




Open Access Full Text Article



# Tenapanor-A Novel Approach for Management of Hyperphosphatemia in End Stage Renal Disease: A Clinical Study Aggregate Review

Leema Lobo \*, Kishore N , Manjari Sharma

Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences -PES University, Bangalore-560100, India

## Article Info:



### Article History:

Received 17 Oct 2023  
Reviewed 20 Nov 2023  
Accepted 06 Dec 2023  
Published 15 Jan 2024

### Cite this article as:

Lobo L, Kishore N, Sharma M, Tenapanor-A Novel Approach for Management of Hyperphosphatemia in End Stage Renal Disease: A Clinical Study Aggregate Review, Journal of Drug Delivery and Therapeutics. 2024; 14(1):176-181

DOI: <http://dx.doi.org/10.22270/jddt.v14i1.6336>

### \*Address for Correspondence:

Leema Lobo, Department of Pharmacy Practice,  
Faculty of Pharmaceutical Sciences, PES  
University, Bangalore -560050

## Abstract

The critical importance of phosphate regulation in chronic kidney disease (CKD) has been well understood for decades. But new findings, frequently applicable to routine medical care, continue to evolve. Poor health outcomes, greater morbidity, lowered quality of life, and a higher death rate from cardiovascular disease are all linked to the development of CKD-bone mineral ailment. Increased blood phosphate levels are linked to an increased risk of mortality in hemodialysis patients due to changes in phosphate breakdown and declining renal function as CKD advances. In this setting, according to CKD-mineral bone disease recommendations, it is critical to regulate serum phosphate levels in patients with CKD-mineral bone problem. If dialysis and dietary intervention fail to control blood phosphate levels, the use of phosphate binders is advised. Although phosphate binders are successful in lowering blood phosphate levels by actively binding to dietary phosphate, certain individuals have adverse effects that may restrict their use. These medications also have a significant pill load, which might result in poor treatment compliance. Tenapanor, a novel medication, works by inhibiting the sodium/hydrogen exporter isoform 3 (NHE3), which lowers intestinal phosphate absorption primarily by decreasing passive paracellular phosphate flow. Tenapanor also reduces the expression of the sodium phosphorus 2b transport protein (NaPi2b), which limits active transcellular phosphate absorption compensation. This is considered to be more effective phosphorous absorption regulator and a better target for tailored medication therapy. This clinical study aggregate report explores the currently published studies that have evaluated Tenapanor for the treatment of hyperphosphatemia in end stage renal disease patients on haemodialysis.

**Keywords:** Tenapanor, phosphate binding agents, hyperphosphatemia, chronic kidney disease, phosphate control, phosphate binders, phosphate absorption, phosphate absorbtion inhibitor.

## INTRODUCTION

Chronic kidney disease has multifaceted impacts on our bodies, affecting both physiological and biological mechanisms. It disrupts fluid and electrolyte balance, pH regulation, blood pressure regulation, vitamin D metabolism, and the excretion of toxins and waste materials<sup>1</sup>. Advanced chronic kidney disease often leads to hyperphosphatemia due to imbalances in phosphate homeostasis, resulting in vascular calcification, left ventricular hypertrophy, arterial stiffness, increased cardiovascular risk, and mortality<sup>2-4</sup>. The primary strategy to address hyperphosphatemia involves modifying dietary phosphate intake, but this can be complicated by the need for essential dietary protein. Achieving the right balance of phosphate in chronic kidney disease management remains crucial, as protein and phosphate control may exacerbate the patient's condition<sup>5</sup>. As chronic kidney disease progresses, bone and mineral metabolism become dysregulated, with elevated parathyroid hormone levels attempting to maintain normal phosphorus and calcium levels. However, in end-stage renal disease, this response may become nonadaptive, leading to exponentially increased phosphate levels<sup>6</sup>. The KDIGO 2017 Clinical Practice Guideline Update for Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) recommends various strategies to prevent hyperphosphatemia, including dietary restrictions, phosphate binding therapy, and intensive dialysis for end-stage renal disease patients. However, the effectiveness of these approaches in lowering serum

phosphate levels is not consistent<sup>7</sup>. Given this inconsistency, it is essential to explore ways to enhance the effectiveness of dietary phosphate restriction, especially the use of phosphate binders, in patients with end-stage renal disease. Poor adherence to phosphate binder therapy is often attributed to factors like large pill size and patient ignorance about their condition and treatment<sup>8</sup>. Phosphate binders function by forming insoluble compounds with dietary phosphate, which are then eliminated through the digestive system. However, their limited binding capacity necessitates numerous tablets, which are insufficient to control daily dietary phosphate intake and may result in potential drug interactions<sup>9-13</sup>. As a result, many stage 5 renal disease patients struggle to maintain normal serum phosphorus levels. New targets have been identified to inhibit intestinal phosphorus transport, potentially offering more effective control of phosphorus compared to conventional phosphate binding therapies<sup>14</sup>. Recent research highlights the paracellular phosphate pathway as the primary mechanism for intestinal phosphate absorption, which should be considered in new phosphate management systems<sup>15</sup>. Tenapanor, a NHE3 inhibitor, has shown promise in reducing serum phosphate concentrations and presents a cutting-edge approach to treating CKD-MBD<sup>17-19</sup>. Tenapanor primarily inhibits passive paracellular phosphate transport and reduces the expression of NaPi2b, providing a novel method to manage hyperphosphatemia<sup>20</sup>.

## METHODS

Using the search engines PubMed, KDIGO guidelines, NIH library - a review of the literature was done to finish this narrative review. For the above search engines, the keyword "tenapanor hyperphosphatemia" was entered. Results were restricted to studies that were written in the English language, and review articles were not included. Studies on humans, animals, and *in vitro* were all included. There was no time frame mentioned.

## DISCUSSION

Tenapanor, a minimally absorbed small molecular inhibitor of gastrointestinal sodium-hydrogen exchanger isoform 3, has undergone phase 3 clinical trials for the treatment of irritable bowel syndrome along with constipation<sup>21</sup>. Furthermore, tenapanor exhibits its action by inhibiting passive paracellular phosphate mobilization in the gastrointestinal tract, leading to a reduction in serum phosphorus levels from baseline. This mechanism of action contributes to the management of hyperphosphatemia in patients with end-stage renal disease<sup>22</sup>. Animal studies suggest that tenapanor exerts its effects primarily in the gut region, with minimal systemic absorption. The majority of the drug is excreted unchanged in the urine<sup>23</sup>. *In vitro* clinical trials were conducted to evaluate potential drug interactions, specifically assessing its impact on the cytochrome P450 (CYP) class of enzymes. The results indicate that tenapanor has a significant effect on five out of the seven cytochrome enzymes, particularly CYP3A4/5, while it does not inhibit CYP1A2. Notably, there were no observable drug-drug interactions with drugs metabolized by CYP3A4 enzymes, allowing for potential coadministration<sup>24</sup>. Due to its limited systemic bioavailability, tenapanor has minimal exposure to other drugs, resulting in negligible potential for drug-drug interactions and supporting the absence of requirements for dose adjustments<sup>25</sup>. In a prospective observational clinical trial, tenapanor in combination with phosphate binders (sevelamer) demonstrated a more substantial reduction in serum phosphate levels compared to monotherapy with phosphate binders alone<sup>26</sup>. This lack of drug-drug interaction between phosphate binding agents and tenapanor is significant, as dual treatment with these medications may be necessary for individuals with chronic hyperphosphatemia. Current treatments with phosphate binders in hemodialysis patients have shown varying levels of efficacy in reducing serum phosphate levels, as suggested by clinical practice guidelines. Tenapanor exhibited lower increases in serum phosphate levels compared to the placebo group, although it was not sufficient to meet all clinical practice guideline targets<sup>27</sup>. One notable limitation of tenapanor is the occurrence of severe adverse events, particularly diarrhea, reported during clinical trials<sup>28</sup>. An associated concern with the use of phosphate binders is patient non-adherence, with reported rates ranging from 22% to 74%. Phosphate binders require administration with meals, often necessitating high daily doses of up to 8-9.6 grams per day, leading to a significant pill

size burden<sup>29</sup>. Tenapanor, administered in milligram quantities once or twice daily, significantly reduces the pill burden, potentially improving patient compliance with the therapy<sup>30</sup>. The ongoing trial, known as NORMALIZE (NCT03988920), is currently investigating the clinical significance of tenapanor. Its primary objective is to assess the proportion of patients achieving a normal serum phosphorus concentration (2.5-5.5 mg/dL)<sup>31</sup>. Within the realm of clinical studies, only one, AMPLIFY, has ventured into examining the combination of tenapanor with phosphate binder therapies. In this study, various phosphate binders were tested, including sevelamer and non-sevelamer binders. Interestingly, the specific binders comprising the non-sevelamer group were not disclosed. However, the outcome revealed that Tenapanor + binder led to a significantly greater reduction in serum phosphorus compared to placebo + binder (-0.84 vs. -0.19 mg/dL;  $P < 0.001$ ). Notably, the study did not incorporate a tenapanor monotherapy group, preventing a definitive statement about the additive or synergistic effects of tenapanor. Nevertheless, given the complementary mechanisms of action, some degree of synergy is likely<sup>26</sup>. It is worth noting that all clinical trials involving human subjects so far have been conducted in end-stage kidney disease (ESKD) patients undergoing maintenance hemodialysis. These trials have provided evidence that tenapanor, whether used alone or concurrently with phosphate binders, effectively lowers serum phosphorus levels. This suggests that hemodialysis patients currently taking phosphate binders to manage uncontrolled hyperphosphatemia may find relief in tenapanor, potentially reducing their overall pill burden. Interestingly, adherence to phosphate binders has been observed to be low at 38%, with phosphate binders accounting for half of a patient's total pill regimen<sup>28</sup>. In terms of dosing, tenapanor has been administered at doses ranging from 10-30 mg twice daily, without regard to meals, in the studies presented here. This dosing schedule, combined with the pill burden, could be significantly lighter compared to phosphate binders, which typically require administration three times daily with meals. Consequently, the twice-daily dosing of this drug could prove beneficial for patients struggling with excessive pill loads. Lastly, although not specifically studied in humans, tenapanor is not expected to induce cardiovascular calcification, as it lacks calcium—a distinction from other calcium-containing phosphate binders like calcium carbonate. Based on the evidence presented, it appears that tenapanor, when used in conjunction with phosphate binders, offers the most substantial reduction in serum phosphorus concentrations<sup>26</sup>. The Food and Drug Administration (FDA) informed the medication manufacturer Ardelyx, the manufacturer of tenapanor, in a Complete Response Letter in July 2021 that additional important clinical data were required before approval for the diagnosis of hyperphosphatemia could be given. Although the latest information definitely demonstrates a decrease in serum phosphorus concentrations, further research is necessary to determine the size of this effect<sup>32</sup>.

## SUMMARY OF IN VITRO, ANIMAL AND HUMAN STUDIES FOR TENAPANOR

### 1. HUMAN STUDIES

| AUTHOR                                                                                                                      | STUDY DESIGN AND OBJECTIVE                                                                                                                                                                                                                 | NUMBER OF PATIENTS                                                                                                                                    | TREATMENT AND DRUG                                                                                                                                                                                                                                                                                                                                                    | OUTCOMES                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Pablo E Pergola, David P Rosenbaum, Yang Yang, Glenn M Chertow</u> <sup>26</sup>                                         | <b>Randomised Control Trial</b><br>– Human Study<br><br>To evaluate the efficacy of phosphate binders , and the Tenapanor in treatment of hyperphosphatemia in patients with maintenance dialysis                                          | Out of 511 , the 236 were randomised patients<br><br>116 in tenapanor plus binder group ,and 119 in placebo plus binder group                         | Participants received tenapanor 30 mg twice daily , and also placebo<br><br>The above regimen was followed for 4 weeks .                                                                                                                                                                                                                                              | A dual therapy with phosphate binders , and tenapanor had a greater efficacy in reducing the phosphorus levels to the baseline than the phosphate binders therapy alone . |
| <u>Takashi Shigematsu, Yotaro Une, Kazuaki Ikejiri, Hironori Kanda, Masafumi Fukagawa, Tadao Akizawa</u> <sup>22</sup>      | Double-blind, randomized, placebo-controlled trial.<br><br>human study<br><br>To compare the efficacy between add on tenapanor and phosphate binders monotherapy in patients with refractory hyperphosphatemia                             | N = 47<br><br>Patients with refractory hyperphosphatemia<br>Randomly assigned to tenapanor and placebo group                                          | Participants received tenapanor and placebo for a period of 6 weeks<br><br>Tenapanor –30mg daily - PO – twice daily before the meal                                                                                                                                                                                                                                   | Participants treated with tenapanor add on therapy achieved serum phosphorus target level at a faster rate compared to that of placebo .                                  |
| Block GA, Bleyer AJ, Silva AL, Weiner DE, Lynn RI, Yang Y, Rosenbaum DP, Chertow GM. <sup>27</sup>                          | Randomised phase 3 trial carried out for 52 weeks -- human study<br><br>To evaluate the safety and efficacy of tenapanor in controlling target serum phosphorus levels in patients with maintenance dialysis                               | Maintainance dialysis , N = 564<br><br>Patients were randomly assigned to ,<br><br>Tenapanor , N =423<br><br>And phosphate binders,Sevelamer , N =141 | Tenapanor was titrated in 10 mg increments , with a minimum dose of 10 mg twice daily , gradually exceeding to a maximum dose of 30 mg twice daily.Patients were randomized to receive tenapanor for 26 weeks , and sevelamer for 52 weeks .Patients who received tenapanor , were rerandomized again to continue tenapanor for 12 weeks , and placebo for 12 weeks . | Results showed reduction in mean serum phosphorus levels with tenapanor therapy .                                                                                         |
| Block Ga, Rosenbaum Dp, Leonsson-Zachrisson M, Åstrand M, Johansson S, Knutsson M, Langkilde Am, Chertow Gm.. <sup>29</sup> | Randomised , double blind , placebo controlled multicenter study .<br><br>This study was done to determine the consequence of tenapanor therapy in maintaining the serum phosphorus levels within the patients who received haemodialysis. | 597 patients were screened , 162 patients were randomized to determine the dose dependent reduction in serum phosphorus levels .                      | Patients were randomly assigned to receive any one of the tenapanor doses , 3 or 30 mg once daily and 1,3,10, 30 mg twice daily .                                                                                                                                                                                                                                     | Tenapanor once or twice daily regimen had significant impact in reducing the serum phosphorus levels in patients with haemodialysis .                                     |

## IN VITRO AND ANIMAL STUDIES

| AUTHOR                                                                                                                                          | STUDY DESIGN AND OBJECTIVE                                                                                                                                                        | NUMBER OF PATIENTS                                                     | TREATMENT AND DRUG                                                                                                                                                            | OUTCOMES                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Johansson S, Leonsson-Zachrisson M, Knutsson M, Spencer AG, Labonté ED, Deshpande D, Kohler J, Kozuka K, Charmot D, Rosenbaum DP. <sup>33</sup> | INVITRO STUDY<br>Open label two way cross over study<br>Obj - To evaluate Drug drug binding study in order to determine the systemic exposure when the drugs are coadministered . | -----                                                                  | Tenapanor titrated to final concentration of 1, 10, 50, 100, and 200 $\mu$ M + Sevelamer concentration of 1.6mg/ml , calcium acetate 1mg/ml , and calcium carbonate 2.4 mg/ml | Experimental data showed interaction between the sevelamer and tenapanor , the results claimed 72%-87%, tenapanor being bound .<br><br>No interaction was found between calcium acetate, calcium carbonate and tenapanor when coadministered                                    |
| Johansson S, Leonsson-Zachrisson M, Knutsson M, <sup>33</sup>                                                                                   | ANIMAL STUDY<br>Obj – To evaluate the invivo drug drug binding pharmacodynamic effects between tenapanor and the phosphate binders .                                              | Sample size – 60 Seven-week-old male Sprague-Dawley rats               | Tenapanor was titrated to concentration of 0.1, 0.3, 1, or 3 mg/kg by dissolving with water . Sevelamer carbonate - 48mg/kg                                                   | There was no considerable change in effects produced pharmacodynamically when tenapanor was coadministered with sevelamer .<br><br>Administering tenapanor 10 mins after administration of sevelamer also showed undetected changes in pharmacodynamics.                        |
| King AJ, Kohler J, Fung C <sup>34</sup>                                                                                                         | ANIMAL STUDY<br>Objective<br>- to evaluate the effect of tenapanor on rats phosphate excretion in their urine                                                                     | Sample size – 102 8 week old male Sprague dawley rats                  | Tenapanor given with 0.15 mg /kg BID along with sevelamer 0.75%to 3%                                                                                                          | Administration of the drugs tenapanor and the sevelamer resulted in a more profound decrease in urinary phosphorous levels                                                                                                                                                      |
| King AJ, Siegel M, He Y <sup>(35)</sup>                                                                                                         | ANIMAL STUDY<br>Obj – to find out the mechanism by which the tenapanor results in decrease of gastrointestinal phosphate uptake                                                   | Sample size<br>- 5 to 7 healthy rats in each group for all experiments | Different tenapanor doses based on the experiment done .                                                                                                                      | Tenapanor works by modulating tight junctions, which raise transepithelial electrical resistance and lower phosphate permeability, which inhibits paracellular phosphate absorption. By lowering NaPi2b expression, tenapanor hinders active transcellular phosphate transport. |
| Johansson et al ,2017. <sup>(36)</sup>                                                                                                          | INVITRO STUDY<br>Objective - Analyze the pharmacodynamic effects simultaneous administration of tenapanor with phosphate binders                                                  | Sample size<br>N/A                                                     | Tenapanor – 1 , 10 ,50 ,100 and 200 $\mu$ M + Sevelamer carbonate 1.6mg/ml and calcium carbonate 2.4mg /dL                                                                    | Tenapanor was shown to be bound in amounts ranging from 72 to 87%, pointing to a possible interaction with sevelamer carbonate.<br><br>Tenapanor did not bind to either calcium carbonate or calcium acetate.                                                                   |

## CONCLUSION

Tenapanor is an experimental new phosphate absorption inhibitor that works on the major phosphate absorption pathway to treat hyperphosphatemia in an alternative approach. Tenapanor has demonstrated an unique mechanism of action that reduces paracellular absorption of phosphate in the gastrointestinal tract by local inhibition of the NHE3,

leading to reduced sodium absorption and proposed conformational changes in claudin proteins present in tight junctions that directly decrease the permeability of the paracellular pathway to phosphate. In contrast to phosphate binders, when used as standalone therapy, this may lessen the excessive pill load. Tenapanor can be used without attention to meals and no clinically relevant interactions between medications have been found. The only negative effects were

those brought on by its recognized mechanism of action, which raises the salt and water content of the stool. Tenapanor can therefore be a straightforward but effective hyperphosphatemia therapy with a unique mode of action distinct from standard phosphate binders, with manageable safety profiles, and reduced pill load, which is necessary for patients with CKD and hyperphosphatemia who are on hemodialysis. Further significant, randomized studies on utilization of tenapanor in patients with CKD and ESKD that are optimized for cardiovascular outcomes are required, especially for distinct populations who have not been sufficiently represented in prior studies.

## FUNDING

No funding was received for writing this review

## AUTHOR CONTRIBUTIONS

N.K and L.L conceived and designed this systematic review. N.K, L.L and M.S performed the literature search. N.K and L.L analyzed the data and drafted the content accordingly. M. S. edited and revised the drafted content. Then all the three approved the final version of the drafted review.

## COMPETING INTERESTS

The authors declare no competing interests.

## REFERENCES

1. Naber T, Purohit S. Chronic Kidney Disease: Role of Diet for a Reduction in the Severity of the Disease. *Nutrients*. 2021 Sep 19;13(9):3277. <https://doi.org/10.3390/nu13093277> PMid:34579153 PMCid:PMC8467342
2. Block GA, Hulbert-Shearon TE, Levin NW, Port FK: Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: A national study. *Am J Kidney Dis* 31: 607-617, 1998  
<https://doi.org/10.1053/ajkd.1998.v31.pm9531176> PMid:9531176
3. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM: Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. *J Am Soc Nephrol* 15: 2208-2218, 2004  
<https://doi.org/10.1097/01.ASN.0000133041.27682.A2> PMid:15284307
4. Toussaint ND, Pedagogos E, Tan SJ, Badve SV, Hawley CM, Perkovic V, et al: Phosphate in early chronic kidney disease: Associations with clinical outcomes and a target to reduce cardiovascular risk. *Nephrology (Carlton)* 17: 433-444, 2012  
<https://doi.org/10.1111/j.1440-1797.2012.01618.x> PMid:22574672
5. Salomo L, Kamper AL, Poulsen GM, Poulsen SK, Astrup A, Rix M. Habitual dietary phosphorus intake and urinary excretion in chronic kidney disease patients: a 3-day observational study. *Eur J Clin Nutr*. 2017 Jun;71(6):798-800.  
<https://doi.org/10.1038/ejcn.2016.247> PMid:27966564
6. Rastogi A, Bhatt N, Rossetti S, Beto J. Management of Hyperphosphatemia in End-Stage Renal Disease: A New Paradigm. *J Ren Nutr*. 2021 Jan;31(1):21-34.  
<https://doi.org/10.1053/j.jrn.2020.02.003> PMid:32386937
7. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). *Kidney Int Suppl* (2011). 2017 Jul;7(1):1-59. Epub 2017 Jun 21. Erratum in: *Kidney Int Suppl* (2011). 2017 Dec;7(3):e1. PMID: 30675420; PMCID: PMC6340919.  
<https://doi.org/10.1016/j.kisu.2017.10.001>
8. Covic A, Rastogi A. Hyperphosphatemia in patients with ESRD: assessing the current evidence linking outcomes with treatment adherence. *BMC Nephrol*. 2013 Jul 18;14:153.
9. PhosLo gelcaps (calcium acetate): 667 mg [prescribing information]. Fresenius Medical Care North America, 2011.
10. VELPHORO (sucroferric oxyhydroxide) [prescribing information]. Fresenius Medical Care North America, 2013.
11. FOSRENAL (lanthanum carbonate) [prescribing information]. Shire US Inc, 2016.
12. AURYXIA (ferric citrate) tablets [prescribing information]. Keryx Biopharmaceuticals Inc, 2017.
13. RENVELA (sevelamer carbonate) [prescribing information]. Genzyme Corp., 2020.
14. Suki WN, Moore LW. Phosphorus Regulation in Chronic Kidney Disease. *Methodist Debakey Cardiovasc J*. 2016 Oct-Dec;12(4 Suppl):6-9. <https://doi.org/10.14797/mdcj-12-4s1-6> PMid:28298956 PMCid:PMC5347182
15. Davis GR, Zerwekh JE, Parker TF, Krejs GJ, Pak CY, Fordtran JS. Absorption of phosphate in the jejunum of patients with chronic renal failure before and after correction of vitamin D deficiency. *Gastroenterology*. 1983 Oct;85(4):908-16.  
[https://doi.org/10.1016/0016-5085\(83\)90443-2](https://doi.org/10.1016/0016-5085(83)90443-2) PMid:6688402
16. King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, Minassian NA, Jafri Q, Pan D, Kohler J, Kumaraswamy P, Kozuka K, Lewis JG, Dragoli D, Rosenbaum DP, O'Neill D, Plain A, Greasley PJ, Jönsson-Rylander AC, Karlsson D, Behrendt M, Strömstedt M, Ryden-Bergsten T, Knöpfel T, Pastor Arroyo EM, Hernando N, Marks J, Donowitz M, Wagner CA, Alexander RT, Caldwell JS. Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. *Sci Transl Med*. 2018 Aug 29;10(456):eaam6474.  
<https://doi.org/10.1126/scitranslmed.aam6474> PMid:30158152 PMCid:PMC6454550
17. Block GA, Rosenbaum DP, Yan A, Chertow GM. Efficacy and Safety of Tenapanor in Patients with Hyperphosphatemia Receiving Maintenance Hemodialysis: A Randomized Phase 3 Trial. *J Am Soc Nephrol*. 2019 Apr;30(4):641-652.  
<https://doi.org/10.1681/ASN.2018080832> PMid:30846557 PMCid:PMC6442342
18. Rosenbaum DP, Yang Y. Efficacy of tenapanor for the control of serum phosphorus in patients with chronic kidney disease on dialysis: novel mechanism of action allows for both monotherapy and dual mechanism approaches. Paper presented at the American Society of Nephrology (ASN) Kidney Week [Virtual meeting], October 20-25, 2020
19. Chertow GM, Yang Y, Rosenbaum DP. Paper presented at the Long-term safety and efficacy of tenapanor for the control of serum phosphorus in patients with chronic kidney disease on dialysis. Presented at the American Society of Nephrology (ASN) Kidney Week 2020 [Virtual meeting], October 20-25, 2020.
20. Saurette M, Alexander RT. Intestinal phosphate absorption: the paracellular pathway predominates? *Exp Biol Med (Maywood)*. 2019 May;244(8):646-54.  
<https://doi.org/10.1177/1535370219831220> PMid:30764666 PMCid:PMC6552399
21. Chey WD, Lembo AJ, Yang Y, Rosenbaum DP. Efficacy of Tenapanor in Treating Patients With Irritable Bowel Syndrome With Constipation: A 26-Week, Placebo-Controlled Phase 3 Trial (T3MPO-2). *Am J Gastroenterol*. 2021 Jun 1;116(6):1294-1303.  
<https://doi.org/10.14309/ajg.0000000000001056> PMid:33337659 PMCid:PMC8183489
22. Shigematsu T, Une Y, Ikejiri K, Kanda H, Fukagawa M, Akizawa T. Therapeutic Effects of Add-On Tenapanor for Hemodialysis Patients with Refractory Hyperphosphatemia. *Am J Nephrol*. 2021;52(6):496-506.  
<https://doi.org/10.1159/000516156> PMid:34098559 PMCid:PMC8491508
23. Rosenbaum DP, Yan A, Jacobs JW. Pharmacodynamics, Safety, and Tolerability of the NHE3 Inhibitor Tenapanor: Two Trials in Healthy Volunteers. *Clin Drug Investig*. 2018 Apr;38(4):341-351.

<https://doi.org/10.1007/s40261-017-0614-0> PMid:29363027  
PMcid:PMC5856883

24. Johansson S, Rosenbaum DP, Ahlgqvist M, Rollison H, Knutsson M, Stefansson B, Elebring M. Effects of Tenapanor on Cytochrome P450-Mediated Drug-Drug Interactions. *Clin Pharmacol Drug Dev.* 2017 Sep;6(5):466-475. <https://doi.org/10.1002/cpdd.346>  
PMid:28301096 PMcid:PMC5599994

25. Spencer, Andrew G., et al. "Intestinal inhibition of the  $\text{Na}^+/\text{H}^+$  exchanger 3 prevents cardiorenal damage in rats and inhibits  $\text{Na}^+$  uptake in humans." *Science translational medicine* 6.227 (2014): 227ra36-227ra36.

26. Pergola PE, Rosenbaum DP, Yang Y, Chertow GM. A Randomized Trial of Tenapanor and Phosphate Binders as a Dual-Mechanism Treatment for Hyperphosphatemia in Patients on Maintenance Dialysis (AMPLIFY). *J Am Soc Nephrol.* 2021 Jun 1;32(6):1465-1473. <https://doi.org/10.1681/ASN.2020101398> PMid:33766811  
PMcid:PMC8259655

27. Bleyer AJ, Burke SK, Dillon M, Garrett B, Kant KS, Lynch D, Rahman SN, Schoenfeld P, Teitelbaum I, Zeig S, Slatopolsky E. A comparison of the calcium-free phosphate binder sevelamer hydrochloride with calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. *Am J Kidney Dis.* 1999 Apr;33(4):694-701. [https://doi.org/10.1016/S0272-6386\(99\)70221-0](https://doi.org/10.1016/S0272-6386(99)70221-0) PMid:10196011

28. Block GA, Rosenbaum DP, Leonsson-Zachrisson M, Åstrand M, Johansson S, Knutsson M, Langkilde AM, Chertow GM. Effect of Tenapanor on Serum Phosphate in Patients Receiving Hemodialysis. *J Am Soc Nephrol.* 2017 Jun;28(6):1933-1942. <https://doi.org/10.1681/ASN.2016080855> PMid:28159782  
PMcid:PMC5461797

29. Tonelli M, Pannu N, Manns B. Oral phosphate binders in patients with kidney failure. *N Engl J Med.* 2010 Apr 8;362(14):1312-24. <https://doi.org/10.1056/NEJMra0912522> PMid:20375408

30. Fissell RB, Karaboyas A, Bieber BA, Sen A, Li Y, Lopes AA, Akiba T, Bommer J, Ethier J, Jadoul M, Pisoni RL, Robinson BM, Tentori F. Phosphate binder pill burden, patient-reported non-adherence, and mineral bone disorder markers: Findings from the DOPPS. *Hemodial Int.* 2016 Jan;20(1):38-49. <https://doi.org/10.1111/hdi.12315> PMid:25975222  
PMcid:PMC4644509

31. NIH U.S. National Library of Medicine. A long-term study to evaluate the ability of tenapanor alone or in combination with sevelamer to treat to goal serum phosphorus in patients with end-stage kidney disease on dialysis (NORMALIZE). Accessed June 8, 2021. <https://clinicaltrials.gov/ct2/show/NCT03988920?term=nct03988920&draw=2&rank=1>

32. Melville NA. Medscape. FDA Rejects tenapanor for control of phosphorus in kidney disease. Accessed October 12, 2021 <https://www.medscape.com/viewarticle/956066>

33. Johansson S, Rosenbaum DP, Knutsson M, Leonsson-Zachrisson, M. A phase 1 study of the safety, tolerability, pharmacodynamics and pharmacokinetics of tenapanor in healthy Japanese volunteers. *Clin Exp Nephrol.* 2017 Jun;21(3):407-16. <https://doi.org/10.1007/s10157-016-1302-8> PMid:27368672  
PMcid:PMC5486465

34. King AJ, Kohler J, Fung C, Jiang Z, Quach A, Kumaraswamy P, Chertow GM, Rosenbaum DP. Combination treatment with tenapanor and sevelamer synergistically reduces urinary phosphorus excretion in rats. *Am J Physiol Renal Physiol.* 2021 Jan 1;320(1):F133-F144. <https://doi.org/10.1152/ajprenal.00137.2020> PMid:33283643

35. King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, Minassian NA, Jafri Q, Pan D, Kohler J, Kumaraswamy P, Kozuka K, Lewis JG, Dragoli D, Rosenbaum DP, O'Neill D, Plain A, Greasley PJ, Jönsson-Rylander AC, Karlsson D, Behrendt M, Strömstedt M, Ryden-Bergsten T, Knöpfel T, Pastor Arroyo EM, Hernando N, Marks J, Donowitz M, Wagner CA, Alexander RT, Caldwell JS. Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. *Sci Transl Med.* 2018 Aug 29;10(456):eaam6474. <https://doi.org/10.1126/scitranslmed.aam6474> PMid:30158152  
PMcid:PMC6454550

36. Johansson S, Leonsson-Zachrisson M, Knutsson M, et al. Preclinical and healthy volunteer studies of potential drug-drug interactions between phosphate binders. *Clin Pharmacol Drug Dev.* 2017 Sep;6(5):448-56. <https://doi.org/10.1002/cpdd.307>  
PMid:27654985 PMcid:PMC5599948