropriately to avoid complications that arise from untreated infections.

 $\textbf{Keywords} \hbox{: Prevalence, vaginal, pregnancy, women, infection} \\$

INTRODUCTION

Although prenatal care has advanced and public awareness has increased, adverse pregnancy outcomes remain a significant public health concern globally. The vagina of humans is home to a diverse microbiota that has a protective function in maintaining good health. However, if this microbiota is disrupted, it can hurt the reproductive health of women, particularly during pregnancy. ¹ During pregnancy, women are more likely to develop Urinary tract infections (UTIs) due to hormonal changes and a shift in the position of the urinary tract. This can make it easier for bacteria to reach the kidneys, leading to symptomatic and asymptomatic bacteriuria (bacteria in the urine). Asymptomatic bacteriuria can be particularly dangerous, as up to 45% of untreated cases can lead to pyelonephritis (inflammation of the kidney and pelvis), which can cause complications during pregnancy. If left untreated, a kidney infection can also result in serious conditions like acute respiratory distress syndrome (ARDS) or sepsis, which can be life-threatening.

The prevalence of bacteriuria in women has been reported to range between 3 to 20% in different studies. ² If left untreated, UTIs during pregnancy can increase the risk of multiple maternal and neonatal complications. When gestational UTIs are accompanied by risk factors such as urolithiasis, recurrent

UTI, urinary tract abnormalities, chronic inflammatory diseases, autoimmune disorders, renal parenchymal diseases, and diabetes mellitus, they become more complicated.³ Hence, it is crucial to treat gestational UTIs promptly. Furthermore, identifying the uro-pathogens in obstetric populations is important to optimize the empiric antibiotic treatments used for treatment.²

Several studies have been conducted on the microorganisms that are commonly observed in UTIs during pregnancy. Among these microorganisms, *Escherichia coli* is reported to be the most frequent and has been associated with multiple antimicrobial resistance in both clinical and environmental isolates in Nigeria.^{4,5,6,7,8,9}. Other microorganisms, such as *Klebsiella pneumonia, Enterococcus faecalis, Staphylococcus epidermidis, Streptococcus mitis,* and *Candida albicans* are also frequently found in UTIs. ¹⁰

Over the last decade, *Staphylococcus aureus* has become a leading cause of infections in healthcare settings. *S. aureus* is the most common species of the *Staphylococcus* genus that causes staphylococcal infections in humans. These bacteria can cause community-acquired and nosocomial infections, as well as antibiotic-resistant infections such as methicillin-resistant *S. aureus* (MRSA). It is commonly found colonizing the throat, skin, and gastrointestinal tract of humans. *S. aureus* has many

ISSN: 2250-1177 [22] CODEN (USA): JDDTAO

virulence factors, including toxins and proteins that allow it to cling to tissues and evade the immune system. The elderly, HIV-infected patients, transplant patients, and pregnant women are at higher risk of infection.

Although *Enterococcus* are Gram-positive cocci that normally inhabit the gastrointestinal tract of humans. They can cause illness in certain situations, their prevalence has increased significantly in hospitals over the past two decades, and this is due to antibiotic resistance. ¹¹

Infections due to enterococci are a serious concern due to their ability to grow in extreme environments, as well as their intrinsic and frequent association with multidrug antibiotic resistance, making them a topic of interest. The focus of this paper is on enterococci and staphylococcus, two important pathogens during pregnancy. Limited data exists on the prevalence rates of *S. aureus* and *Enterococci* among pregnant women who attend General Hospitals in the Ethiope East Local Government Area of Delta State. Therefore, it is urgently necessary to obtain more information about the prevalence of *S. aureus* carriage and *Enterococcus* infection in this population.

MATERIALS AND METHODS

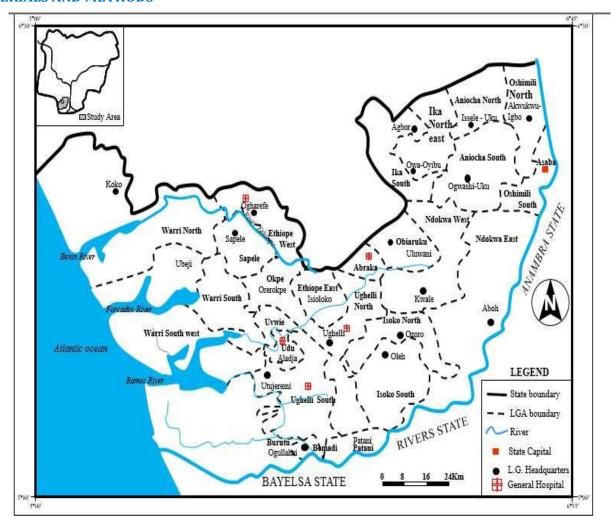


Figure 1. Map of the Study Area (Source: Niger Delta Atlas)

This research was conducted on pregnant women who visited General Hospitals in Delta Central Senatorial District, specifically in the towns of Abraka, Oghara, Udu, Ughelli South, and Ughelli North in Delta State. The main ethnic group of the study area is Urhobo, and Christianity is the predominant religion. The residents are engaged in various occupations, such as farming, fishing, trading, civil servants, entrepreneurs, and business.

The study collected One hundred and fifty (150) rectum and vaginal swabs from pregnant women who attended General Hospital Abraka, Eku, Udu, and Oghara teaching hospitals and agreed to participate. The swab sticks were then transported in

Amies transport media to the Microbiology Laboratory located in Site II of the Delta State University in Abraka.

A ten-fold serial dilution of the sample was performed, which was then inoculated on general-purpose media (Nutrient Agar), Blood Agar, and MacConkey Agar. The inoculated plates were incubated at 37°C for 24 hours. After incubation, distinct colonies were picked for sub-culturing and stock culture, which were then cultured on selective and differential media to aid in the isolation and identification of the organisms. Additionally, Gram staining techniques and several biochemical tests were conducted to confirm the identity of the isolated organisms.

ISSN: 2250-1177 [23] CODEN (USA): JDDTAO

RESULTS

The biochemical characteristics and cultural morphology of the bacteria isolated from pregnant women in the study region which included: Staphylococcus aureus and Enterococcus sp. are listed in Table 1. Table 2 displays the total count of bacteria in the pregnant women's sample obtained from the 3rd dilution factor (x10³). The highest count was obtained from UDU LGA

 (5.4 ± 0.5) , followed by Abraka (5.0 ± 0.6) , while the lowest count was observed from Ugheli South (3.0 ± 0.2) . The prevalence of different bacteria isolated from pregnant women in the study region is shown in Table 3. The prevalence of *Staphylococcus aureus* 98 (51.6%) was higher than *Enterococcus* 21 (11.1%). Figure 2 demonstrates the prevalence of these bacterial isolates.

Table 1: Biochemical Characteristics and Cultural Morphology of the Bacteria Isolates

Shape	Gram stain	Catalase	Oxidase	Citrate	Indole Urease	Motility	Glucose	Sucrose	Lactose	Acid	Gas	H 2S Organism
Cocci +	+ +	- -	-		-+	-	+	+	+	+		- Enterococcus sp. Staphylococcus aureus

Key: + = positive, - = negative, v=variable

Table 2. Total Bacteria count of the Sample among pregnant women (x103)

Sampling Site	Bacteria Count
Abraka	5.0 ± 0.6
Oghara	4.8 ± 0.2
Udu	5.4±0.5
Ughelli South	3.0 ± 0.2
TY I DIAY of	45.045
Ughelli North	4.5±0.15

Values are expressed as mean ± Standard deviation

Table 3: Prevalence of bacterial isolates

	N	Prevalence				
Isolates	ABI	K OGH	UDU	UGHN UGHS		(%)
Staphylococcus aureus	10.5	10.5	13.7	8.9	7.9	51.6
Enterococcus sp.	2.6	3.7	2.1	1.6	1.1	11.1
Total	13.1	14.2	15.8	10.5	9	62.7

KEY: ABK=Abraka, OGH =Oghara, UDU = Udu , UGHN= Ughelli North, UGHS= Ughelli South General Hospital

ISSN: 2250-1177 [24] CODEN (USA): JDDTAO

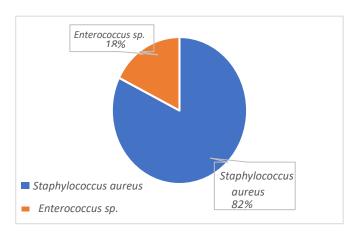


Figure 2: Percentage prevalence of the Bacterial Isolated from Pregnant women

DISCUSSION

Despite the progress in prenatal care and growing awareness among the public, adverse pregnancy outcomes continue to pose a significant public health issue globally. The human vagina is home to a diverse microbiota that plays a protective role in maintaining good health. However, when this microbiota is disrupted, it can have negative consequences on women's reproductive health, particularly during pregnancy. There are various studies related to the most frequently observed microorganisms in UTIs during pregnancy. Escherichia coli is reported to be the most critical microorganism which should be kept in mind. Other bacterial species that have caused colonization in pregnant women reported from other studies include: Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcal species, Enterococcus sp. and Group B streptococci.

In this study, however, the prevalence of *Staphylococcus aureus* and *Enterococcus* sp was determined for pregnant women who attend the General Hospital Abraka, Eku, Udu, and Oghara Teaching Hospital, Delta State, Nigeria. And the bacterial isolates identified were *Enterococcus* sp. and *Staphylococcus aureus* presented in Table 1. These bacteria isolated are in line with that of other similar studies of. ², ¹⁴, ¹⁵,

Evaluation of the bacteria count of the samples obtained from the pregnant women using the $3^{\rm rd}$ dilution factor indicated mean \pm SD of 50 ± 2.3 , 48 ± 4.2 , 54 ± 0.5 , 30 ± 1.8 , and 45 ± 0.4 for Abraka, Oghara, Udu, Ughelli South and Ughelli North General Hospitals respectively as presented (Table 2).

From the study, the prevalence of *Staphylococcus aureus* was 10.5%, 10.5%, 13.7%, 8.9%, and 7.9% for General Hospital Abraka, Teaching Hospital Oghara, and General Hospital in Udu, Ughelli North and Ughelli South respectively (Table 3). *S. aureus* had an overall prevalence of 98(51.6%). *Staphylococcus aureus* was the dominant pathogen isolated in this study and this is in agreement with previous studies of .¹⁴ conducted in UBTH in Benin and. ¹⁶ which had similar findings. However. ¹७ reported a lower prevalence of 6.9% in pregnant women and 7.7% in nonpregnant women in their study which they attributed to the higher socioeconomic and educational status of those assessing antenatal services at the UPTH which is a tertiary hospital as well as the stringent measures applied in conducting the laboratory tests.

The rate of vaginal carriage of S. aureus has been reported to be 4% – 22% of the vaginal microbiota of pregnant women .¹⁵ The risk factors for S. aureus colonization in pregnancy and the association between maternal colonization and infant infections are not very well defined.

Staphylococcus aureus and non-aureus coagulase-negative staphylococci possess a remarkable ability to acquire resistance to multiple antibiotics and the obvious clinical implication of this is limited therapeutic options with attendant increase in mortality and morbidity. ¹⁸ The options for chemotherapy are further narrowed in pregnancy when some effective drugs may be contraindicated and this makes the high prevalence of Staphylococcus aureus observed in this study all the more worrisome and the need to find solutions more imperative. ¹⁹

In addition, the assessment of the prevalence of *Enterococcus* sp. from this study was 5(2.6%),

7(3.75), 4(2.1%), 3(1.6%) and 2(1.1%) for General Hospital Abraka, Teaching Hospital Oghara, General Hospital in Udu, Ughelli North and Ughelli South respectively (Table 4.3). The overall prevalence of *Enterococcus* sp. in the study area was 21(11.1%). This report agrees with that of ²⁰ who observed a prevalence of (12.9%) for *Enterococcus faecalis*. Other studies have also reported *Enterococcus* sp. as the most frequent grampositive organism detected and had been noted as a significant bacterial isolate from women with UTI during pregnancy. ²¹

Enterococcus sp. is part of the normal flora of the genital tract however, it can be implicated and cause urinary tract infections and opportunistic infections which result in subacute bacterial endocarditis and abdominal abscesses. ²² The predominance of asymptomatic genital tract infection in pregnant women has been reported in several literature, with enterococci causing life-threatening infections in preterm infants and other immunocompromised patients. Maternal Enterococci bacteremia may lead to shock or disseminated intravascular coagulation. ²³

The enterococcal species which are considered to be significant pathogens for humans are E. faecalis and E. faecium. These organisms are likely to affect patients who are elderly or whose normal microbiota has been altered by antibiotic treatment. 24 Furthermore, in neonates, E. faecalis is associated with a 6% mortality rate in early-onset septicaemia (EOS) which increases to 15% in late-onset (LOS) infections, whilst in general it is implicated in 7% to 50% of fatal cases. 25 E. faecalis is considered to increase tst expression leading to increased production of toxic shock syndrome toxin-1 thus increasing the virulence of *S. aureus*. Enterococci are believed to be difficult to treat because of their intrinsic resistance to antibiotics including beta-lactams and aminoglycosides which are frequently used to treat infections due to Gram-positive cocci. Resistance to trimethoprim, gentamycin and vancomycin have also been reported by. 26

The presence of $\it E. faecalis$ in the amniotic fluid considerably increases the risk of histological inflammation of the placenta and also increases the risk for bronchopulmonary dysplasia (and necrotizing enterocolitis. 27

According to the National Healthcare Safety Network and Centers for Disease Control and Prevention, *S. aureus* and *Enterococcus* sp. are the two most commonly reported pathogens, accounting for 15.6% and 13.9% of healthcareassociated infections, respectively. In particular, *S. aureus* is notorious for its ability to acquire resistance to any antibiotic during the treatment of infection-associated infertility. ²⁸

CONCLUSION

This study revealed *Staphylococcus aureus* had a high prevalence among the pregnant women in the study area thus suggesting a possible infection. Though, *Enterococcus* sp. prevalence was quite moderate. However, knowing the pathogens associated with infections among pregnant women is beneficial in the management and better planning of future medical treatments. Maintaining a healthy vaginal status during

pregnancy is vital to the control of opportunistic infection which may result in poor pregnancy outcomes. In addition, pregnant women should be screened early in their pregnancies, between the 12th and 16th weeks which is the second trimester of pregnancy.

Conflict of Interests: The authors declare no conflict of interest

Ethical Approval: No Ethical approval is required

Consent: Informed written consent was taken from patients

Funding: There is no funding to report

Authors Contribution: All authors contributed to the

REFERENCES

- Kaambo E, Charlene WJ, The Threat of Aerobic Vaginitis to Pregnancy and Neonatal Morbidity: African Journal of Reproductive Health, 2017; 21(2):109-118. https://doi.org/10.29063/ajrh2017/v21i2.12
- Priscilla R, Latha G, Rajan D, Sultana M, Prevalence and antimicrobial resistance pattern of bacterial strains isolated from patients with urinary tract infection: MOJ Public Health, 2017; 5(1):32-35. https://doi.org/10.15406/mojph.2017.05.00117
- 3. Lewis DF, Robichaux AG, Jaekle RK, Marcum NG, Stedman CM, Urolithiasis in pregnancy: diagnosis, management, and pregnancy outcome: Obstetrics Gynecology Survey, 2015; 58(1):446-447. https://doi.org/10.1097/01.0GX.0000074323.48257.83
- Akortha RE, Egbule OS, Transfer of tetracycline gene (tet1) Between Replicons in some enteric bacteria of Diarrhoeal origin from some Hospitals in South-South Nigeria: African Journal of Biotechnology, 2008; 7(18):3178-3181.
- Egbule OS, Antimicrobial resistance and B-lactamase production among Hospital Dumpsite isolates: Journal of Environmental Protection, 2016; 7:1057-1063 https://doi.org/10.4236/jep.2016.77094
- Egbule OS, Detection and transfer of Extended Spectrum. Beta Lactamase Enzymes from Untreated Hospital waste Water: Advances in Microbiology, 2016; 6: 512-520 https://doi.org/10.4236/aim.2016.67051
- Egbule OS, Yusuf, I, Multiple antibiotic Resistance in Escherichia coli isolated from cattle and poultry faeces in Abraka, south-south Nigeria: Tropical Agricultural Science, 2019; 42(2):585-594.
- 8. Iweriebor, BC, Egbule OS, Obi LC, The Emergence of Colistin-and Imipenem-Associated Multidrug Resistance in Isolates from Retail Meat: Polish Journal of Microbiology, 2022; 71(4):519-528 https://doi.org/10.33073/pjm-2022-046 PMid:36473114 PMCid:PMC9944967
- Egbule OS, Occurrence of extended spectrum beta-lactamases and sul 1 in multi-drug resistant Escherichia coli and Salmonella isolated from poultry feeds: Scientific African, 2022; 18:2276-2468 https://doi.org/10.1016/j.sciaf.2022.e01362
- 10. Egbule OS, Occurrence of multidrug urinary tract isolates among pregnant women in Warri. Delta State: Journal of Applied Science, 2011; 14(3):10134-10145.
- Babajide BO, Adeyemi J, Joshua B, Deciphering of microbial community and antibiotic resistance genes in activated sludge reactors under high selective pressure of different antibiotics: Water Research, 2018; 151(1):388-402. https://doi.org/10.1016/j.watres.2018.12.034 PMid:30616051
- 12. Kaambo E, Charlene WJ, The Threat of Aerobic Vaginitis to Pregnancy and Neonatal Morbidity: African Journal of Reproductive Health, 2017; 21(2):109-118. https://doi.org/10.29063/ajrh2017/v21i2.12
- 13. Sheiner E, Mazor-Drey E, Levy A, Asymptomatic bacteriuria during pregnancy: Journal of Maternal Fetal and Neonatal Medicine,

- 2019; 22(1):423-427. https://doi.org/10.1080/14767050802360783 PMid:19530000
- 14. Akortha EE, Ibadin OK, Incidence and antibiotic susceptibility pattern of Staphylococcus aureus amongst patients with urinary tract infection (UTI) in UBTH Benin City, Nigeria: African Journal of Biotechnology, 2018; 7(1):1637-1640. https://doi.org/10.5897/AJB08.176
- 15. Top KA, Buet A, Whittier S, Ratner AJ, Saiman L, Predictors of Staphylococcus aureus rectovaginal colonization in pregnant women and risk for maternal and neonatal infections: Journal of Pediatric Infectious Disease Society, 2012; 1(1):7-15. https://doi.org/10.1093/jpids/pis001 PMid:23687569 PMCid:PMC3656550
- 16. Parveen K, Momen A, Begum AA, Begum M, Prevalence of urinary tract infection during pregnancy: Journal of Dhaka National Medical College, 2011; 17(1): 8-12. https://doi.org/10.3329/jdnmch.v17i2.12200
- 17. Stanley CN, Ugboma HA, Ibezim EC, Attama AA, Prevalence and Antibiotic Susceptibility of Staphylococcus Aureus and Other Staphylococcal Infections in Pregnant Women Attending Antenatal Clinic in a Tertiary Hospital in Port Harcourt, Nigeria: Journal of Infection Diseases and Therapy, 2013; 1(1):125-130
- Bronner S, Monteil H, Prévost G, Regulation of virulence determinants in Staphylococcus aureus: Complexity and applications: FEMS Microbiology Review, 2017; 28(1):183-200. https://doi.org/10.1016/j.femsre.2003.09.003 PMid:15109784
- 19. Shi L, Wang H, Lu Z, Staphylococcal Infection and Infertility: Intech Open, 2016; 25(1):159170. https://doi.org/10.5772/62663
- 20. Orji O, Dlamini Z, Wise AJ, Urinary bacterial profile and antibiotic susceptibility pattern among pregnant women in Rahima Moosa Mother and Child Hospital, Johannesburg: Southern African Journal of Infectious Diseases, 2021; 12(11):131-150. https://doi.org/10.4102/sajid.v37i1.343 PMid:35169587 PMCid:PMC8832018
- 21. Lewis DF, Robichaux AG, Jaekle RK, Marcum NG, Stedman CM, Urolithiasis in pregnancy: diagnosis, management, and pregnancy outcome: Obstetrics Gynecology Survey, 2015; 58(1):446-447. https://doi.org/10.1097/01.0GX.0000074323.48257.83
- 22. Arias CA, Murray BE, Enterococcus species, Streptococcus bovis group, and Leuconostoc species: In Mandell, G.L, Bennett, J.E. and Dolin, R. (editors). Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 7th ed. 2019 Elsevier
- Beksac AT, Orgulb G, Tanacanb A, Uckanb, Uropathogens and Gestational Outcomes of Urinary Tract Infections in Pregnancies that Necessitate Hospitalization: Current Urology, 2019; 13(1):70-73. https://doi.org/10.1159/000499290 PMid:31768172 PMCid:PMC6873071
- 24. Ibanez G, Blondel B, Prunet C, Kaminski M, Saurel-Cubizolles MJ, Prevalence and characteristics of women reporting poor mental health during pregnancy: findings from the 2010 French National Perinatal Survey: Review Epidemiology Sante Publique, 2019; 63(1):85-95. https://doi.org/10.1016/j.respe.2015.02.023 PMid:25841615
- 25. Singh S, Dey M, Singh S, Sasidharan S, Biochemical markers as a predictor of preterm labor- their clinical relevance and the current status: Gynecology Obstetric Reproduction Medicine, 2021; 9(1):1-8. https://doi.org/10.21613/GORM.2020.1108
- Munita JM, Arias CA, Mechanisms of antibiotic resistance In: Virulence mechanisms of bacterial pathogens: Wiley, 2016; p. 481-511 https://doi.org/10.1128/9781555819286.ch17
- Seliga-Siwecka JP, Kornacka MK, Neonatal outcome of preterm infants born to mothers with abnormal genital tract colonisation and chorioamnionitis: a cohort study: Early Human Development, 2013; 89(5): 271-275. https://doi.org/10.1016/j.earlhumdev.2012.10.003 PMid:23158015
- 28. Shi L, Wang H, Lu Z, Staphylococcal Infection and Infertility: IntechOpen, 2016; 25(1):159170. https://doi.org/10.5772/62663