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Abstract 
____________________________________________________________________________________________________________ 

A non-apoptotic iron-dependent form of Regulated Cell Death (RCD) known as ferroptosis is 
brought on by an excess of harmful lipid peroxides and iron overload. Inhibiting the antioxidant 
defense system results in overwhelming of GSH dependent pathway and building up iron-
dependent Reactive Oxygen Species (ROS) that react with polyunsaturated fatty acids in large 
quantities can both cause ferroptosis. Recent research has shown that ferroptosis holds a great 
deal of promise for preventing tumor cell resistance and limiting growth and spread. Emerging 
evidence also suggests that ferroptosis plays a dual role in human cancer. However, the precise 
underlying molecular mechanisms and their different role in tumorigenesis are unclear. There-
fore, in this review we summarize and briefly present the key pathways of ferroptosis, its dual 
role as an oncogenic and as a tumor suppressor event in human cancers, paying special atten-
tion to the regulation of ferroptosis along with a variety of current medications and naturally 
occurring substances that may one day be used to target ferroptosis in tumor cells. Thus, ad-
dressing this sort of cell death could be seen as a potentially expanding technique in cancer 
treatment. Consequently, this will offer crucial viewpoints for next research on ferroptosis-
based cancer treatment. 
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INTRODUCTION: 

Tumor cells innate ability to resist apoptosis and resist con-
ventional chemotherapeutic treatments has become a serious 
problem for basic and clinical scientists in recent years.1 For 
many years, apoptosis was thought to be the main cause of 
tumor cell death, even though caspase-induced tumor cell 
death is not the only way that tumor cells die. Cell death 
brought about by traditional therapies. On the other hand, an 
increasing amount of data indicates that inducing ferroptosis 
may be an additional antitumor characteristic of traditional 
anticancer drugs. In terms of appearance, genetics, and bio-
chemistry, ferroptosis—a novel type of RCD that Scott Dixon 
originally characterized in 2012—is distinct from other RCD 
forms, which include apoptosis, necroptosis, and autopha-
gy.2Iron-dependent lipid peroxidation and failure of the anti-
oxidant defense system are hallmarks of ferroptosis.2 The 
morphological changes that occur in ferroptotic cells include 
the reduction of cristae, rupture of the outer membrane, 
shrinkage, and elevation of the membrane density.2,3Research 
has indicated that ferroptosis is closely related towith the on-
set, progression, and suppression of cancer.4-8Thus, focusing 
on this type of cell death could open up new avenues for the 
treatment of cancer. Three basic strategies are used to accom-
plish ferroptosis, a process closely linked to metabolism and 
redox balance: modifying iron metabolism, influencing lipid 
peroxidation, and inhibiting the antioxidant system.9.10 Conse-

quently, using effective exogenous agents totarget these path-
ways may be a useful tactic for causing tumor cells to undergo 
ferroptosis. Since ferroptosis was discovered, a number of 
experimental drugs have been created or found that target 
distinct ferroptosis regulatory mechanisms. For example, the 
first known inducer of ferroptosis was erastin, which targets 
oncogenic Ras mutant tumor cells specifically.11 In terms of 
mechanism, erastin works against the antioxidant defense 
system by permanently inhibiting system Xc, which causes 
glutathione (GSH) to be depleted. Subsequently, different ex-
perimental agents were progressively presented to target fer-
roptosis in tumor cells, including FIN56, ML162, RSL3, and 
others. Because of their unstable metabolism and inadequate 
solubility in water, none of these compounds—despite their 
strong pro-ferroptotic activity—are appropriate for usage in 
vivo. Therefore, creating new ferroptosis inducer medicines 
with improved pharmacokinetic conformance or repurposing 
existing therapeutic drugs that successfully cause ferroptosis 
should be of the utmost importance. This article offers a brief 
synopsis of the fundamental mechanisms of ferroptosis and 
lists some of the current medications and natural substances 
that may be modified for use in ferroptosis-based cancer 
treatments. 

MOLECULAR CHARACTERISTICS OF FERROP-
TOSIS:  
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Iron accumulation: Iron absorption, utilization, recycling, 
and storage are among the several processes that make up 
iron metabolism.When iron metabolism is disrupted, intracel-
lular iron accumulates excessively, which results in the pro-
duction of free radicals and oxidative stress.12,13 In particular, 
ferroptosis is primarily caused by iron, which is also a neces-
sary component for the growth and multiplication of tumor 
cells.14,15Apart from its function in the synthesis of DNA and 
ATP, iron is an essential part of the electron transport chain in 
the mitochondria and a cofactor for metalloproteinas-
es.Ferrithioprotein, for instance, functions as a cofactor for 
numerous essential enzymes in redox processes as well as for 
oxidoreductases in the mitochondrial electron transport 
chain.The transferrin–Fe3+ complex, which is reduced to Fe2+ 
and enters the cell through the membrane protein transferrin 
receptor 1, is formed when extracellular ferric ions (Fe3+) mix 
with transferrin.The labile iron pool accumulates Fe2+ in the 
cell with the help of the divalent metal transporter 1 (solute 
carrier family 11 member 2; SLC11A2) or Zrt- and Irt-like pro-
teins 8 and 14 (SLC39A8 and SLC39A14, respective-
ly).14,15,16To maintain the equilibrium of internal iron, Fe2+ 
works with iron chaperones like poly(rC)-binding proteins 1 
and 2 to pump iron through membrane ferroportin (FPN) 
1.14,18 But when cells’ Fe2+ levels are too high, the Fenton re-
action with hydrogen peroxide takes place, producing too 
many ROS and causing ferroptosis (Fig.1). 

Anomalous lipid metabolism: Lipids are essential for the 
production of cell membranes, energy storage, signal trans-
duction, membrane development, and energy storage. Cell 
lipid toxicity is regulated by lipid metabolism, and anomalous 
lipid metabolism is thought to be a sign of malignancy and a 
critical component of ferroptosis.19 Fatty acids are also crucial 
for the metabolism of lipids in cells. Fatty acids are classified 
as monounsaturated fatty acids (MUFAs), polyunsaturated 
fatty acids (PUFAs), and saturated fatty acids (SFAs) based on 
the degree of their saturation. Ferroptosis has been shown to 
be facilitated by PUFAs and MUFAs among them.20,21ROS can 
cause lipid peroxidation by attacking PUFAs on the cell mem-

brane because of the weak C–H bond at the diallyl location.22 
The synthesis of PUFAs in this process is dependent on acyl-
CoA synthetase long-chain family member 4 (ACSL4), which in 
turn favorably regulates ferroptosis. On the other hand, it has 
been observed that exogenous MUFAs, like exogenous oleic 
acid and palmitic acid, adversely regulate drug-induced fer-
roptosis.23,24 Acyl-CoA synthetase long-chain family member 3 
has the ability to activate exogenous MUFAs, which can dis-
place PUFAs at the plasma membrane and lessen the lipids’ 
oxidation sensitivity.24 Furthermore, it has been discovered 
that cancer cell membranes have a higher ratio of MUFAs to 
PUFAs, which prevents lipotoxicity and ferroptosis (Fig.1).25 

Aberrant amino acid metabolism: Amino acids are neces-
sary for cell viability and are involved in the metabolism of 
ammonia, deamination, decarboxylation, and oxidative de-
composition capacity. In the meantime, aberrant metabolism 
of amino acids results in redox imbalance, dysregulation of 
energy management, and dysfunction in biosynthesis, all of 
which promote the growth of tumors.26 The primary cause of 
ferroptosis brought on by aberrant amino acid metabolism is 
GSH. Glutamate-L-cysteine-L-glycine (γ-glutamyl-L-cysteinyl-
L-glycine) is a tripeptide that is essential for the body’s elimi-
nation of free radicals and as an antioxidant.27,28 Important 
regulators of GSH breakdown and biosynthesis include GPX4 
and System Xc-. The light chain (SLC7A11) and heavy chain 
(SLC3A2) subunits that make up System Xc- are crucial for 
preserving the equilibrium of GSH in cells.29,30 Glutamate is 
transported from inside the cell to the outside by System XC, 
which also enables the exchange of cystine and glutamate 
across the plasma membrane and regulates GSH synthesis in 
response to external glutamate levels.31 Reduced GSH synthe-
sis can result from compromised system XC function or inade-
quate intracellular cysteine levels, which can cause ferropto-
sis. However, GPX4 can employ GSH as a substrate to convert 
membrane lipid hydrogen peroxide to nontoxic lipid alcohols, 
lessen oxidative stress damage, and negatively regulate fer-
roptosis. GPX4 is an essential enzyme for scavenging lipid ox-
ygen free radicals (Fig.1).27,28 

 

 

Figure 1: Merged diagrammatic representation of molecular characteristics of ferroptosis including excessive iron accumulation, 
anomalous lipid metabolism, and aberrant amino acid metabolism. 
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REGULATION OF FERROPTOSIS IN CANCER 

Ferroptosis can be regulated by a variety of mechanisms, es-
pecially by the transcription of genes and post translation of 
proteins. 

Noncoding RNAs (ncRNAs) induced ferroptosis in cancer  

ncRNAs have been shown in numerous studies to stimulate 
ferroptosis in a variety of malignancies. For instance, it has 
been shown that miR-15a-3p and miRNA-15a-15a target GPX4 
to enhance ferroptosis in colorectal and prostate cancer, re-
spectively.32-33 Furthermore, by raising the levels of miR-4715-
3p, which are downregulated in malignancies of the upper 
gastrointestinal tract, GPX4 inhibition causes ferroptosis to 
become sensitive.34Non-small cell lung cancer has been found 
to operate via a comparable mechanism. By inhibiting GPX4 
expression, miR-324-3p leads to cisplatin resistance,35 where-
as miR-302a-3p targets FPN to positively regulate ferropto-
sis.36 A study by Bai et al. has demonstrated that miR-214-3p 
the GSH axis in hepatoma and so functions as a tumor inhibi-
tor, in addition to causing ferroptosis via GPX4.37 Certain long 
non-coding RNAs (lncRNAs) in different malignancies can 
speed up ferroptosis, just like miRNAs do. As an illustration, it 
has been noted that suppression of the lncRNA plasmacytoma 
variant translocation 1 markedly raised ROS and Fe2+ levels, 
which was followed by a reduction in cell viability in liver can-
cer.38 SLC16A1-AS1 suppression in renal carcinoma led to a 
considerable reduction in SLC7A11 expression and a 
GSH/glutathione disulfide (GSSG) ratio reduction in cells.39 
Wang et al. previously reported similar outcomes, showing 
that in acute myeloid leukemia, the long intergenic nonpro-
tein-coding RNA 618 triggers ferroptosis by upregulating 
SLC7A11 and downregulating ACSL4.40 Mechanistically, the 
lncRNA ARHGEF26-AS1 functions as a sponge for miR-372-3p, 
causing ferroptosis and preventing esophageal squamous cell 
carcinoma cells from proliferating and migrating.41 The cyto-
solic p53-related lncRNA consistently inhibits the growth of 
lung cancer by inducing ferroptosis by increasing ROS and 
intracellular iron buildup.42 Furthermore, metallothionein 1D, 
pseudogene has been shown through preclinical studies and 
bioinformatics analysis to augment erastin-induced ferropto-
sis in nonsmall cell lung cancer by blocking nuclear factor 
erythroid 2-related factor 2 (NRF2).43It has also been revealed 
that a variety of circular RNAs contribute to the promotion of 
ferroptosis. Jiang et al.'s research specifically found that over-
expression of circ0000190 expedited the process of ferropto-
sis in gastric cancer cells by elevating levels of malondialde-
hyde, lipid ROS, and Fe2+.44 Furthermore, following 
circ0007142 knockdown, cells in colon cancer displayed 
growth suppression and ferroptosis signals.45 Furthermore, 
knockdown of the circular RNA glial cell line-derived neu-
rotrophic factor family receptor alpha-1 (circGFRA1) resulted 
in upregulation of the GSH/GSSG ratio and apoptosis-inducing 
factor mitochondria-associated 2 and GPX4 expression, indi-
cating that circGFRA1 promotes ferroptosis in breast cancer 
via two distinct pathways.46 Notably, studies conducted both 
in vivo and in vitro have demonstrated that the circular RNA 
LIM domain just 1 increases ferroptosis through upregulating 
ACSL4 expression, hence inhibiting the proliferation and 
spread of cervical cancer cells.47 Additionally, hepatocellular 
carcinoma (HCC) has been shown to overexpress the circular 
RNA IARS (circIARS) according to RNA-sequencing research; 
yet, a detailed investigation has revealed that cells silenced by 
circ-IARS exhibit a considerable rise in intracellular GSH and a 
significant drop in Fe2+. Consequently, it is possible that circ-
IARS will stimulate ferroptosis in HCC cells.48 Nonetheless, 
there are numerous obstacles to overcome and the connection 
between ferroptosis and ncRNAs is not well understood. For 
instance, further research is required to clarify the underlying 
regulatory mechanism regulating the interaction between 

ferroptosis and ncRNAs. There is yet no proof that ncRNAs 
that directly bind to ferroptosis are involved in the develop-
ment and prognosis of cancer. Thus, greater research into the 
functions of ferroptosis-related ncRNAs in various malignan-
cies is important. Furthermore, the in vivo validation of fer-
roptosis-related ncRNAs is still limited. It's clear that more 
research using extensive human tissue samples is necessary to 
ascertain whether these ncRNAs may be utilized as clinical 
targets. 

Dual role of transcriptional factors in ferroptosis (sup-
pressive and inductive effect) 

An increasing body of research suggests that transcriptional 
regulators have two opposing effects on the regulation of fer-
roptosis. For instance, it has been revealed that p53, a tumor 
suppressor, has a dual function in ferroptosis. Specifically, it 
has been shown that p53 causes ferroptosis by directly sup-
pressing SLC7A11 expression and raising lipid peroxidase. 
Notably, it has been shown that p53 activation inhibits cystine 
uptake, limits intracellular GSH synthesis, and activates fer-
roptosis, which in turn inhibits tumor growth.49 On the other 
hand, it has also been suggested that p53 functions to prevent 
ferroptosis in human cancer cells. Mechanically, nutlin-3, a 
small molecule inhibitor, was able to boost p53 expression 
while reducing ROS buildup and GSH consumption, which in 
turn suppressed ferroptosis. In HT-1080 fibrosarcoma cells, 
there is a concurrent increase in cell viability.50-51Additionally, 
in a variety of malignancies, activating transcription factor 
(ATF) 4 regulates ferroptosis either positively or negatively. 
ATF4 has the ability to cause sorafenib resistance in HCC by 
preventing ferroptosis,52 however it has also been demon-
strated that sevoflurane can cause ferroptosis in Glioma cells 
by activating ATF4.53 Likewise, it has been documented that 
ATF3 induces ferroptosis and possesses tumor-suppressive 
properties.54 Furthermore, the aberrant expression of two 
essential transcription factors of the Hippo pathway, tran-
scriptional co-activator with PDZ-binding motif (TAZ) and yes-
associated protein (YAP), leads to chemotherapy resistance 
and cell proliferation in a variety of malignancies.55-56 Addi-
tionally, a preclinical investigation has shown that YAP's tran-
scriptional regulatory function targets the transferrin receptor 
and ACSL4 to cause ferroptosis. In summary, ROS levels rise 
and cell viability falls when YAP is overexpressed.Additionally, 
in colon cancer cells, YAP is more vulnerable to ferroptosis at 
high cell densities.57 This conclusion is supported by the ob-
servation that in some cancer cell lines treated with erastin, 
loss of TAZ decreases sensitivity to ferroptosis.58 Furthermore, 
it is thought that hypoxia-inducible factor 1 alpha (HIF1A), a 
transcriptional regulator of the homeostatic response of cells 
to hypoxia, prevents the death of cancer cells by encouraging 
the accumulation of lipids. However, it has been demonstrated 
that HIF1A deletion favorably regulates ferroptosis in mouse 
models treated with RSL3 via controlling lipid metabolism and 
consequently efficiently inhibits tumor growth.59-60 Converse-
ly, there are transcription regulators that, through blocking 
ferroptosis, encourage the growth of tumours. The most obvi-
ous evidence is that NRF2 has been demonstrated to upregu-
late SLC7A11, which shields tumor cells from undergoing fer-
roptosis .61 However, it has also been observed that NRF2 in-
duces ferroptosis in lung cancer and renal cell carcinoma 
(RCC) cells by upregulating HMOX1 expression. In particular, 
4, 4’-dimethoxychalcone (DMC), which is taken from the plant 
Angelica keiskeikoidzumi, have the ability to activate NRF2. 
NRF2 activation directly increased the expression of HMOX1, 
which in turn caused iron overload and ferroptosis.62-63 It will 
be interesting to learn more about the precise mechanism 
behind ferroptosis, given the dual function transcription fac-
tors play in this process. Screening a greater number of tran-
scription factors that target ferroptosis will be interesting as 
well. Moreover, the specificity of these transcription factors is 
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unknown because of the intricate regulatory network of fer-
roptosis. Thus, there is an urgent need for comprehensive 
research on the specificity and preclinical trials. 

Post translational modification in ferroptosis 

The control of ubiquitination, phosphorylation, methylation, 
and acetylation is significantly influenced by ferroptosis. A 
number of deubiquitinases, such as ubiquitin-specific protease 
(USP)11, USP14, and OTU domain-containing ubiquitin alde-
hyde-binding protein 1, as well as ubiquitinases, such as neu-
ral precursor cell expressed developmentally downregulated 
protein 4 (NEDD4), NEDD4 ligase, and so on, can regulate the 
key ferroptosis regulatory genes, including SLC7A11, GPX4, 
and voltage-dependent anion-selective channels (VDACs).64-66 

It is anticipated that NEDD4 is the primary E3 ligase causing 
VDAC1 degradation in melanoma among the ubiquitinases. It 
has been confirmed by another investigation that endogenous 
VDAC1 interacts with NEDD4, and that treatment with erastin 
strengthens this interaction. However, erastin-induced ferrop-
tosis was averted by VDAC2/3 inactivation. It's interesting to 
note that these effects increased after NEDD4 silencing. Fur-
thermore, a comprehensive analysis has demonstrated that 
the VDAC subtype's K63, K90, and K163 are essential for 
NEDD4-mediated ubiquitination.67 Furthermore, direct phos-
phorylation of ACSL4 or concomitant phosphorylation of 
SLC7A11 can control the activity of ferroptosis. Precisely, 
phosphorylating ACL4 at Thr328 directly through protein 
kinase C βII speeds up ferroptosis and improves the effective-
ness of immunotherapy in melanoma patients.68 Phosphoryla-
tion of beclin 1 at S90/93/96 was found to be involved in its 
complexation with SLC7A11 and subsequent lipid peroxida-
tion in ferroptosis, which extended the survival of pancreatic 
cancer-stricken mice in a preclinical investigation.69 According 
to the aforementioned research, a large number of genes have 
been shown to control ferroptosis via methylating the 
SLC7A11/GPX4 axis. Clinically, poor DNA methylation in a 
number of malignancies may be connected to elevated GPX4 
expression. Additionally, it has been shown that acetylation of 

histone H3 on lysine 27 and trimethylation of histone H3 on 
lysine 4 are abundant in the upstream site of GPX4 in various 
cancer tissues, suggesting that methylation may be the cause 
of the high expression of GPX4.70 The multiple myeloma cell 
lines MM1S and MM1R treated with the GPX4 inhibitor RSL3 
underwent changes in total DNA methylation levels. An addi-
tional investigation assessed these alterations and found that 
both MM1S and MM1R converge towards a similar methyla-
tion profile under conditions of ferroptosis.71 Furthermore, the 
ferroptosis inhibitor sulfasalazine, which targets SLC7A11, has 
been shown in a prior work by the Hasegawa group to induce 
DNA methylation on the mucin 1 gene (MUC1) promoter to 
regulate MUC1 gene transcription in triple-negative breast 
cancer.72 Furthermore, it has been shown that acetylation has 
a role in controlling ferroptosis. For instance, Jiang et al. have 
shown that p533KR (K117/161/162) causes ferroptosis and 
controls the expression of SLC7A11.29 What's more intriguing 
is that p53's transcriptional activity is unaffected by the ab-
sence of acetylation at position K98. But when the P533KR and 
K98 mutations are combined, P53 is completely unable to con-
trol SLC7A11, suggesting that p53's K98 acetylation is crucial 
for inhibiting SLC7A11 production and p53-mediated ferrop-
tosis.73 However, more investigation is necessary to fully un-
derstand the precise mechanism underlying the acetylation-
mediated regulation of ferroptosis. Thus, to elucidate their 
functions in cancer, the identification of new regulators of 
acetylation and ferroptosis will be required. 

POTENTIAL COMPOUNDS TO TARGET FERROP-
TOSIS BASED CANCER THERAPY 

Ferroptosis can be induced by suppressing antioxidant de-
fence components such as systems Xc–, GSH, and GPX4, or by 
precisely controlling various endogenous elements like intra-
cellular iron concentration and PUFA-containing phospholip-
ids.74 Up till now, the potential effectiveness of a variety of 
naturally occurring substances and clinically utilized medica-
tions in inducing ferroptosis has been investigated. 

 

 
Figure 2: schematic illustration of the mechanisms of action of potential compounds involved in the ferroptosis induced cancer therapy  

While some of these drugs are already FDA-approved, others are 
still in the preclinical and clinical trial stages (Table 1). Here, we 
are reminded of the substances already on the market for various 
purposes that could be converted to ferroptosis-based cancer 
therapy. We have divided these potential medications and sub-

stances into four major categories of ferroptosis inducers in the 
sections that follow; group 1 focuses on intracellular iron concen-
trations; Group 2 targets system Xc-, GSH, and GPX4, Group 3 tar-
gets β HMG-CoA reductase, and Group 4 targets system SCD1 and 
ACSL4. 
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Table 1. Potential compounds associated with ferroptosis induced cancer cell death. 

Drugs/Compounds Targeted 

Pathway 

Cancer Types FDA 

Approval 

Exact Mechanism Ref 

Salinomycin Intracellular iron 
levels 

Breast cancer NO Degradation of ferritin, downregulation 
of NRF2, and increases in TFRC and 
IREB2 

84-86 

Lapatinib +Siramesine Intracellular iron 
levels 

Breast cancer, Glio-
blastoma, Lung can-
cer 

YES Elevate transferrin expression, down-
regulate HO-1, ferroportin, and ferritin, 
and increase intracellular iron concen-
tration 

96-98 

Artesunate Intracellular iron 
levels 

Head and neck can-
cer, Pancreatic can-
cer, Hepatocellular 
carcinoma 

YES Depletion of GSH, activation of  ATF4-
CHOP-CHAC1, Degradation of ferritin, 
and NCOA4-mediated ferritinophagy 

111-113 

Ruscogenin Intracellular iron 
levels 

Pancreatic cancer NO Downregulation of ferroportin and 
upregulation of transferrin 

115 

Neratinib Intracellular iron 
levels 

Breast cancer YES Increase intracellular iron level 118 

Sulfasalazine Xc-, GSH, and 
GPX4 

Head and neck can-
cer, Breast cancer, 
Fibrosarcoma, Glio-
ma 

YES System Xc- inhibition and prevention of 
cystine absorption, which results in an 
increase in TFRC and DMT1 expression 
levels 

125,142 

Sorafenib Xc-, GSH, and 
GPX4 

Fibrosarcoma, Hepa-
tocellular carcinoma, 
Renal cell carcinoma, 
Pancreatic cancer 

YES Inhibiting system Xc- and preventing 
theabsorption of cystine 

123-127 

Cisplatin Xc-, GSH, and 
GPX4 

Colorectal cancer, 
Lung cancer 

YES Depletion of GSH and deactivation of 
GPXs 

132 

Eprenetapopt Xc-, GSH, and 
GPX4 

Acute myeloid leu-
kemia, Oesophageal 
cancer, non-small 
cell lung cancer 

NO 

 

Depletion of GSH and suppression of 
thioredoxin 

 

147 

Buthionine sulfoximine Xc-, GSH, and 
GPX4 

Colorectal cancer, 
Lung cancer 

NO Inhibition of the production of GSH 

 

125 

Dihydroisotanshionine 
I 

Xc-, GSH, and 
GPX4 

Glioblastoma, Breast 
cancer, Lung cancer 

NO GPX4 inactivation and GSH attenuation 

 

162,164 

Withaferin A Xc-, GSH, and 
GPX4 

Neuroblastoma NO Direct inactivation of GPX4, targeting 
the Nrf2-HO1 

172 

Gallic acid Xc-, GSH, and 
GPX4 

Neuroblastoma, 
Breast cancer, Mela-
noma, Colorectal 
cancer, Cervical can-
cer 

NO suppression of GPX4 

 

 

177,179 

Cucurbitacin B Xc-, GSH, and 
GPX4 

Nasopharygeal car-
cinoma 

NO Depletion of GSH, GPX4 downregula-
tion, and elevated intracellular iron 
levels 

183 

Altretamine Xc-, GSH, and 
GPX4 

Human diffuse large 
B cell lymphoma 

YES GPX4 inhibition 185 

Statins HMG-CoA reduc-
tase 

Fibrosarcoma YES Inhibition of HMG-CoA reductase 190 

MF-438, CAY10566, 
and A939572 

SCD1, and ACSL4 Ovarian cancer NO Suppression of SCD-1 197 

Bromelain SCD1, and ACSL4 Colorectal cancer NO Upregulation of ACSL4 201 
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Figure 3: The ferroptosis process is negatively regulated by the master transcription factor NRF2. NRF2 controls oxidative stress-
induced ferroptosis by regulating the expression of numerous genes involved in the antioxidant defense system. ATF4 has the ability 
to activate HSPA5, which prevents GPX4 degradation and mediates ferroptosis resistance. Through GSH depletion, artesunate-
induced ATF4-CHOP-CHAC1 activation initiates ferroptosis. Lipid peroxide limitation mediated by SCD1 mediates ferroptosis re-
sistance through the PI3K-AKT-mTOR signaling cascade. 4EBPs is implicated in the synthesis of GPX54 protein, and mTOR suppress-
es it as well. 

 

Potential compounds to target intracellular 
iron levels  

One of the key characteristics of ferroptosis is iron overload. 
The following is a description of the medications and sub-
stances that cause ferroptosis by raising the amount of iron 
within cells: salinomycin, artesunate, neratinib, lapatin-
ib+siramesine, and, ruscogenin are some of these agents.  

Salinomycin 

A polyether ionophore molecule called salinomycin was dis-
covered from the bacterium Streptomycin albus. It exhibits a 
broad spectrum of antibacterial activity against viruses, gram-
positive bacteria, fungi, and parasites.75Salinomycin’s capacity 
to fight cancer has drawn more attention from researchers 
worldwide throughout the last ten years. Salinomycin has 
antitumor effects that significantly reduce the growth of 
breast tumors in the mice xenograft model,76 according to a 
2009 study by Gupta et al.Studies have shown that salinomy-
cin dramatically reduces the ability of docetaxel-resistant 
prostate cancer cells to form colonies.77 Additionally, the re-
sistance of ovarian cancer cells to chemotherapy medicines 
based on platinum is substantially eliminated by salinomycin 
and its derivatives.78 More research is still needed to deter-
mine the precise method by which salinomycin kills tumor 
cells. By focusing on the hypoxia-inducible factor 1-α (HIF-
1α)/vascular endothelial growth factor (VEGF) signaling 
pathway, salinomycin significantly inhibits the angiogenesis 
and development of breast cancer cells.79Preclinical research 
findings demonstrated that salinomycin considerably inhibits 
the migration of cancer cells by disrupting the integrity of ac-
tin stress fibers.80Tumor cells treated with salinomycin have 
been shown to undergo apoptosis and autophagy caused by 
endoplasmic reticulum (ER) stress.81-82 Additionally, it has 
been discovered that salinomycin increases intracellular ROS 
levels and downregulates NRF2 expression, hence improving 
the radiosensitivity of nasopharyngeal cancer 
cells.83Salinomycin treatment for colon cancer cells may cause 
ROS production and mitochondrial dysfunction.84An effective 

synthetic salinomycin derivative, ironomycin (AM5), has been 
shown to have enhanced anticancer activity against breast 
cancer stem cells. Researchers have discovered that adminis-
tering salinomycin and AM5 to cancer stem cells prevents iron 
transport from the lysosome lumen to the cytosol. This, in 
turn, causes cytosolic iron depletion, which is shown by ferri-
tin degradation and an increase in IREB2 and TfR.85-86By caus-
ing lipid peroxide buildup and inducing ferroptosis, delivery of 
salinomycin-loaded gold nanoparticles (SalAuNPs) to breast 
cancer stem cells can efficiently kill tumour cells.87 To support 
these results, the ferroptosis-specific inhibitor ferrostatin-1 
(Fer-1) remarkably prevented cell death caused by salinomy-
cin or Sal-AuNPs.87 In conclusion, it appears that causing fer-
roptosis may be an additional salinomycin anticancer effect. 

Lapatinib 

Lapatinib, which is often referred to as TYKERB®, is a synthet-
ic derivative of 4-anilinoquinazoline that has been shown to 
have a reversible inhibitory impact on the activation and au-
tophosphorylation of HER1 and HER2.88 In 2007, the Food and 
Drug Administration (FDA) approved the use of lapatinib in 
conjunction with capecitabine for patients with advanced 
HER2 overexpression breast cancer.89 It has recently been 
discovered by researchers that lapatinib therapy may prevent 
low-dose doxorubicin from having a promigratory effect on 
breast cancer cells.90 A piperidine analogue, siramesine is a 
ligand for the sigma-2 receptor that was first developed to 
treat depression and anxiety.91 It has been demonstrated that 
siramesine increases liposomal membrane permeabilization, 
which causes cathepsin leakage, the generation of ROS, and 
eventually the death of cancer cells.92 By inhibiting the activity 
of acid sphingomyelinase, siamesine can also cause tumor cells 
to die.93 Treating triple-negative breast cancer cells with si-
ramesine as a lysosomotropism drug dramatically eliminates 
their resistance to CDK4/6inhibitors.94 According to a study by 
Liu and colleagues, siramesine's anticancer activity was en-
hanced in vitro when it was delivered to breast cancer cells via 
a metal-organic framework-based nanoplatform known as 
ZIF-8@Sira/FA.95 According to a study by Ma and colleagues, 
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co-treating breast cancer cells with siramesine and lapatinib 
simultaneously causes ferroptotic cell death by interfering 
with iron metabolism and so causing the generation of reac-
tive oxygen species.96 The authors additionally demonstrated 
that [siramesine + lapatinib]-induced synergistic mortality 
was independent of its conventional targets. By lowering HO-1 
levels.97 Rodriguez and colleagues discovered that siramesine 
and lapatinib together can also cause ferroptosis in tumor 
cells. They found that HO-1 overexpression produced by co-
balt protoporphyrin chloride (CoPP) effectively decreased 
lipid ROS reactions and cell death brought on by [lapatinib + 
siramesine].98 While the exact mechanism of [lapatinib + si-
ramesine]-induced ferroptosis is yet unknown, it appears that 
combining the two drugs may provide a fresh approach to 
going after refractorytumor cells. 

Artesunate 

For the treatment of malaria infection, doctors frequently ad-
minister artesunate, a semisynthetic water-soluble derivative 
of artemisinin.In May 2020, the FDA approved artesunate as a 
treatment for severe malaria in both adult and paediatric pa-
tients. Apart from its ability to fight malaria, artesunate has 
demonstrated promise as a means of eradicating cancerous 
cells. According to research, artesunate inhibits the expression 
of VEGF and angiopoietin 1 to perform an antiangiogenic ac-
tivity.99-100 Furthermore, by changing the expression of a num-
ber of regulatory proteins, artesunate causes cell cycle arrest 
in tumour cells.101-102 By suppressing RAD51 recombinase, 
artesunate can also hinder ovarian tumour cells ability to re-
pair DNA double-strand breaks.103 By blocking nuclear factor 
(NF)-κBsignalling, the combination therapy of artesunate and 
anti-androgen belumenutamide inhibits the growth of tu-
mours in castration-resistant prostate cancer cells.104 Accord-
ing to recent research, artesunate can cause ferroptotic cell 
death in a wide range of cancers by focusing on different mo-
lecular elements.21,105-108 Artesunate therapy induces lysoso-
mal iron-dependent ferroptosis in K-Ras mutation-activated 
pancreatic ductal adenocarcinoma, which can be effectively 
counteracted by the ferroptosis inhibitors deferoxamine, 
trolox, and fer-1.108 Moreover, it has been discovered that ar-
tesunate increases the production of ROS in tumour cells via 
increasing ferritin breakdown and lysosomal function.109 Ad-
ditionally, Kong and associates have demonstrated that in 
hepatic stellate cells, artesunate stimulates NCOA4-mediated 
ferritinophagy.110 According to a recent publication, low-dose 
sorafenib in combination with artesunate treatment synergis-
tically increases ferroptosis in hepatocellular carcinoma cells 
both in vitro and in vivo.111 Another theory for how ar-
tesunate-induced ferroptosis works is to target the unfolded 
protein response.It has been discovered recently that the ad-
ministration of artesunate to Burkitt lymphoma cells activates 
the ATF4-CHOP-CHAC1 signalling cascade, hence inducing 
ferroptosis. Additionally, they have shown that in tumour cells, 
downregulating CHAC1 expression raises GSH levels and re-
duces lipid peroxidation. It is important to note that CHAC1 is 
essential for GSH degradation, which is likely a factor in ar-
tesunate-mediated ferroptosis.112 Notably, ferroptosis re-
sistance in head and neck cancer cells is mediated by the 
NRF2-ARE pathway, which can be activated by artesunate 
therapy.113 Because artesunate inhibits the NRF2 cascade, HNC 
cells are especially susceptible to artesunate-mediated ferrop-
tosis in vitro and in vivo.113 All things considered, the thera-
peutic repurposing of artesunate may offer a chance to treat 
anti-apoptotic tumour cells by inducing ferroptosis. 

Ruscogenin 

A naturally occurring steroidal sapogenin, ruscogenin was first 
identified from the shrubs Ruscus aculeatus. There have been 
reports of anti-inflammatory, antithrombotic, and anti-
neoplastic effects of roscogenin. Its underlying therapeutic 

actions are unclear, nevertheless. Recent studies have shown 
that blocking tumour cell invasion and migration with ruscog-
enin therapy substantially suppresses the metastasis of hepa-
tocellular carcinoma.114 Through altering the 
PI3K/AKT/mTOR signalling cascade, they found that ruscog-
enin dramatically downregulates the production of matrix 
metalloproteinase-2 (MMP-2), MMP-9, urokinase-type plas-
minogen activator (uPA), VEGF, and HIF-1α.114 According to a 
recent study by Song et al., ruscogenin both in vitro and in vivo 
induces ferroptosis, which slows the growth of pancreatic 
tumours.115 By upregulating transferrin expression and down-
regulating FPN expression;roscogenin therapy increases in-
tracellular ferrous levels and ROS production.115 Ferric am-
monium citrate increased and deferoxamine inhibited the 
effects of roscogenin-induced cell death.115 All things consid-
ered, more research is necessary to assess ruscogenin's pro-
ferroptotic function in various cancer models. 

Neratinib 

The FDA approved neratinib, also marketed as NERLYNX®, an 
oral panHER kinase inhibitor, in 2017 for patients with HER2-
positive breast cancer that is in the early stages of treat-
ment.116 Neratinib attaches itself mechanistically and irrevers-
ibly to the tyrosine kinase domain of HER1, HER2, and HER4. 
Thus, downstream signalling cascades are suppressed and 
autophosphorylation is reduced.116 By reducing growth factor 
receptor expression and phosphorylation, neratinib signifi-
cantly increases the anticancer activity of vorinostat in combi-
nation with sorafenib in pancreatic tumour cells.117 Remarka-
bly, neratinib was shown to function as a pro-ferroptotic drug 
in some metastatic breast cancer cells for the first time.118  

This conclusion was supported by research that shown liprox-
statin-1, an inhibitor of ferroptosis, may stop cell death 
brought on by neratinib.118  Treatment with neratinib also 
increases intracellular iron content in a manner that is dose-
dependent.118 More thorough research is necessary to deter-
mine the particular process by which neratinib raises iron 
levels, as the exact mechanism of neratinib's contribution to 
ferroptosis induction remains unclear. 

Potential compounds to target system Xc-, GSH, 
and GPX4 

Sorafenib 

NEXAVAR, commonly known as sorafenib, is an oral bio-
available multitarget kinase inhibitor that is being used to 
treat patients with thyroid, liver, and advanced renal cell car-
cinoma.119 

By targeting Raf serine/threonine kinases and various cellsurf
ace receptor tyrosine kinases, suchas VEGFR1-3, PDGFRβ, cKit 
protein, FMSlike tyrosine kinase 3 (FLT3), and platelet derived 
growth factor receptor β (PDGFRβ)derived growth fac-
tor receptor β (PDG-
FRβ), sorafenib is able to exert its antineoplastic activity.120 It 
has been discovered that sorafenib not only causes apoptosis 
but also activates autophagy in cancer cells.121-122 Additionally, 
it has been discovered by researchers that sorafenib's anti-
cancer effect can also be mediated by ferroptosis induction, 
which is separate from its conventional kinase inhibitory func-
tion.123-124 By inhibiting system Xc and subsequently depleting 
GSH, sorafenib mechanistically causes ferroptosis.125 Fur-
thermore, research indicates that sorafenib-mediated ferrop-
tosis is also modulated by the expression of a few genes, such 
as NRF2, retinoblastoma (RB), and MT-1G.126-127 In hepatocel-
lular carcinoma cells, sorafenib-induced ferroptotic cell death 
is negatively regulated by MT-1G, a transcriptional NRF2 tar-
getgene, which inhibits GSH depletion-mediated lipid peroxi-
dation.126 Significantly, sorafenib's anticancer effectiveness is 
enhanced by decreasing MT-1G both in vitro and in vivo.127 
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Furthermore, the interaction between p62 and Keap1 is made 
worse by sorafenib therapy, which prevents NRF2 degradation 
and enhances NRF2 nuclear accumulation.It is interesting to 
note that NRF2 heterodimerizes with MafG, the V-maf avian 
musculoaponeurotic fibrosarcoma oncogene, and subsequent-
ly induces the transcription of several genes related to antiox-
idant defence, such as FTH1, HO-1, and NQO1.128 Furthermore, 
a recent study showed that sorafenib-induced ferroptosis is 
significantly influenced by ACSL4, a positive regulator of fer-
roptosis.129 Hepatocellular carcinoma cells are susceptible to 
mitochondrial dysfunction when treated with sorafenib.130 In 
conclusion, it appears that blocking MT-1G or NRF2 in con-
junction with sorafenib therapy may be a viable therapeutic 
strategy for ferroptosis-based cancer therapy. 

Cisplatin 

A platinum coordination anti-neoplastic agent called cispla-
tin(cisdiamminedichloroplatinum II) is frequently used to 
treat a variety of solid tumours, such as pancreatic, ovarian, 
lung, and esophageal malignancies.The primary mode of ac-
tion of cisplatin is its binding to nuclear DNA and interaction 
with various cytoplasmic elements, such as mitochondrial 
DNA (mtDNA) and cytoplasmic proteins. This ultimately re-
sults in the creation of cytotoxic species, damage to DNA, and 
apoptotic cell death.131 Cisplatin was found to cause ferroptot-
ic cell death in A549 and HCT116 cancer cells in addition to its 
proapoptotic action.132 Ferroptosis caused by cisplatin mostly 
stems from GSH depletion and subsequent GPX4 inactiva-
tion.132 Furthermore, compared to their individual administra-
tion, the combination therapy of cisplatin and erastin demon-
strated notable antitumor effectiveness.132 According to re-
ports, medications based on platinum exhibit a strong affinity 
for interacting with biomolecules that include sulphur, such as 
thioredoxin, metallothionein, and GSH.133 It appears that cis-
platin's primary non-DNA target in cells is GSH.133 The Pt-GS 
complex is produced when about 60% of the cytoplasmic cis-
platin combines with GSH. It's interesting to note that cisplatin 
resistance in ovarian cancer cells is connected with elevated 
GSH levels.134 In conclusion, combining cisplatin with addi-
tional ferroptosis-inducing glutathione depleters may be a 
viable method of eliminating tumour cells. 

Sulfasalazine 

An FDA-approved anti-inflammatory drug called sulfasalazine 
is created by mixing the antibiotics sulfapyridine and salicy-
late. It is frequently used to treat inflammatory bowel illness 
and rheumatoid arthritis.135 Sulfasalazine has been shown to 
have both immunomodulatory and anti-inflammatory proper-
ties, yet its exact route of action is still unknown. Furthermore, 
it has been demonstrated that sulfasalazine possesses anti-
cancer capabilities against tumours. For example, it has been 
shown that sulfasalazine inhibits NF-κB activity, making pan-
creatic tumour cells more sensitive to gemcitabine.136 Addi-
tionally, studies using glioblastoma rat xenograft models have 
shown that sulfasalazine enhances the antitumor efficacy of 
gamma knife radiosurgery.137 Additionally, it has been shown 
that sulfasalazine inhibits the proliferation of certain tumour 
cell types by depleting GSH and inhibiting system Xc−.137-140 
Accordingly, sulfasalazine may be a viable option for inducing 
ferroptosis. According to Ma et al., by lowering GSH and in-
creasing cellular platinum levels, sulfasalazine dramatically 
increases the lethal action of cisplatin on colorectal cancer 
cells.141 Additionally, by triggering iron metabolism, sulfasala-
zine encourages ferroptosis.142 Studies show that in breast 
cancer cell lines, sulfasalazine increases the expression of 
DMT1 and TFRC.142 All things considered, sulfasalazine seems 
like a good option to target ferroptosis; still, more research is 
required to assess the therapeutic effectiveness of sulfasala-
zine-induced ferroptosis. 

Eprenetapopt 

Also referred to as APR-246 and PRIMA-1Met, eprenetapopt is 
a tiny, new medicinal chemical that selectively reactivates 
mutant p53 and encourages cancer cells to undergo apoptosis. 
The process that turns eprenetapopt into the reactive species 
methylene quinuclidinone (MQ) involves covalent bonding 
with cysteine residues in the p53 core domain.143 There is 
considerable uncertainty regarding the exact underlying 
mechanism by which eprenetapopt/MQ restores mutant p53 
function. Several studies have demonstrated that epreneta-
popt therapy efficiently reduces tumour growth in a variety of 
malignancies, either when used alone or in conjunction with 
other anticancer medications.144 Apart from its ability to target 
mutant p53, eprenetapopt has also demonstrated the ability to 
reduce intracellular GSH levels and inhibit the thioredoxin and 
glutaredoxin systems.145-146 It might therefore be a good fit for 
ferroptosis induction. Birsen et al. discovered that epreneta-
popt can cause ferroptosis in acute myeloid leukaemia cells, 
regardless of the presence of P53 mutations.147 Treatment 
with eprenetapopt substantially reduces GSH levels and in-
creases the buildup of lipid-ROS, which Fer-1 can prevent sig-
nificantly.147 Additionally, they demonstrated that epreneta-
popt therapy and SLC7A11 inhibition worked in concert to 
reduce the tumour cell burden in the bone marrow of mice 
used as xenograft models.147 

Buthionine sulfoximine 

The rate-limiting stage in the synthesis of GSH is blocked by 
the strong irreversible GCL enzyme inhibitor buthionine sul-
foximine (BSO).148 It has been suggested that BSO may func-
tion as a possible pro-ferroptotic agent because the ferroptosis 
inhibitors Fer-1, α-tocopherol, and deferoxamine can prevent 
BSO-mediated cell death, but not the apoptosis inhibitor 
zVAD-fmk.149-150 Research has demonstrated that BSO can 
efficiently make cancer cells susceptible to popular chemo-
therapeutic medications.151-152 Recent work has shown that 
BSO and Ce6-based photodynamic treatment together effi-
ciently reduce HCT116 colorectal cancer cells ability to prolif-
erate.153 They also propose that intracellular GSH levels are a 
prerequisite for the effectiveness of this synergistic action.153  

Additionally, combining BSO with a thioredoxin reductase 
inhibitor such as auranofin or sulfasalazine suppresses tu-
mour growth both in vivo and in vitro in a synergistic man-
ner.154 It has been demonstrated that BSO increases the anti-
inflammatory medication sulindac sulfide’s inhibitory impact 
on ATP-binding cassette subfamily C member 1 (ABCC1).155  

Notably, ABCC1 is an ATP-dependent pump that plays a major 
role in the development of multidrug resistance. Co-
administering BSO with APR-246 substantially decreased tu-
mour growth in mice xenografts carrying JJN3 multiple mye-
loma cells when compared to the control group.156 By directly 
targeting the GCL enzyme, alternate antioxidant defence 
pathways may be activated, thus reducing the anticancer effi-
caciousness of BSO.157 Therefore, in ferroptosis-based anti-
cancer therapy, combining BSO with other antioxidant-
targeting ferroptosis inducers may be a useful tactic. 

Dihydroisotanshinone I 

A bioactive substance called dihydroisotanshinone I (DHI) was 
isolated from Salvia miltiorrhiza Bunge’s root and has anti-
tumor properties against several cancer models. According to 
certain research, DHI causes autophagic cell death and apop-
tosis in order to have its therapeutic benefits.158-159 DHI trig-
gers the c-Jun N-terminal kinase/P38 signalling cascade, 
which in turn causes stomach tumour cells to undergo apopto-
sis.160 Furthermore, by causing DNA damage and blocking the 
release of C-C motif chemokine ligand 2 (CCL2), combined 
treatment with radiation therapy and DHI dramatically reduc-
es cancer migration.161 Recent investigations have indicated 
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that DHI can also induce ferroptosis in many tumour cell 
types.162-163 Wu and colleagues discovered that DHI admin-
istration causes ferroptosis and apoptosis, along with GSH 
attenuation, GPX4 inactivation, and lipidROS build-up.164 It 
also suppresses the proliferation and spread of lung cancer 
cells. Another group also found that DHI causes ferroptosis, 
which inhibits the growth of human glioma cells. It was dis-
covered that DHI inhibits the expression of the GPX4 protein 
to carry out its pro-ferroptotic action.163 

Withaferin A 

Steroid lactone Withaferin A (WA) is derived from the herb 
Withania somnifera. Numerous investigations have clarified 
that WA has antitumorigenic qualities against a range of can-
cer models.165 Furthermore, it has been shown that using WA 
with other chemotherapeutic medications might enhance 
therapeutic results and circumvent drug resistance. Neverthe-
less, the fundamental therapeutic mechanisms of WA in the 
management of cancer remain incompletely understood. Re-
searchers discovered that papillary and anaplastic thyroid 
cancers responded synergistically to combined treatment with 
WA and lower dosages of sorafenib, which enhanced anti-
cancer efficacy.166WA has been shown to reduce the infiltra-
tion of tumor cells by focusing on indicators of the epithelial-
mesenchymal transition (EMT).167-168In order to prevent tu-
mour cells from entering the cell cycle, WA can also target 
certain modulatory enzymes.169-170 By inducing ER stress-
induced autophagy and death, the combination treatment of 
colon cancer cells with WA and 5-fluorouracil substantially 
inhibited tumour growth.171 According to a study by Hassan-
nia and colleagues, WA may target two different molecular 
pathways to cause ferroptotic cell death in high-risk neuro-
blastoma cells.172 By directly inactivating GPX4, treatment of 
neuroblastoma cells with a high WA concentration, but not a 
medium concentration, facilitated the conventional ferroptosis 
induction. It’s interesting to note that WA directly targeted the 
NRF2-HO-1 pathway at a medium dose but not at a high con-
centration, leading to elevated liable iron levels and, eventual-
ly, ROS-mediated cell death.172 Additionally, they showed that 
neuroblastoma xenograft models’ growth and relapse rate 
were successfully suppressed by WA-mediated ferroptosis.172 

Gallic acid 

Natural herbal polyhydroxyl phenolic chemical gallic acid (GA) 
is frequently present in a variety of food items.GA has been 
extensively researched for its anticancer qualities using a va-
riety of methods. GA can cause cell cycle S/G2- and G2/M-
phase arrest, which can start apoptosis and stop tumour 
growth.173-174 Moreover, by causing mitochondrial dysfunction 
and blocking the PI3K/AKT/NF-κB signalling cascade, GA pre-
vents bladder tumour cell invasion in vitro.175 In cervical can-
cer, it was demonstrated that GA improved paclitaxel’s anti-
tumor activity.176 The ferroptotic effects of GA on tumour cells 
have recently been investigated.177 Khorsandi et al.’s study 
demonstrated that GA treatment decreased GPX4 activity, 
which led to lipid peroxidation.178 Furthermore, treatment of 
colorectal cancer cells with GA was shown by Hong et al. To 
strongly suppress the expression of GPX4 and SCL7A1.179 Ad-
ditionally, they discovered that, in comparison to the control 
group, the GSH levels in tumour cells treated with GA had 
dramatically dropped and the intracellular lipid ROs content 
had noticeably increased. The effects were reversed after Fer-
1 therapy to further support these findings.179 

Cucurbitacin B 

One steroid bioactive component that has been widely identi-
fied from the Cucurbitaceae plant family is called Cucurbitacin 
B (CuB). CuB has demonstrated a broad range of biological 
characteristics in traditional Chinese medicine, including anti-
bacterial, antipyretic, anti-inflammatory, and antineoplastic 

effects. Over the past few decades, a great deal of research has 
been done on CuB’s anti-neoplastic properties in a variety of 
cancer models. More research is required to determine the 
exact underlying processes by which CuB exerts its anticancer 
action. Xu and colleagues, on the other hand, discovered that 
CuB primarily inhibits the signal transducer and activator of 
transcription 3 (STAT3) signalling cascade to reduce the pro-
liferation and invasion of stomach tumour cells.180  Further-
more, it has been observed that CuB suppresses the growth of 
osteosarcoma cells by blocking the Janus kinase 2 
(JAK2)/STAT3 and MAPK signalling pathways, which in turn 
induces apoptosis.181 By decreasing the expression of the pro-
teins MMP-2, MMP-9, and VEGF, CuB can also lessen migration 
and angiogenesis.181 In a preclinical study, Lourenço et al. Re-
ported that paclitaxel plus 2-deoxy-2-amine-cucurbitacin E 
(DACE), a semisynthetic derivative of cucurbitacin B, together 
effectively and without significant side effects inhibit the 
growth and proliferation of non-small cell lung cancer xeno-
graft models.182 Remarkably, a recent study demonstrated that 
CuB could also cause ferroptosis, which would result in the 
death of cancer cells.183 Huang and colleagues discovered that 
in CNE1 nasopharyngeal cancer cells, CuB treatment dramati-
cally enhances lipid peroxidation by decreasing intracellular 
GSH level and downregulating GPX4 as a result.183 They also 
showed that CuB increases intracellular iron concentrations in 
a manner that is dose-dependent. Fer-1 and deferoxamine 
dramatically prevented these effects.183 In summary, CuB 
seems to be a viable option for creating ferroptosis-based can-
cer treatment strategies. 

Altretamine 

Hexalen, a synthetic alkylating anti-neoplastic medication 
licenced by the FDA, is routinely used to monitor patients with 
ovarian cancer that is recalcitrant to treatment. It is still un-
clear what precise mechanism underlies its anticancer effects. 
Nevertheless, it appears that DNA damage and the production 
of reactive species occur simultaneously with altretamine oxi-
dative N-demethylation.184 Altretamine has been shown to 
directly block GPX4 function and cause lipid ROS buildup in an 
in vitro human diffuse large B cell lymphoma cell line. It will 
take further preclinical and clinical research to determine 
whether altretamine-induced ferroptosis is feasible and effec-
tive in vivo.185 

Potential compounds to target HMG-CoA Re-
ductase 

Statins (Fluvastatin, Pravastatin, Lovastatin, Simvastatin) 

Known for their ability to decrease cholesterol, statins are 
frequently administered to patients with hypercholesterole-
mia.Mechanistically, statins inhibit HMG-CoA reductase, an 
essential enzyme involved in the mevalonate pathway-
mediated production of cholesterol, IPP, and CoQ10.186 Nu-
merous accounts exist on encouraging attempts to treat cancer 
with statins.186 Statins have been shown to promote apoptosis 
in tumour cells and mediate cell cycle G1/S-phase arrest.187 It 
was also shown that statins interfere with prenylation, which 
prevents G proteins like Rho and Ras from activating and 
translocating to the cell membrane. According to a paper, 
statins work in concert to enhance sorafenib's antitumor activ-
ity in vitro.188 Furthermore, in comparison to control groups, 
the combination of simvastatin with lipid nanoemulsions 
paclitaxel considerably reduces the tumour growth and meta-
static rate of melanoma-bearing animal models.189 As was 
previously indicated, statins prevent IPP from being biosyn-
thesised, which is essential for Sec-tRNA maturation and GPX4 
protein synthesis. Therefore, statins may be useful in the in-
duction of ferroptosis. Accordingly, statins may decrease in-
tracellular GPX4 levels and increase lipid peroxidation in a 
manner that is dose- and time-dependent, according to Viswa-
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nathan et al. When coupled with the direct GPX4 inhibitor 
RSL3, these effects were further amplified.190 All things con-
sidered, more study is needed to determine the preclinical and 
clinical effectiveness of statin-induced ferroptosis. 

Potential compounds to target SCD1 and ACSL4 

MF-438, CAY10566, and A939572 

SCD1, an enzyme linked to the endoplasmic reticulum, is es-
sential for the transformation of saturated fatty acids (SFAs) 
into monounsaturated fatty acids (MUFAs). It's interesting to 
note that a rise in cellular MUFA concentration and overex-
pression of SCD1 have been seen in a number of cancer types. 
SCD1 may be a viable target for antitumor therapy since, as a 
wealth of data over the last ten years has demonstrated, it 
plays a remarkable role in encouraging tumour growth and 
metastasis.191 According to Pisanu et al., pharmacological tar-
geting of SCD1 with MF-438 dramatically increases the cispla-
tin susceptibility of lung cancer stem cells.192 More research is 
required to determine the exact underlying mechanism by 
which SCD1 inhibition inhibits tumour growth. SCD1 inhibi-
tion induced by MF-438 and CAY1-0566 inhibits tumour cell 
growth and initiates apoptosis.193 Moreover, administering 
CAY1-0566 to hepatocellular carcinoma cells induces autoph-
agy via AMP-activated protein kinase (AMPK).194 By suppress-
ing YAP/TAZ activity, MF-438 has been demonstrated to elim-
inate lung cancer cells' capacity to form spheres.195 Further-
more, A939572-inhibiting SCD1 prevents tumor cell migration 
that is driven by cancer-associated fibroblasts (CAF).196 The 
ferroptosis is maintained by suppressing SCD1, which lowers 
MUFA and CoQ10 levels.According to Tesfay and colleagues, 
administering SCD1 inhibitors to ovarian cancer cells causes 
an increase in lipid peroxidation and ferroptosis-mediated cell 
death, which is prevented when Fer-1 and oleic acid are pre-
sent. Furthermore, erastin, RSL3, and SCD1 inhibitors work in 
concert to suppress tumor growth in vivo and in vitro. Addi-
tionally, a different study demonstrated that concurrently 
giving erastin and A939572 improved ferroptosis and reduced 
the growth of the pancreatic tumor xenograft model.197 

Bromelain 

A naturally occurring complex mixture of enzymes extracted 
from pineapple plant stems is called bromelain. Bromelain is 
credited with a wide range of medicinal advantages, including 
anti-inflammatory, antithrombotic, and anticancer properties. 
Combining bromelain with cisplatin dramatically reduced the 
growth and metastasis rate of 4T1 xenograft tumours, accord-
ing to a recent publication.198 Treatment with bromelain in-
duces apoptosis in colorectal cancer via activating the 
ERK/AKT pathway.199 In a different investigation, bromelain 
was demonstrated to inhibit the growth of tumor cells by pro-
ducing ROS and inducing autophagy.200 Furthermore, by modi-
fying the expression of ACSL4, researchers found that brome-
lain could efficiently stimulate erastin-mediated ferrroptosis 
in K-Ras mutant colorectal tumor cells.201, 202 

CONCLUSION 

The function of ferroptosis in controlling a number of cellular 
processes and several illnesses, particularly cancer, has been 
thoroughly investigated since its discovery in 2012. Because of 
the intricate nature of the tumor microenvironment, ferropto-
sis has a dual role in human carcinogenesis. Consequently, 
given that ferroptosis suppresses tumors, creating more tar-
geted inducers of ferroptosis could be a viable and effective 
cancer treatment approach. In particular, figuring out which 
tumors respond better to ferroptosis-based treatments will be 
a focus of intense research in the next years because different 
cancer cells have varying susceptibilities to the treatment. To 
date, only some classical compounds such as erastin, RSL3, etc. 
are more specific for ferroptosis, while other inducers, includ-

ing sorafenib (the first line drug in unresectable or advanced 
HCC and RCC), are not specific for ferroptosis. With this con-
cept in mind, it is necessary and urgent to screen and develop 
more specific activators of ferroptosis. On the other hand, us-
ing natural compounds or nanoparticles as ferroptosis induc-
ers may be a safe and effective cancer treatment strategy due 
to their properties and few side effects. More importantly, 
combine ferroptosis inducers with other anticancer therapies 
will provide new sights for cancer treatment. With the excep-
tion of directly targeting ferroptosis, other approaches should 
be explored, such as the induction of ferroptosis through 
modulation of ncRNAs, transcription factors, and post-
translational modifications.It will be intriguing to investigate 
the physiological significance of ferroptosis in the advance-
ment of different tumors using conditional knockout or knock-
in mice models, as ferroptosis is a doubleedged sword in car-
cinogenesis.The discovery of particular ferroptosis promoters 
will be aided and improved in the future by cancer type-
specific animal models of ferroptosis, and large-scale clinical 
trials will hasten the clinical translation of these discoveries. It 
is anticipated that in the near future, inducers of ferroptosis 
with the best possible specificity and efficacy will be created 
and applied to the treatment of different cancer kinds. 
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