

Open Access Full Text Article

Research Article

Prevalence of Thyroid Disorders and Reference Range of Thyroid Hormones among Pregnant Women in Bosaso City, Somalia

Ali Bile Farah Hassan ^{1*}, Mohamed Hassan Osman Ebar ²¹ University of Health Science, Somalia² Royal Hospital, Mogadishu, Somalia

Article Info:

Article History:

Received 22 Nov 2023

Reviewed 07 Jan 2024

Accepted 25 Jan 2024

Published 15 Feb 2024

Cite this article as:

Hassan ABF, Ebar MHO, Prevalence of Thyroid Disorders and Reference Range of Thyroid Hormones among Pregnant Women in Bosaso City, Somalia, Journal of Drug Delivery and Therapeutics. 2024; 14(2):85-88

DOI: <http://dx.doi.org/10.22270/jddt.v14i2.6403>

*Address for Correspondence:

Ali Bile Farah Hassan, University of Health Science, Somalia

Abstract

Background: Thyroid dysfunctions are among the most prevalent of medical conditions, and considered the most prevalent disorders in women during pregnancy, and can adversely affect obstetric outcomes. The aim of this study was to determine the prevalence of thyroid disorders among pregnant women in Bosaso city, Somalia, and to initiate normal levels of thyroid related hormones

Materials and methods: This study was cross-sectional hospital-based study conducted at University of Health Science Hospital (Prof Abdirisak Hospital), Bosaso city, Somalia during the period of August 2023 to December 2023. a total of 250 pregnant women were included in the study. A total of five ml of whole blood was collected from each participant into sterile plain containers for thyroid hormones estimation. Estimation of thyroid hormones was done by using CLIA technique (Maglumi 800). The data was gathered using per-designed structural questionnaire and the SPSS 26.0 statistical software (SPSS Inc., USA) was used for statistical analysis.

Results: The overall prevalence of thyroid disorders were 33 (13.2%), 8% of them were hyperthyroidism and the rest 5.2% were hypothyroidism. The reference range for TSH, T3 and T4 were (0.07 mIU/L-4.14 mIU/L), (0.19 nmol/L-4.98 nmol/L), and (0.21 nmol/L-3.69 nmol/L) respectively.

Conclusion: This study concluded that there is a slightly higher frequency of thyroid dysfunction disorders among pregnant women.

Keywords: Thyroid function test, Thyroid dysfunction, T3, T4, TSH, Pregnant women

INTRODUCTION

Thyroid hormones are produced by the thyroid gland and play a crucial role in regulating metabolism, growth, and development in the body. The two main hormones produced by the thyroid gland are thyroxine (T4) and triiodothyronine (T3). These hormones help control the rate at which the body uses energy, regulate body temperature, and affect other vital functions. Imbalances in thyroid hormone levels can lead to various health issues, such as hypothyroidism or hyperthyroidism ¹.

Hypothyroidism and hyperthyroidism are most prevalent in women ages 15-35 years old, hypothyroidism can lead in pregnant women to complications such as preeclampsia, premature birth, and low birth weight. It is important for pregnant women with hypothyroidism to receive appropriate thyroid hormone replacement therapy and regular monitoring ².

Thirty percent of the world's populations live in areas of iodine deficiency. Thyroid dysfunction is ten times more common in women than men, especially it has been found more prevalence in pregnant women ^{3,4}.

Identifying the prevalence of thyroid disorders in pregnant women can aid in the development of appropriate screening and diagnostic guidelines. Early detection and management of thyroid disorders during pregnancy can help mitigate potential adverse effects on maternal and fetal health. Moreover, studying the prevalence of thyroid disorders in pregnant women can contribute to our understanding of the broader public health impact of these conditions. This information can inform healthcare policies, resource allocation, and the development of targeted interventions to support the health and well-being of pregnant women and their babies in Somalia, and because of less data available about prevalence thyroid disorders in Somalia, this study is aimed to determine the prevalence of thyroid disorders among pregnant women in Somalia.

MATERIALS AND METHODS

This study was cross-sectional hospital-based study conducted at University of Health Science Hospital (Prof Abdirisak Hospital), Bosaso, Somalia during the period of August 2023 to December 2023. Pregnant women who came at University of Health Science Somalia Hospital (Prof Abdirisak Hospital), during the aforementioned period were included. In addition to that, any pregnant woman who refused to give consent was

excluded. 250 subjects were included. A total of five ml of whole blood was collected from each participant into sterile plain container for thyroid hormones estimation. Estimation of thyroid hormones was done by using CLIA technique (Maglumi 800). The data was gathered using pre-designed structural questionnaire and the SPSS 26.0 statistical software (SPSS Inc., USA) was used for statistical analysis. Finally, the study was licensed by the ethical committee of University of Health Science Somalia Hospital, and gynecological data were independent variables. Confidence intervals of 95% were calculated and $P < 0.05$ was considered significant. In case of discrepancy between the results of the univariate and the results of multivariate analyses, the later was taken as final.

RESULTS

A Total of 250 samples were collected from pregnant women, their age ranged from 15–40 years with a mean age of 27.5 years old. In the laboratory diagnosis, the prevalence of thyroid dysfunctions among pregnant females evaluated for thyroid dysfunction was 13.2 % (33/250) and maximum respondents were Euthyroid 217 (86.8%) followed by 20 (8%) of respondents, were hyperthyroid and 13 (5.2%) respondents had hypothyroid.

As one of our objectives was to try to estimate the mean average of thyroid hormone levels among healthy pregnant females who have normal thyroid function (according to the international values), we found the average ranges of TSH was (0.07-4.14 mIU/L), T3 (0.19-4.98 nmol /L) and T4 (0.21- 3.69 pg ml).

Also, there was slight fluctuation of the mean values of thyroid hormones according to trimester in Euthyroid pregnant women as follow: T4 increased slightly in the second trimester and in the third trimester while T3 dropped slightly in the second trimester and in the third trimester, again TSH slightly dropped by in the second and third trimesters respectively.

On further analysis and with regard to the age (OR= 1.3; CI=1.1-1.3; P value= 0.042) family history of autoimmune diseases (AID) (OR=13.1; CI=, 2.1-59.4; P value =0.042) and rural residence (OR=12.7; CI=2.9-43; P value=0.001), they showed significant correlation with thyroid dysfunctions among our respondents. These findings were shown in tables 1,2,3,4.

Table 1: Distribution of the participants according to age groups

Age group	Frequency	Percent
15-19 years	23	9.2
20-24 years	135	54.0
25-29 years	21	8.4
30-34 years	40	16.0
>=35 years	31	12.4
Total	250	100

Table 2: Distribution of the study subjects on the basis of Thyroid function status

Thyroid function status	Frequency	Percent
Eu-thyroid	217	86.8
Hyperthyroid	20	8
Hypothyroid	13	5.2
Total	250	100

Table 3: Thyroid hormone levels among pregnant females with normal thyroid function

		Test	Mean \pm SD	Minimum	Maximum
Level of thyroid hormones in all Euthyroid females		TSH	1.56 ± 0.77	0.07	4.14
		T3	3.21 ± 0.54	0.19	4.98
		T4	0.78 ± 0.71	0.21	3.69
Level of thyroid hormones in Euthyroid females per trimester	1st	TSH	1.69 ± 0.71	0.33	4.34
		T3	4.65 ± 1.12	0.44	5.21
		T4	0.91 ± 0.78	0.51	4.67
	2nd	TSH	1.49 ± 1.3	0.11	4.67
		T3	3.12 ± 1.2	0.49	5.1
		T4	1.13 ± 0.61	0.15	4.32
	3rd	TSH	1.38 ± 1.14	0.08	8.21
		T3	3.10 ± 0.93	0.76	5.51
		T4	1.21 ± 0.61	0.28	4.68

Table 4: Risk factors for thyroid dysfunction among pregnant women, using univariate and multivariate analyses

Variable	Univariate analyses			Multivariate analyses		
	OR	95% CI	P-Value	OR	95% CI	P-Value
Age ≥ 35	1.0	0.9-1.2	0.039	1.3	1.1-1.3	0.042
Rural residence	6.8	2.6-19	0.002	12.7	2.9-43	0.001
Family history of AID	7.3	2.1-34	0.008	13.1	2.1-59.4	0.042

DISCUSSION

Thyroid diseases are amongst the most prevalent of medical conditions, and many studies shown high prevalence in women during pregnancy, and can adversely affect obstetric outcomes. The present study was cross-sectional hospital-based study conducted at University of Health Science Hospital (Prof Abdirisak Hospital), Bosaso, Somalia for the determination of prevalence of Thyroid dysfunction and the mean values and range of thyroid hormones in pregnant women.

The results of this study revealed that the age of the study population ranged between 15-40 years with a mean age of 27.5 years old. There was significant correlation between the age and frequency of thyroid dysfunction with P-value of 0.042. this finding agrees with a study done by Amel K. Saeed, et al, who reported that the age had a significant correlation with the prevalence of thyroid dysfunction ⁵.

Regarding to the prevalence of hypothyroidism, this study describes (5.2%) which is slightly higher than what was observed in Gaza, America and European population (2.2%) ⁶.

Also, the prevalence of hyperthyroidism in our study was very high (8%) as compared with other studies (Gaza 1.0 %) and (1.3%) in Tunisia ⁷.

In this study, we found that T3 was dropped slightly in the second trimester and in the third trimester, which is similar with results with a study done by Pasupathi P, et al in china where they found the highest level of FT3 was during the first trimester ⁸.

Where T4 was increased slightly in the second trimester and in the third trimester, in contrast with a study done by Kurioka and his colleagues, who reported significantly reduced levels of free T4 during pregnancy ⁹.

Our study has shown slightly increase in TSH level in first trimester when compared with second and third trimester (1.69 ± 0.71 , 1.49 ± 1.3 and 1.38 ± 1.14 respectively), these levels are still within the recommended levels of the American Thyroid Association Task force on Thyroid Disease during Pregnancy 2011 ¹⁰. During pregnancy, the thyroid hormone levels can undergo significant changes ¹¹.

Although there is still no strong evidence concerning the effect of the thyroid disease on pregnancy, there are clear data confirmed that with thyroid dysfunction there is increased risk of miscarriage, premature delivery, preeclampsia, low birth weight ¹²⁻¹³.

CONCLUSIONS

This study concluded That there is a slightly higher frequency of thyroid dysfunction disorders among pregnant women. There is slight fluctuation of thyroid hormones during pregnancy in euthyroid women and thyroid dysfunction is affected by age and history of auto-immune disorder. We recommend investigation for thyroid function test during pregnancy.

Limitations

Limitation of this study is partly due to the small size sample and being confined to only one hospital which underestimate the actual burden of the problem.

Acknowledgement

knowledge and exacting attention to detail have been an inspiration and kept our work on track from our designing the data to the final draft of this paper. we want to express our gratitude to our University of Health Science Hospital (Prof Abdirisak Hospital), Bosaso, Somalia and also, we greatly appreciate the help from University of Health Science Bosaso, Somalia.

Author's contribution:

Ali Bile Farah Hassan

- Conceived and designed the analyses
- Collected the data
- Contributed data/analysis tools
- Performed the analysis
- Wrote the paper
- Submitted the paper for publication

Mohamed Hassan Osman Ebar

- Conceived and designed the analyses
- Collected the data
- Contributed data/analysis tools

Funding source

There is no funding source for our work

Conflicts of interest

There are no conflicts of interest

REFERENCES

- 1-Ali NI, Alamoudi AO, Adam I, "Reference intervals of thyroid hormones in a previously iodine-deficient area in Darfur, Sudan", Therap Adv Endocrinol Metabolism 2018; 9:293-297. <https://doi.org/10.1177/2042018818781299> PMid:30181856 PMCid:PMC6116768
- 2-Okosieme OE, Marx H, Lazarus JH, "Medical management of thyroid dysfunction in pregnancy and the postpartum", Expert Opin Pharmacother. 2008; 9(13):2281-93. <https://doi.org/10.1517/14656566.9.13.2281> PMid:18710353
- 3-World Health Organization. global database on iodine deficiency. Geneva; 2016. Available at: http://www.who.int/vmnis/database/iodine/iodine_data_status_summary/en/index.html.

- 4-Vanderpump MPJ. The epidemiology of thyroid disease. *Br Med Bull.* 2011; 99:39-51. <https://doi.org/10.1093/bmb/ldr030> PMid:21893493
- 5-Saeed AK, Yassin K, Elmahdi EMA, Maralyn D, Ali AA, "The Prevalence of Thyroid Dysfunction among Sudanese Page 2 of 5 Pregnant Women" *SOJ Gynecol Obstet Womens Health*, 2015; 1(1):5. <https://doi.org/10.15226/2381-2915/1/1/00103>
- 6-Radi RA, "Assessment of Thyroid Function in Pregnant Women From Rimal Health Center", Gaza City. 2010.
- 7-Feki M, Omar S, Menif O, Tanfous NB, Slimane H, Zouari F, "Thyroid disorders in pregnancy: Frequency and association with selected diseases and obstetrical complications in Tunisian women", *Clin Biochem.* 2008; 41(12):927-31. <https://doi.org/10.1016/j.clinbiochem.2008.05.002> PMid:18538668
- 8-Pasupathi P, Chandrasekar V, Kumar S "Thyroid Hormone Changes: Pregnant and Non-Pregnant Women: A Case-Control Study", *Thyroid Science.* 2009; 4(3):1-5.
- 9-Kurioka H, Takahashi K, Miyazaki K, "Maternal thyroid function during pregnancy and puerperal period" *Endocr J.* 2005; 52(5): 587-91. <https://doi.org/10.1507/endocrj.52.587> PMid:16284437
- 10-Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, Mestman J, Negro R, "Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum" *Thyroid.* 2011; 21(10):1081-1125. <https://doi.org/10.1089/thy.2011.0087> PMid:21787128 PMCid:PMC3472679
- 11-Soldin OP, Trachtenberg RE, Hollowell JG, Jonklaas J, Janicic N, Soldin SJ, "Trimester-specific changes in maternal thyroid hormone, thyrotropin, and thyroglobulin concentrations during gestation: trends and associations across trimesters in iodine sufficiency", *Thyroid* 2004; 14(12):1084-1090. <https://doi.org/10.1089/thy.2004.14.1084> PMid:15650363 PMCid:PMC3625635
- 12-Benhamdi N, Wiersinga WM, Reitsma JB, Vrijkotte TG, Bonsel GJ, "Higher maternal TSH levels in pregnancy are associated with increased risk for miscarriage, fetal or neonatal death" *M Eur J Endocrinol.* 2009; 160(6):985-991. <https://doi.org/10.1530/EJE-08-0953> PMid:19273570
- 13-Antolic B, Gersak K, Verdenik I, Novak-Antolic Z, "Adverse effects of thyroid dysfunction on pregnancy and pregnancy outcome: epidemiologic study in Slovenia", *J Matern Fetal Neonatal Med.* 2006; 19(10):651-654. <https://doi.org/10.1080/14767050600850332> PMid:17118740