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deal of promise for preventing tumor cell resistance and limiting growth and spread. Emerging
evidence also suggests that ferroptosis plays a dual role in human cancer. However, the precise
underlying molecular mechanisms and their different role in tumorigenesis are unclear. There-
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Cite this article as:

*Address for Correspondence:

Keywords: Ferroptosis, antioxidant defense system, Cancer
Mohammad Altaf Khan, Department of Pharmacology,
Columbia Institute of Pharmacy, Tekari, Near Vidhansa-

bha, C.G,, India
INTRODUCTION: quently, using effective exogenous agents totarget these path-
ways may be a useful tactic for causing tumor cells to undergo
Tumor cells innate ability to resist apoptosis and resist con- ferroptosis. Since ferroptosis was discovered, a number of
ventional chemotherapeutic treatments has become a serious experimental drugs have been created or found that target
problem for basic and clinical scientists in recent years.! For distinct ferroptosis regulatory mechanisms. For example, the
many years, apoptosis was thought to be the main cause of first known inducer of ferroptosis was erastin, which targets
tumor cell death, even though caspase-induced tumor cell oncogenic Ras mutant tumor cells specifically.!! In terms of
death is not the only way that tumor cells die. Cell death mechanism, erastin works against the antioxidant defense
brought about by traditional therapies. On the other hand, an system by permanently inhibiting system Xc, which causes
increasing amount of data indicates that inducing ferroptosis glutathione (GSH) to be depleted. Subsequently, different ex-
may be an additional antitumor characteristic of traditional perimental agents were progressively presented to target fer-
anticancer drugs. In terms of appearance, genetics, and bio- roptosis in tumor cells, including FIN56, ML162, RSL3, and
chemistry, ferroptosis—a novel type of RCD that Scott Dixon others. Because of their unstable metabolism and inadequate
originally characterized in 2012—is distinct from other RCD solubility in water, none of these compounds—despite their
forms, which include apoptosis, necroptosis, and autopha- strong pro-ferroptotic activity—are appropriate for usage in
gy.2Iron-dependent lipid peroxidation and failure of the anti- vivo. Therefore, creating new ferroptosis inducer medicines
oxidant defense system are hallmarks of ferroptosis.2 The with improved pharmacokinetic conformance or repurposing
morphological changes that occur in ferroptotic cells include existing therapeutic drugs that successfully cause ferroptosis
the reduction of cristae, rupture of the outer membrane, should be of the utmost importance. This article offers a brief
shrinkage, and elevation of the membrane density.23Research synopsis of the fundamental mechanisms of ferroptosis and
has indicated that ferroptosis is closely related towith the on- lists some of the current medications and natural substances
set, progression, and suppression of cancer.*8Thus, focusing that may be modified for use in ferroptosis-based cancer
on this type of cell death could open up new avenues for the treatments.

treatment of cancer. Three basic strategies are used to accom-

plish ferroptosis, a process closely linked to metabolism and MOLECULAR CHARACTERISTICS OF FERROP-
redox balance: modifying iron metabolism, influencing lipid TOSIS:

peroxidation, and inhibiting the antioxidant system.%10 Conse-
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Iron accumulation: Iron absorption, utilization, recycling,
and storage are among the several processes that make up
iron metabolism.When iron metabolism is disrupted, intracel-
lular iron accumulates excessively, which results in the pro-
duction of free radicals and oxidative stress.12.13 In particular,
ferroptosis is primarily caused by iron, which is also a neces-
sary component for the growth and multiplication of tumor
cells.1415Apart from its function in the synthesis of DNA and
ATP, iron is an essential part of the electron transport chain in
the mitochondria and a cofactor for metalloproteinas-
es.Ferrithioprotein, for instance, functions as a cofactor for
numerous essential enzymes in redox processes as well as for
oxidoreductases in the mitochondrial electron transport
chain.The transferrin-Fe3+ complex, which is reduced to Fe2+
and enters the cell through the membrane protein transferrin
receptor 1, is formed when extracellular ferric ions (Fe3+) mix
with transferrin.The labile iron pool accumulates Fe2+ in the
cell with the help of the divalent metal transporter 1 (solute
carrier family 11 member 2; SLC11A2) or Zrt- and Irt-like pro-
teins 8 and 14 (SLC39A8 and SLC39A14, respective-
ly).141516To maintain the equilibrium of internal iron, Fe2+
works with iron chaperones like poly(rC)-binding proteins 1
and 2 to pump iron through membrane ferroportin (FPN)
1.1418 But when cells’ Fe2+ levels are too high, the Fenton re-
action with hydrogen peroxide takes place, producing too
many ROS and causing ferroptosis (Fig.1).

Anomalous lipid metabolism: Lipids are essential for the
production of cell membranes, energy storage, signal trans-
duction, membrane development, and energy storage. Cell
lipid toxicity is regulated by lipid metabolism, and anomalous
lipid metabolism is thought to be a sign of malignancy and a
critical component of ferroptosis.1? Fatty acids are also crucial
for the metabolism of lipids in cells. Fatty acids are classified
as monounsaturated fatty acids (MUFAs), polyunsaturated
fatty acids (PUFAs), and saturated fatty acids (SFAs) based on
the degree of their saturation. Ferroptosis has been shown to
be facilitated by PUFAs and MUFAs among them.20.21R0S can
cause lipid peroxidation by attacking PUFAs on the cell mem-
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brane because of the weak C-H bond at the diallyl location.22
The synthesis of PUFAs in this process is dependent on acyl-
CoA synthetase long-chain family member 4 (ACSL4), which in
turn favorably regulates ferroptosis. On the other hand, it has
been observed that exogenous MUFAs, like exogenous oleic
acid and palmitic acid, adversely regulate drug-induced fer-
roptosis.23.2¢ Acyl-CoA synthetase long-chain family member 3
has the ability to activate exogenous MUFAs, which can dis-
place PUFAs at the plasma membrane and lessen the lipids’
oxidation sensitivity.2¢ Furthermore, it has been discovered
that cancer cell membranes have a higher ratio of MUFAs to
PUFAs, which prevents lipotoxicity and ferroptosis (Fig.1).25

Aberrant amino acid metabolism: Amino acids are neces-
sary for cell viability and are involved in the metabolism of
ammonia, deamination, decarboxylation, and oxidative de-
composition capacity. In the meantime, aberrant metabolism
of amino acids results in redox imbalance, dysregulation of
energy management, and dysfunction in biosynthesis, all of
which promote the growth of tumors.26 The primary cause of
ferroptosis brought on by aberrant amino acid metabolism is
GSH. Glutamate-L-cysteine-L-glycine (y-glutamyl-L-cysteinyl-
L-glycine) is a tripeptide that is essential for the body’s elimi-
nation of free radicals and as an antioxidant.27.28 Important
regulators of GSH breakdown and biosynthesis include GPX4
and System Xc-. The light chain (SLC7A11) and heavy chain
(SLC3A2) subunits that make up System Xc- are crucial for
preserving the equilibrium of GSH in cells.2930 Glutamate is
transported from inside the cell to the outside by System XC,
which also enables the exchange of cystine and glutamate
across the plasma membrane and regulates GSH synthesis in
response to external glutamate levels.31 Reduced GSH synthe-
sis can result from compromised system XC function or inade-
quate intracellular cysteine levels, which can cause ferropto-
sis. However, GPX4 can employ GSH as a substrate to convert
membrane lipid hydrogen peroxide to nontoxic lipid alcohols,
lessen oxidative stress damage, and negatively regulate fer-
roptosis. GPX4 is an essential enzyme for scavenging lipid ox-
ygen free radicals (Fig.1).27.28

GLUTAMATE

CYSTINE

<l

CYSTEINE
Gamma-glutamylcysteine synthetase
GLU-CYS

l Glutathione synthetase

Tackies ROS

.
FLER LIFID
FLEs FE B eemowns

——
LIFOXYEENASE | e
FERDXIDATION

GSH

HADPH
1 GR
HNADF
GSSH

Figure 1: Merged diagrammatic representation of molecular characteristics of ferroptosis including excessive iron accumulation,

anomalous lipid metabolism, and aberrant amino acid metabolism.
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REGULATION OF FERROPTOSIS IN CANCER

Ferroptosis can be regulated by a variety of mechanisms, es-
pecially by the transcription of genes and post translation of
proteins.

Noncoding RNAs (ncRNAs) induced ferroptosis in cancer

ncRNAs have been shown in numerous studies to stimulate
ferroptosis in a variety of malignancies. For instance, it has
been shown that miR-15a-3p and miRNA-15a-15a target GPX4
to enhance ferroptosis in colorectal and prostate cancer, re-
spectively.32-33 Furthermore, by raising the levels of miR-4715-
3p, which are downregulated in malignancies of the upper
gastrointestinal tract, GPX4 inhibition causes ferroptosis to
become sensitive.3*Non-small cell lung cancer has been found
to operate via a comparable mechanism. By inhibiting GPX4
expression, miR-324-3p leads to cisplatin resistance,3> where-
as miR-302a-3p targets FPN to positively regulate ferropto-
sis.3¢ A study by Bai et al. has demonstrated that miR-214-3p
the GSH axis in hepatoma and so functions as a tumor inhibi-
tor, in addition to causing ferroptosis via GPX4.37 Certain long
non-coding RNAs (IncRNAs) in different malignancies can
speed up ferroptosis, just like miRNAs do. As an illustration, it
has been noted that suppression of the IncRNA plasmacytoma
variant translocation 1 markedly raised ROS and Fe2+ levels,
which was followed by a reduction in cell viability in liver can-
cer.38 SLC16A1-AS1 suppression in renal carcinoma led to a
considerable reduction in SLC7A11 expression and a
GSH/glutathione disulfide (GSSG) ratio reduction in cells.3?
Wang et al. previously reported similar outcomes, showing
that in acute myeloid leukemia, the long intergenic nonpro-
tein-coding RNA 618 triggers ferroptosis by upregulating
SLC7A11 and downregulating ACSL4.40 Mechanistically, the
IncRNA ARHGEF26-AS1 functions as a sponge for miR-372-3p,
causing ferroptosis and preventing esophageal squamous cell
carcinoma cells from proliferating and migrating.! The cyto-
solic p53-related IncRNA consistently inhibits the growth of
lung cancer by inducing ferroptosis by increasing ROS and
intracellular iron buildup.*? Furthermore, metallothionein 1D,
pseudogene has been shown through preclinical studies and
bioinformatics analysis to augment erastin-induced ferropto-
sis in nonsmall cell lung cancer by blocking nuclear factor
erythroid 2-related factor 2 (NRF2).431t has also been revealed
that a variety of circular RNAs contribute to the promotion of
ferroptosis. Jiang et al.'s research specifically found that over-
expression of circ0000190 expedited the process of ferropto-
sis in gastric cancer cells by elevating levels of malondialde-
hyde, lipid ROS, and Fe2+4* Furthermore, following
circ0007142 knockdown, cells in colon cancer displayed
growth suppression and ferroptosis signals.4> Furthermore,
knockdown of the circular RNA glial cell line-derived neu-
rotrophic factor family receptor alpha-1 (circGFRA1) resulted
in upregulation of the GSH/GSSG ratio and apoptosis-inducing
factor mitochondria-associated 2 and GPX4 expression, indi-
cating that circGFRA1 promotes ferroptosis in breast cancer
via two distinct pathways.4¢ Notably, studies conducted both
in vivo and in vitro have demonstrated that the circular RNA
LIM domain just 1 increases ferroptosis through upregulating
ACSL4 expression, hence inhibiting the proliferation and
spread of cervical cancer cells.#” Additionally, hepatocellular
carcinoma (HCC) has been shown to overexpress the circular
RNA IARS (circIARS) according to RNA-sequencing research;
yet, a detailed investigation has revealed that cells silenced by
circ-IARS exhibit a considerable rise in intracellular GSH and a
significant drop in Fe2+. Consequently, it is possible that circ-
IARS will stimulate ferroptosis in HCC cells.#8 Nonetheless,
there are numerous obstacles to overcome and the connection
between ferroptosis and ncRNAs is not well understood. For
instance, further research is required to clarify the underlying
regulatory mechanism regulating the interaction between
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ferroptosis and ncRNAs. There is yet no proof that ncRNAs
that directly bind to ferroptosis are involved in the develop-
ment and prognosis of cancer. Thus, greater research into the
functions of ferroptosis-related ncRNAs in various malignan-
cies is important. Furthermore, the in vivo validation of fer-
roptosis-related ncRNAs is still limited. It's clear that more
research using extensive human tissue samples is necessary to
ascertain whether these ncRNAs may be utilized as clinical
targets.

Dual role of transcriptional factors in ferroptosis (sup-
pressive and inductive effect)

An increasing body of research suggests that transcriptional
regulators have two opposing effects on the regulation of fer-
roptosis. For instance, it has been revealed that p53, a tumor
suppressor, has a dual function in ferroptosis. Specifically, it
has been shown that p53 causes ferroptosis by directly sup-
pressing SLC7A11 expression and raising lipid peroxidase.
Notably, it has been shown that p53 activation inhibits cystine
uptake, limits intracellular GSH synthesis, and activates fer-
roptosis, which in turn inhibits tumor growth.*On the other
hand, it has also been suggested that p53 functions to prevent
ferroptosis in human cancer cells. Mechanically, nutlin-3, a
small molecule inhibitor, was able to boost p53 expression
while reducing ROS buildup and GSH consumption, which in
turn suppressed ferroptosis. In HT-1080 fibrosarcoma cells,
there is a concurrent increase in cell viability.50-51Additionally,
in a variety of malignancies, activating transcription factor
(ATF) 4 regulates ferroptosis either positively or negatively.
ATF4 has the ability to cause sorafenib resistance in HCC by
preventing ferroptosis,>2 however it has also been demon-
strated that sevoflurane can cause ferroptosis in Glioma cells
by activating ATF4.53 Likewise, it has been documented that
ATF3 induces ferroptosis and possesses tumor-suppressive
properties.5* Furthermore, the aberrant expression of two
essential transcription factors of the Hippo pathway, tran-
scriptional co-activator with PDZ-binding motif (TAZ) and yes-
associated protein (YAP), leads to chemotherapy resistance
and cell proliferation in a variety of malignancies.55-56 Addi-
tionally, a preclinical investigation has shown that YAP's tran-
scriptional regulatory function targets the transferrin receptor
and ACSL4 to cause ferroptosis. In summary, ROS levels rise
and cell viability falls when YAP is overexpressed.Additionally,
in colon cancer cells, YAP is more vulnerable to ferroptosis at
high cell densities.5” This conclusion is supported by the ob-
servation that in some cancer cell lines treated with erastin,
loss of TAZ decreases sensitivity to ferroptosis.>8 Furthermore,
it is thought that hypoxia-inducible factor 1 alpha (HIF1A), a
transcriptional regulator of the homeostatic response of cells
to hypoxia, prevents the death of cancer cells by encouraging
the accumulation of lipids. However, it has been demonstrated
that HIF1A deletion favorably regulates ferroptosis in mouse
models treated with RSL3 via controlling lipid metabolism and
consequently efficiently inhibits tumor growth.59-60 Converse-
ly, there are transcription regulators that, through blocking
ferroptosis, encourage the growth of tumours. The most obvi-
ous evidence is that NRF2 has been demonstrated to upregu-
late SLC7A11, which shields tumor cells from undergoing fer-
roptosis .61 However, it has also been observed that NRF2 in-
duces ferroptosis in lung cancer and renal cell carcinoma
(RCC) cells by upregulating HMOX1 expression. In particular,
4, 4'-dimethoxychalcone (DMC), which is taken from the plant
Angelica keiskeikoidzumi, have the ability to activate NRF2.
NRF2 activation directly increased the expression of HMOX1,
which in turn caused iron overload and ferroptosis.62-63 It will
be interesting to learn more about the precise mechanism
behind ferroptosis, given the dual function transcription fac-
tors play in this process. Screening a greater number of tran-
scription factors that target ferroptosis will be interesting as
well. Moreover, the specificity of these transcription factors is
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unknown because of the intricate regulatory network of fer-
roptosis. Thus, there is an urgent need for comprehensive
research on the specificity and preclinical trials.

Post translational modification in ferroptosis

The control of ubiquitination, phosphorylation, methylation,
and acetylation is significantly influenced by ferroptosis. A
number of deubiquitinases, such as ubiquitin-specific protease
(USP)11, USP14, and OTU domain-containing ubiquitin alde-
hyde-binding protein 1, as well as ubiquitinases, such as neu-
ral precursor cell expressed developmentally downregulated
protein 4 (NEDD4), NEDD4 ligase, and so on, can regulate the
key ferroptosis regulatory genes, including SLC7A11, GPX4,
and voltage-dependent anion-selective channels (VDACs).64-66
It is anticipated that NEDD4 is the primary E3 ligase causing
VDAC1 degradation in melanoma among the ubiquitinases. It
has been confirmed by another investigation that endogenous
VDAC1 interacts with NEDD4, and that treatment with erastin
strengthens this interaction. However, erastin-induced ferrop-
tosis was averted by VDAC2/3 inactivation. It's interesting to
note that these effects increased after NEDD4 silencing. Fur-
thermore, a comprehensive analysis has demonstrated that
the VDAC subtype's K63, K90, and K163 are essential for
NEDD4-mediated ubiquitination.6” Furthermore, direct phos-
phorylation of ACSL4 or concomitant phosphorylation of
SLC7A11 can control the activity of ferroptosis. Precisely,
phosphorylating ACL4 at Thr328 directly through protein
kinase C BII speeds up ferroptosis and improves the effective-
ness of immunotherapy in melanoma patients.¢8 Phosphoryla-
tion of beclin 1 at S90/93/96 was found to be involved in its
complexation with SLC7A11 and subsequent lipid peroxida-
tion in ferroptosis, which extended the survival of pancreatic
cancer-stricken mice in a preclinical investigation.®® According
to the aforementioned research, a large number of genes have
been shown to control ferroptosis via methylating the
SLC7A11/GPX4 axis. Clinically, poor DNA methylation in a
number of malignancies may be connected to elevated GPX4
expression. Additionally, it has been shown that acetylation of
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histone H3 on lysine 27 and trimethylation of histone H3 on
lysine 4 are abundant in the upstream site of GPX4 in various
cancer tissues, suggesting that methylation may be the cause
of the high expression of GPX4.70 The multiple myeloma cell
lines MM1S and MM1R treated with the GPX4 inhibitor RSL3
underwent changes in total DNA methylation levels. An addi-
tional investigation assessed these alterations and found that
both MM1S and MM1R converge towards a similar methyla-
tion profile under conditions of ferroptosis.”! Furthermore, the
ferroptosis inhibitor sulfasalazine, which targets SLC7A11, has
been shown in a prior work by the Hasegawa group to induce
DNA methylation on the mucin 1 gene (MUC1) promoter to
regulate MUC1 gene transcription in triple-negative breast
cancer.’2 Furthermore, it has been shown that acetylation has
a role in controlling ferroptosis. For instance, Jiang et al. have
shown that p533KR (K117/161/162) causes ferroptosis and
controls the expression of SLC7A11.29 What's more intriguing
is that p53's transcriptional activity is unaffected by the ab-
sence of acetylation at position K98. But when the P533KR and
K98 mutations are combined, P53 is completely unable to con-
trol SLC7A11, suggesting that p53's K98 acetylation is crucial
for inhibiting SLC7A11 production and p53-mediated ferrop-
tosis.”3 However, more investigation is necessary to fully un-
derstand the precise mechanism underlying the acetylation-
mediated regulation of ferroptosis. Thus, to elucidate their
functions in cancer, the identification of new regulators of
acetylation and ferroptosis will be required.

POTENTIAL COMPOUNDS TO TARGET FERROP-
TOSIS BASED CANCER THERAPY

Ferroptosis can be induced by suppressing antioxidant de-
fence components such as systems Xc-, GSH, and GPX4, or by
precisely controlling various endogenous elements like intra-
cellular iron concentration and PUFA-containing phospholip-
ids.”* Up till now, the potential effectiveness of a variety of
naturally occurring substances and clinically utilized medica-
tions in inducing ferroptosis has been investigated.
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Figure 2: schematic illustration of the mechanisms of action of potential compounds involved in the ferroptosis induced cancer therapy

While some of these drugs are already FDA-approved, others are
still in the preclinical and clinical trial stages (Table 1). Here, we
are reminded of the substances already on the market for various
purposes that could be converted to ferroptosis-based cancer
therapy. We have divided these potential medications and sub-
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stances into four major categories of ferroptosis inducers in the
sections that follow; group 1 focuses on intracellular iron concen-
trations; Group 2 targets system Xc-, GSH, and GPX4, Group 3 tar-
gets 3 HMG-CoA reductase, and Group 4 targets system SCD1 and
ACSLA4.
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Table 1. Potential compounds associated with ferroptosis induced cancer cell death.

Journal of Drug Delivery & Therapeutics. 2024; 14(2):205-221

Drugs/Compounds Targeted Cancer Types FDA Exact Mechanism Ref
Pathway Approval
Salinomycin Intracellular iron | Breast cancer NO Degradation of ferritin, downregulation | 8486
levels of NRF2, and increases in TFRC and
IREB2
Lapatinib +Siramesine Intracellular iron Breast cancer, Glio- YES Elevate transferrin expression, down- 96-98
levels blastoma, Lung can- regulate HO-1, ferroportin, and ferritin,
cer and increase intracellular iron concen-
tration
Artesunate Intracellular iron Head and neck can- YES Depletion of GSH, activation of ATF4- 111-113
levels cer, Pancreatic can- CHOP-CHAC1, Degradation of ferritin,
cer, Hepatocellular and NCOA4-mediated ferritinophagy
carcinoma
Ruscogenin Intracellular iron | Pancreatic cancer NO Downregulation of ferroportin and 115
levels upregulation of transferrin
Neratinib Intracellular iron Breast cancer YES Increase intracellular iron level 118
levels
Sulfasalazine Xc-, GSH, and Head and neck can- YES System Xc- inhibition and prevention of | 125142
GPX4 cer, Breast cancer, cystine absorption, which results in an
Fibrosarcoma, Glio- increase in TFRC and DMT1 expression
ma levels
Sorafenib Xc-, GSH, and Fibrosarcoma, Hepa- | YES Inhibiting system Xc- and preventing 123-127
GPX4 tocellular carcinoma, theabsorption of cystine
Renal cell carcinoma,
Pancreatic cancer
Cisplatin Xc-, GSH, and Colorectal cancer, YES Depletion of GSH and deactivation of 132
GPX4 Lung cancer GPXs
Eprenetapopt Xc-, GSH, and Acute myeloid leu- NO Depletion of GSH and suppression of 147
GPX4 kemia, Oesophageal thioredoxin
cancer, non-small
cell lung cancer
Buthionine sulfoximine | Xc-, GSH, and Colorectal cancer, NO Inhibition of the production of GSH 125
GPX4 Lung cancer
Dihydroisotanshionine | Xc-, GSH, and Glioblastoma, Breast | NO GPX4 inactivation and GSH attenuation | 162164
I GPX4 cancer, Lung cancer
Withaferin A Xc-, GSH, and Neuroblastoma NO Direct inactivation of GPX4, targeting 172
GPX4 the Nrf2-HO1
Gallic acid Xc-, GSH, and Neuroblastoma, NO suppression of GPX4 177179
GPX4 Breast cancer, Mela-
noma, Colorectal
cancer, Cervical can-
cer
Cucurbitacin B Xc-, GSH, and Nasopharygeal car- NO Depletion of GSH, GPX4 downregula- 183
GPX4 cinoma tion, and elevated intracellular iron
levels
Altretamine Xc-, GSH, and Human diffuse large | YES GPX4 inhibition 185
GPX4 B cell lymphoma
Statins HMG-CoA reduc- Fibrosarcoma YES Inhibition of HMG-CoA reductase 190
tase
MF-438, CAY10566, SCD1, and ACSL4 Ovarian cancer NO Suppression of SCD-1 197
and A939572
Bromelain SCD1, and ACSL4 | Colorectal cancer NO Upregulation of ACSL4 201
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System Xe-

Figure 3: The ferroptosis process is negatively regulated by the master transcription factor NRF2. NRF2 controls oxidative stress-
induced ferroptosis by regulating the expression of numerous genes involved in the antioxidant defense system. ATF4 has the ability
to activate HSPAS, which prevents GPX4 degradation and mediates ferroptosis resistance. Through GSH depletion, artesunate-
induced ATF4-CHOP-CHAC1 activation initiates ferroptosis. Lipid peroxide limitation mediated by SCD1 mediates ferroptosis re-
sistance through the PI3K-AKT-mTOR signaling cascade. 4EBPs is implicated in the synthesis of GPX54 protein, and mTOR suppress-

es it as well.

Potential compounds to target intracellular
iron levels

One of the key characteristics of ferroptosis is iron overload.
The following is a description of the medications and sub-
stances that cause ferroptosis by raising the amount of iron
within cells: salinomycin, artesunate, neratinib, lapatin-
ib+siramesine, and, ruscogenin are some of these agents.

Salinomycin

A polyether ionophore molecule called salinomycin was dis-
covered from the bacterium Streptomycin albus. It exhibits a
broad spectrum of antibacterial activity against viruses, gram-
positive bacteria, fungi, and parasites.”5Salinomycin’s capacity
to fight cancer has drawn more attention from researchers
worldwide throughout the last ten years. Salinomycin has
antitumor effects that significantly reduce the growth of
breast tumors in the mice xenograft model,’¢ according to a
2009 study by Gupta et al.Studies have shown that salinomy-
cin dramatically reduces the ability of docetaxel-resistant
prostate cancer cells to form colonies.’” Additionally, the re-
sistance of ovarian cancer cells to chemotherapy medicines
based on platinum is substantially eliminated by salinomycin
and its derivatives.”8 More research is still needed to deter-
mine the precise method by which salinomycin kills tumor
cells. By focusing on the hypoxia-inducible factor 1-a (HIF-
la)/vascular endothelial growth factor (VEGF) signaling
pathway, salinomycin significantly inhibits the angiogenesis
and development of breast cancer cells.”9Preclinical research
findings demonstrated that salinomycin considerably inhibits
the migration of cancer cells by disrupting the integrity of ac-
tin stress fibers.89Tumor cells treated with salinomycin have
been shown to undergo apoptosis and autophagy caused by
endoplasmic reticulum (ER) stress.81-82 Additionally, it has
been discovered that salinomycin increases intracellular ROS
levels and downregulates NRF2 expression, hence improving
the radiosensitivity of nasopharyngeal cancer
cells.83Salinomycin treatment for colon cancer cells may cause
ROS production and mitochondrial dysfunction.84An effective
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synthetic salinomycin derivative, ironomycin (AM5), has been
shown to have enhanced anticancer activity against breast
cancer stem cells. Researchers have discovered that adminis-
tering salinomycin and AMS5 to cancer stem cells prevents iron
transport from the lysosome lumen to the cytosol. This, in
turn, causes cytosolic iron depletion, which is shown by ferri-
tin degradation and an increase in IREB2 and TfR.85-8¢By caus-
ing lipid peroxide buildup and inducing ferroptosis, delivery of
salinomycin-loaded gold nanoparticles (SalAuNPs) to breast
cancer stem cells can efficiently kill tumour cells.87 To support
these results, the ferroptosis-specific inhibitor ferrostatin-1
(Fer-1) remarkably prevented cell death caused by salinomy-
cin or Sal-AuNPs.87 In conclusion, it appears that causing fer-
roptosis may be an additional salinomycin anticancer effect.

Lapatinib

Lapatinib, which is often referred to as TYKERB®), is a synthet-
ic derivative of 4-anilinoquinazoline that has been shown to
have a reversible inhibitory impact on the activation and au-
tophosphorylation of HER1 and HER2.88 In 2007, the Food and
Drug Administration (FDA) approved the use of lapatinib in
conjunction with capecitabine for patients with advanced
HER2 overexpression breast cancer.8? It has recently been
discovered by researchers that lapatinib therapy may prevent
low-dose doxorubicin from having a promigratory effect on
breast cancer cells.?0 A piperidine analogue, siramesine is a
ligand for the sigma-2 receptor that was first developed to
treat depression and anxiety.?! It has been demonstrated that
siramesine increases liposomal membrane permeabilization,
which causes cathepsin leakage, the generation of ROS, and
eventually the death of cancer cells.92 By inhibiting the activity
of acid sphingomyelinase, siamesine can also cause tumor cells
to die.% Treating triple-negative breast cancer cells with si-
ramesine as a lysosomotropism drug dramatically eliminates
their resistance to CDK4/6inhibitors.9* According to a study by
Liu and colleagues, siramesine's anticancer activity was en-
hanced in vitro when it was delivered to breast cancer cells via
a metal-organic framework-based nanoplatform known as
ZIF-8@Sira/FA.95 According to a study by Ma and colleagues,
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co-treating breast cancer cells with siramesine and lapatinib
simultaneously causes ferroptotic cell death by interfering
with iron metabolism and so causing the generation of reac-
tive oxygen species.?¢ The authors additionally demonstrated
that [siramesine + lapatinib]-induced synergistic mortality
was independent of its conventional targets. By lowering HO-1
levels.97 Rodriguez and colleagues discovered that siramesine
and lapatinib together can also cause ferroptosis in tumor
cells. They found that HO-1 overexpression produced by co-
balt protoporphyrin chloride (CoPP) effectively decreased
lipid ROS reactions and cell death brought on by [lapatinib +
siramesine].98 While the exact mechanism of [lapatinib + si-
ramesine]-induced ferroptosis is yet unknown, it appears that
combining the two drugs may provide a fresh approach to
going after refractorytumor cells.

Artesunate

For the treatment of malaria infection, doctors frequently ad-
minister artesunate, a semisynthetic water-soluble derivative
of artemisinin.In May 2020, the FDA approved artesunate as a
treatment for severe malaria in both adult and paediatric pa-
tients. Apart from its ability to fight malaria, artesunate has
demonstrated promise as a means of eradicating cancerous
cells. According to research, artesunate inhibits the expression
of VEGF and angiopoietin 1 to perform an antiangiogenic ac-
tivity.99-100 Furthermore, by changing the expression of a num-
ber of regulatory proteins, artesunate causes cell cycle arrest
in tumour cells.101-102 By suppressing RAD51 recombinase,
artesunate can also hinder ovarian tumour cells ability to re-
pair DNA double-strand breaks.103 By blocking nuclear factor
(NF)-kBsignalling, the combination therapy of artesunate and
anti-androgen belumenutamide inhibits the growth of tu-
mours in castration-resistant prostate cancer cells.104 Accord-
ing to recent research, artesunate can cause ferroptotic cell
death in a wide range of cancers by focusing on different mo-
lecular elements.21.105-108 Artesunate therapy induces lysoso-
mal iron-dependent ferroptosis in K-Ras mutation-activated
pancreatic ductal adenocarcinoma, which can be effectively
counteracted by the ferroptosis inhibitors deferoxamine,
trolox, and fer-1.198 Moreover, it has been discovered that ar-
tesunate increases the production of ROS in tumour cells via
increasing ferritin breakdown and lysosomal function.109 Ad-
ditionally, Kong and associates have demonstrated that in
hepatic stellate cells, artesunate stimulates NCOA4-mediated
ferritinophagy.110 According to a recent publication, low-dose
sorafenib in combination with artesunate treatment synergis-
tically increases ferroptosis in hepatocellular carcinoma cells
both in vitro and in vivo.!!l Another theory for how ar-
tesunate-induced ferroptosis works is to target the unfolded
protein response.lt has been discovered recently that the ad-
ministration of artesunate to Burkitt lymphoma cells activates
the ATF4-CHOP-CHAC1 signalling cascade, hence inducing
ferroptosis. Additionally, they have shown that in tumour cells,
downregulating CHAC1 expression raises GSH levels and re-
duces lipid peroxidation. It is important to note that CHAC1 is
essential for GSH degradation, which is likely a factor in ar-
tesunate-mediated ferroptosis.!l2 Notably, ferroptosis re-
sistance in head and neck cancer cells is mediated by the
NRF2-ARE pathway, which can be activated by artesunate
therapy.113 Because artesunate inhibits the NRF2 cascade, HNC
cells are especially susceptible to artesunate-mediated ferrop-
tosis in vitro and in vivo.113 All things considered, the thera-
peutic repurposing of artesunate may offer a chance to treat
anti-apoptotic tumour cells by inducing ferroptosis.

Ruscogenin

A naturally occurring steroidal sapogenin, ruscogenin was first
identified from the shrubs Ruscus aculeatus. There have been
reports of anti-inflammatory, antithrombotic, and anti-
neoplastic effects of roscogenin. Its underlying therapeutic
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actions are unclear, nevertheless. Recent studies have shown
that blocking tumour cell invasion and migration with ruscog-
enin therapy substantially suppresses the metastasis of hepa-
tocellular carcinoma.114 Through altering the
PI3K/AKT/mTOR signalling cascade, they found that ruscog-
enin dramatically downregulates the production of matrix
metalloproteinase-2 (MMP-2), MMP-9, urokinase-type plas-
minogen activator (uPA), VEGF, and HIF-1a.114 According to a
recent study by Song et al,, ruscogenin both in vitro and in vivo
induces ferroptosis, which slows the growth of pancreatic
tumours.115 By upregulating transferrin expression and down-
regulating FPN expression;roscogenin therapy increases in-
tracellular ferrous levels and ROS production.!15 Ferric am-
monium citrate increased and deferoxamine inhibited the
effects of roscogenin-induced cell death.115 All things consid-
ered, more research is necessary to assess ruscogenin's pro-
ferroptotic function in various cancer models.

Neratinib

The FDA approved neratinib, also marketed as NERLYNX®, an
oral panHER kinase inhibitor, in 2017 for patients with HER2-
positive breast cancer that is in the early stages of treat-
ment.116 Neratinib attaches itself mechanistically and irrevers-
ibly to the tyrosine kinase domain of HER1, HER2, and HERA4.
Thus, downstream signalling cascades are suppressed and
autophosphorylation is reduced.116 By reducing growth factor
receptor expression and phosphorylation, neratinib signifi-
cantly increases the anticancer activity of vorinostat in combi-
nation with sorafenib in pancreatic tumour cells.117 Remarka-
bly, neratinib was shown to function as a pro-ferroptotic drug
in some metastatic breast cancer cells for the first time.118
This conclusion was supported by research that shown liprox-
statin-1, an inhibitor of ferroptosis, may stop cell death
brought on by neratinib.118 Treatment with neratinib also
increases intracellular iron content in a manner that is dose-
dependent.118 More thorough research is necessary to deter-
mine the particular process by which neratinib raises iron
levels, as the exact mechanism of neratinib's contribution to
ferroptosis induction remains unclear.

Potential compounds to target system Xc-, GSH,
and GPX4

Sorafenib

NEXAVAR, commonly known as sorafenib, is an oral bio-
available multitarget kinase inhibitor that is being used to
treat patients with thyroid, liver, and advanced renal cell car-
cinoma.119

By targeting Raf serine/threonine kinases and various cellsurf
ace receptor tyrosine kinases, suchas VEGFR1-3, PDGFR, cKit
protein, FMSlike tyrosine kinase 3 (FLT3), and platelet derived
growth factor receptor 3 (PDGFRf)derived growth fac-
tor receptor B (PDG-
FRp), sorafenib is able to exert its antineoplastic activity.120 It
has been discovered that sorafenib not only causes apoptosis
but also activates autophagy in cancer cells.121-122 Additionally,
it has been discovered by researchers that sorafenib's anti-
cancer effect can also be mediated by ferroptosis induction,
which is separate from its conventional kinase inhibitory func-
tion.123-124 By inhibiting system Xc and subsequently depleting
GSH, sorafenib mechanistically causes ferroptosis.125 Fur-
thermore, research indicates that sorafenib-mediated ferrop-
tosis is also modulated by the expression of a few genes, such
as NRF2, retinoblastoma (RB), and MT-1G.126-127 [n hepatocel-
lular carcinoma cells, sorafenib-induced ferroptotic cell death
is negatively regulated by MT-1G, a transcriptional NRF2 tar-
getgene, which inhibits GSH depletion-mediated lipid peroxi-
dation.126 Significantly, sorafenib's anticancer effectiveness is
enhanced by decreasing MT-1G both in vitro and in vivo.127
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Furthermore, the interaction between p62 and Keap1l is made
worse by sorafenib therapy, which prevents NRF2 degradation
and enhances NRF2 nuclear accumulation.It is interesting to
note that NRF2 heterodimerizes with MafG, the V-maf avian
musculoaponeurotic fibrosarcoma oncogene, and subsequent-
ly induces the transcription of several genes related to antiox-
idant defence, such as FTH1, HO-1, and NQO1.128 Furthermore,
a recent study showed that sorafenib-induced ferroptosis is
significantly influenced by ACSL4, a positive regulator of fer-
roptosis.129 Hepatocellular carcinoma cells are susceptible to
mitochondrial dysfunction when treated with sorafenib.130 In
conclusion, it appears that blocking MT-1G or NRF2 in con-
junction with sorafenib therapy may be a viable therapeutic
strategy for ferroptosis-based cancer therapy.

Cisplatin

A platinum coordination anti-neoplastic agent called cispla-
tin(cisdiamminedichloroplatinum 1II) is frequently used to
treat a variety of solid tumours, such as pancreatic, ovarian,
lung, and esophageal malignancies.The primary mode of ac-
tion of cisplatin is its binding to nuclear DNA and interaction
with various cytoplasmic elements, such as mitochondrial
DNA (mtDNA) and cytoplasmic proteins. This ultimately re-
sults in the creation of cytotoxic species, damage to DNA, and
apoptotic cell death.131 Cisplatin was found to cause ferroptot-
ic cell death in A549 and HCT116 cancer cells in addition to its
proapoptotic action.132 Ferroptosis caused by cisplatin mostly
stems from GSH depletion and subsequent GPX4 inactiva-
tion.132 Furthermore, compared to their individual administra-
tion, the combination therapy of cisplatin and erastin demon-
strated notable antitumor effectiveness.132 According to re-
ports, medications based on platinum exhibit a strong affinity
for interacting with biomolecules that include sulphur, such as
thioredoxin, metallothionein, and GSH.133 It appears that cis-
platin's primary non-DNA target in cells is GSH.133 The Pt-GS
complex is produced when about 60% of the cytoplasmic cis-
platin combines with GSH. It's interesting to note that cisplatin
resistance in ovarian cancer cells is connected with elevated
GSH levels.134 In conclusion, combining cisplatin with addi-
tional ferroptosis-inducing glutathione depleters may be a
viable method of eliminating tumour cells.

Sulfasalazine

An FDA-approved anti-inflammatory drug called sulfasalazine
is created by mixing the antibiotics sulfapyridine and salicy-
late. It is frequently used to treat inflammatory bowel illness
and rheumatoid arthritis.135 Sulfasalazine has been shown to
have both immunomodulatory and anti-inflammatory proper-
ties, yet its exact route of action is still unknown. Furthermore,
it has been demonstrated that sulfasalazine possesses anti-
cancer capabilities against tumours. For example, it has been
shown that sulfasalazine inhibits NF-kB activity, making pan-
creatic tumour cells more sensitive to gemcitabine.13¢ Addi-
tionally, studies using glioblastoma rat xenograft models have
shown that sulfasalazine enhances the antitumor efficacy of
gamma knife radiosurgery.137 Additionally, it has been shown
that sulfasalazine inhibits the proliferation of certain tumour
cell types by depleting GSH and inhibiting system Xc-.137-140
Accordingly, sulfasalazine may be a viable option for inducing
ferroptosis. According to Ma et al, by lowering GSH and in-
creasing cellular platinum levels, sulfasalazine dramatically
increases the lethal action of cisplatin on colorectal cancer
cells.141 Additionally, by triggering iron metabolism, sulfasala-
zine encourages ferroptosis.!42 Studies show that in breast
cancer cell lines, sulfasalazine increases the expression of
DMT1 and TFRC.14Z All things considered, sulfasalazine seems
like a good option to target ferroptosis; still, more research is
required to assess the therapeutic effectiveness of sulfasala-
zine-induced ferroptosis.
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Eprenetapopt

Also referred to as APR-246 and PRIMA-1Met, eprenetapopt is
a tiny, new medicinal chemical that selectively reactivates
mutant p53 and encourages cancer cells to undergo apoptosis.
The process that turns eprenetapopt into the reactive species
methylene quinuclidinone (MQ) involves covalent bonding
with cysteine residues in the p53 core domain.143 There is
considerable uncertainty regarding the exact underlying
mechanism by which eprenetapopt/MQ restores mutant p53
function. Several studies have demonstrated that epreneta-
popt therapy efficiently reduces tumour growth in a variety of
malignancies, either when used alone or in conjunction with
other anticancer medications.144 Apart from its ability to target
mutant p53, eprenetapopt has also demonstrated the ability to
reduce intracellular GSH levels and inhibit the thioredoxin and
glutaredoxin systems.145-146 [t might therefore be a good fit for
ferroptosis induction. Birsen et al. discovered that epreneta-
popt can cause ferroptosis in acute myeloid leukaemia cells,
regardless of the presence of P53 mutations.147 Treatment
with eprenetapopt substantially reduces GSH levels and in-
creases the buildup of lipid-ROS, which Fer-1 can prevent sig-
nificantly.147 Additionally, they demonstrated that epreneta-
popt therapy and SLC7A11 inhibition worked in concert to
reduce the tumour cell burden in the bone marrow of mice
used as xenograft models.147

Buthionine sulfoximine

The rate-limiting stage in the synthesis of GSH is blocked by
the strong irreversible GCL enzyme inhibitor buthionine sul-
foximine (BSO).148 It has been suggested that BSO may func-
tion as a possible pro-ferroptotic agent because the ferroptosis
inhibitors Fer-1, a-tocopherol, and deferoxamine can prevent
BSO-mediated cell death, but not the apoptosis inhibitor
zVAD-fmk.149-150 Research has demonstrated that BSO can
efficiently make cancer cells susceptible to popular chemo-
therapeutic medications.151-152 Recent work has shown that
BSO and Ce6-based photodynamic treatment together effi-
ciently reduce HCT116 colorectal cancer cells ability to prolif-
erate.153 They also propose that intracellular GSH levels are a
prerequisite for the effectiveness of this synergistic action.153

Additionally, combining BSO with a thioredoxin reductase
inhibitor such as auranofin or sulfasalazine suppresses tu-
mour growth both in vivo and in vitro in a synergistic man-
ner.154]t has been demonstrated that BSO increases the anti-
inflammatory medication sulindac sulfide’s inhibitory impact
on ATP-binding cassette subfamily C member 1 (ABCC1).155
Notably, ABCC1 is an ATP-dependent pump that plays a major
role in the development of multidrug resistance. Co-
administering BSO with APR-246 substantially decreased tu-
mour growth in mice xenografts carrying JJN3 multiple mye-
loma cells when compared to the control group.15¢ By directly
targeting the GCL enzyme, alternate antioxidant defence
pathways may be activated, thus reducing the anticancer effi-
caciousness of BSO.157 Therefore, in ferroptosis-based anti-
cancer therapy, combining BSO with other antioxidant-
targeting ferroptosis inducers may be a useful tactic.

Dihydroisotanshinone I

A bioactive substance called dihydroisotanshinone I (DHI) was
isolated from Salvia miltiorrhiza Bunge’s root and has anti-
tumor properties against several cancer models. According to
certain research, DHI causes autophagic cell death and apop-
tosis in order to have its therapeutic benefits.158-159 DHI trig-
gers the c-Jun N-terminal kinase/P38 signalling cascade,
which in turn causes stomach tumour cells to undergo apopto-
sis.160 Furthermore, by causing DNA damage and blocking the
release of C-C motif chemokine ligand 2 (CCL2), combined
treatment with radiation therapy and DHI dramatically reduc-
es cancer migration.16! Recent investigations have indicated
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that DHI can also induce ferroptosis in many tumour cell
types.162-163 Wu and colleagues discovered that DHI admin-
istration causes ferroptosis and apoptosis, along with GSH
attenuation, GPX4 inactivation, and lipidROS build-up.164 It
also suppresses the proliferation and spread of lung cancer
cells. Another group also found that DHI causes ferroptosis,
which inhibits the growth of human glioma cells. It was dis-
covered that DHI inhibits the expression of the GPX4 protein
to carry out its pro-ferroptotic action.163

Withaferin A

Steroid lactone Withaferin A (WA) is derived from the herb
Withania somnifera. Numerous investigations have clarified
that WA has antitumorigenic qualities against a range of can-
cer models.165 Furthermore, it has been shown that using WA
with other chemotherapeutic medications might enhance
therapeutic results and circumvent drug resistance. Neverthe-
less, the fundamental therapeutic mechanisms of WA in the
management of cancer remain incompletely understood. Re-
searchers discovered that papillary and anaplastic thyroid
cancers responded synergistically to combined treatment with
WA and lower dosages of sorafenib, which enhanced anti-
cancer efficacy.1¢¢WA has been shown to reduce the infiltra-
tion of tumor cells by focusing on indicators of the epithelial-
mesenchymal transition (EMT).167-168]n order to prevent tu-
mour cells from entering the cell cycle, WA can also target
certain modulatory enzymes.169-170 By inducing ER stress-
induced autophagy and death, the combination treatment of
colon cancer cells with WA and 5-fluorouracil substantially
inhibited tumour growth.17t According to a study by Hassan-
nia and colleagues, WA may target two different molecular
pathways to cause ferroptotic cell death in high-risk neuro-
blastoma cells.172 By directly inactivating GPX4, treatment of
neuroblastoma cells with a high WA concentration, but not a
medium concentration, facilitated the conventional ferroptosis
induction. It’s interesting to note that WA directly targeted the
NRF2-HO-1 pathway at a medium dose but not at a high con-
centration, leading to elevated liable iron levels and, eventual-
ly, ROS-mediated cell death.172 Additionally, they showed that
neuroblastoma xenograft models’ growth and relapse rate
were successfully suppressed by WA-mediated ferroptosis.172

Gallic acid

Natural herbal polyhydroxyl phenolic chemical gallic acid (GA)
is frequently present in a variety of food items.GA has been
extensively researched for its anticancer qualities using a va-
riety of methods. GA can cause cell cycle S/G2- and G2/M-
phase arrest, which can start apoptosis and stop tumour
growth.173-174 Moreover, by causing mitochondrial dysfunction
and blocking the PI3K/AKT/NF-kB signalling cascade, GA pre-
vents bladder tumour cell invasion in vitro.17s In cervical can-
cer, it was demonstrated that GA improved paclitaxel’s anti-
tumor activity.176 The ferroptotic effects of GA on tumour cells
have recently been investigated.l’” Khorsandi et al.’s study
demonstrated that GA treatment decreased GPX4 activity,
which led to lipid peroxidation.178 Furthermore, treatment of
colorectal cancer cells with GA was shown by Hong et al. To
strongly suppress the expression of GPX4 and SCL7A1.179 Ad-
ditionally, they discovered that, in comparison to the control
group, the GSH levels in tumour cells treated with GA had
dramatically dropped and the intracellular lipid ROs content
had noticeably increased. The effects were reversed after Fer-
1 therapy to further support these findings.179

Cucurbitacin B

One steroid bioactive component that has been widely identi-
fied from the Cucurbitaceae plant family is called Cucurbitacin
B (CuB). CuB has demonstrated a broad range of biological
characteristics in traditional Chinese medicine, including anti-
bacterial, antipyretic, anti-inflammatory, and antineoplastic
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effects. Over the past few decades, a great deal of research has
been done on CuB’s anti-neoplastic properties in a variety of
cancer models. More research is required to determine the
exact underlying processes by which CuB exerts its anticancer
action. Xu and colleagues, on the other hand, discovered that
CuB primarily inhibits the signal transducer and activator of
transcription 3 (STAT3) signalling cascade to reduce the pro-
liferation and invasion of stomach tumour cells.180 Further-
more, it has been observed that CuB suppresses the growth of
osteosarcoma cells by blocking the Janus kinase 2
(JAK2)/STAT3 and MAPK signalling pathways, which in turn
induces apoptosis.18! By decreasing the expression of the pro-
teins MMP-2, MMP-9, and VEGF, CuB can also lessen migration
and angiogenesis.!8! In a preclinical study, Lourenco et al. Re-
ported that paclitaxel plus 2-deoxy-2-amine-cucurbitacin E
(DACE), a semisynthetic derivative of cucurbitacin B, together
effectively and without significant side effects inhibit the
growth and proliferation of non-small cell lung cancer xeno-
graft models.182 Remarkably, a recent study demonstrated that
CuB could also cause ferroptosis, which would result in the
death of cancer cells.183 Huang and colleagues discovered that
in CNE1 nasopharyngeal cancer cells, CuB treatment dramati-
cally enhances lipid peroxidation by decreasing intracellular
GSH level and downregulating GPX4 as a result.183 They also
showed that CuB increases intracellular iron concentrations in
a manner that is dose-dependent. Fer-1 and deferoxamine
dramatically prevented these effects.183 In summary, CuB
seems to be a viable option for creating ferroptosis-based can-
cer treatment strategies.

Altretamine

Hexalen, a synthetic alkylating anti-neoplastic medication
licenced by the FDA, is routinely used to monitor patients with
ovarian cancer that is recalcitrant to treatment. It is still un-
clear what precise mechanism underlies its anticancer effects.
Nevertheless, it appears that DNA damage and the production
of reactive species occur simultaneously with altretamine oxi-
dative N-demethylation.184 Altretamine has been shown to
directly block GPX4 function and cause lipid ROS buildup in an
in vitro human diffuse large B cell lymphoma cell line. It will
take further preclinical and clinical research to determine
whether altretamine-induced ferroptosis is feasible and effec-
tive in vivo.185

Potential compounds to target HMG-CoA Re-
ductase

Statins (Fluvastatin, Pravastatin, Lovastatin, Simvastatin)

Known for their ability to decrease cholesterol, statins are
frequently administered to patients with hypercholesterole-
mia.Mechanistically, statins inhibit HMG-CoA reductase, an
essential enzyme involved in the mevalonate pathway-
mediated production of cholesterol, IPP, and CoQ10.186 Nu-
merous accounts exist on encouraging attempts to treat cancer
with statins.186 Statins have been shown to promote apoptosis
in tumour cells and mediate cell cycle G1/S-phase arrest.187 It
was also shown that statins interfere with prenylation, which
prevents G proteins like Rho and Ras from activating and
translocating to the cell membrane. According to a paper,
statins work in concert to enhance sorafenib's antitumor activ-
ity in vitro.188 Furthermore, in comparison to control groups,
the combination of simvastatin with lipid nanoemulsions
paclitaxel considerably reduces the tumour growth and meta-
static rate of melanoma-bearing animal models.189 As was
previously indicated, statins prevent IPP from being biosyn-
thesised, which is essential for Sec-tRNA maturation and GPX4
protein synthesis. Therefore, statins may be useful in the in-
duction of ferroptosis. Accordingly, statins may decrease in-
tracellular GPX4 levels and increase lipid peroxidation in a
manner that is dose- and time-dependent, according to Viswa-
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nathan et al. When coupled with the direct GPX4 inhibitor
RSL3, these effects were further amplified.190 All things con-
sidered, more study is needed to determine the preclinical and
clinical effectiveness of statin-induced ferroptosis.

Potential compounds to target SCD1 and ACSL4
MF-438, CAY10566, and A939572

SCD1, an enzyme linked to the endoplasmic reticulum, is es-
sential for the transformation of saturated fatty acids (SFAs)
into monounsaturated fatty acids (MUFAs). It's interesting to
note that a rise in cellular MUFA concentration and overex-
pression of SCD1 have been seen in a number of cancer types.
SCD1 may be a viable target for antitumor therapy since, as a
wealth of data over the last ten years has demonstrated, it
plays a remarkable role in encouraging tumour growth and
metastasis.191 According to Pisanu et al., pharmacological tar-
geting of SCD1 with MF-438 dramatically increases the cispla-
tin susceptibility of lung cancer stem cells.192 More research is
required to determine the exact underlying mechanism by
which SCD1 inhibition inhibits tumour growth. SCD1 inhibi-
tion induced by MF-438 and CAY1-0566 inhibits tumour cell
growth and initiates apoptosis.193 Moreover, administering
CAY1-0566 to hepatocellular carcinoma cells induces autoph-
agy via AMP-activated protein kinase (AMPK).194 By suppress-
ing YAP/TAZ activity, MF-438 has been demonstrated to elim-
inate lung cancer cells' capacity to form spheres.195 Further-
more, A939572-inhibiting SCD1 prevents tumor cell migration
that is driven by cancer-associated fibroblasts (CAF).19 The
ferroptosis is maintained by suppressing SCD1, which lowers
MUFA and CoQ10 levels.According to Tesfay and colleagues,
administering SCD1 inhibitors to ovarian cancer cells causes
an increase in lipid peroxidation and ferroptosis-mediated cell
death, which is prevented when Fer-1 and oleic acid are pre-
sent. Furthermore, erastin, RSL3, and SCD1 inhibitors work in
concert to suppress tumor growth in vivo and in vitro. Addi-
tionally, a different study demonstrated that concurrently
giving erastin and A939572 improved ferroptosis and reduced
the growth of the pancreatic tumor xenograft model.197

Bromelain

A naturally occurring complex mixture of enzymes extracted
from pineapple plant stems is called bromelain. Bromelain is
credited with a wide range of medicinal advantages, including
anti-inflammatory, antithrombotic, and anticancer properties.
Combining bromelain with cisplatin dramatically reduced the
growth and metastasis rate of 4T1 xenograft tumours, accord-
ing to a recent publication.198 Treatment with bromelain in-
duces apoptosis in colorectal cancer via activating the
ERK/AKT pathway.1% In a different investigation, bromelain
was demonstrated to inhibit the growth of tumor cells by pro-
ducing ROS and inducing autophagy.200 Furthermore, by modi-
fying the expression of ACSL4, researchers found that brome-
lain could efficiently stimulate erastin-mediated ferrroptosis
in K-Ras mutant colorectal tumor cells.201,202

CONCLUSION

The function of ferroptosis in controlling a number of cellular
processes and several illnesses, particularly cancer, has been
thoroughly investigated since its discovery in 2012. Because of
the intricate nature of the tumor microenvironment, ferropto-
sis has a dual role in human carcinogenesis. Consequently,
given that ferroptosis suppresses tumors, creating more tar-
geted inducers of ferroptosis could be a viable and effective
cancer treatment approach. In particular, figuring out which
tumors respond better to ferroptosis-based treatments will be
a focus of intense research in the next years because different
cancer cells have varying susceptibilities to the treatment. To
date, only some classical compounds such as erastin, RSL3, etc.
are more specific for ferroptosis, while other inducers, includ-
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ing sorafenib (the first line drug in unresectable or advanced
HCC and RCC), are not specific for ferroptosis. With this con-
cept in mind, it is necessary and urgent to screen and develop
more specific activators of ferroptosis. On the other hand, us-
ing natural compounds or nanoparticles as ferroptosis induc-
ers may be a safe and effective cancer treatment strategy due
to their properties and few side effects. More importantly,
combine ferroptosis inducers with other anticancer therapies
will provide new sights for cancer treatment. With the excep-
tion of directly targeting ferroptosis, other approaches should
be explored, such as the induction of ferroptosis through
modulation of ncRNAs, transcription factors, and post-
translational modifications.It will be intriguing to investigate
the physiological significance of ferroptosis in the advance-
ment of different tumors using conditional knockout or knock-
in mice models, as ferroptosis is a doubleedged sword in car-
cinogenesis.The discovery of particular ferroptosis promoters
will be aided and improved in the future by cancer type-
specific animal models of ferroptosis, and large-scale clinical
trials will hasten the clinical translation of these discoveries. It
is anticipated that in the near future, inducers of ferroptosis
with the best possible specificity and efficacy will be created
and applied to the treatment of different cancer kinds.
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