Ardhendu Kumar Mandal Journal of Drug Delivery & Therapeutics. 2024; 14(2):178-191

Available online on 15.02.2024 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which
permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original
author and source are credited

'.) Check for updates . .
Open Access Full Text Article BY MG Review Article

DNA tetrahedron as nanoparticulated delivery system in combating
diseases

Ardhendu Kumar Mandal

Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, India

Article Info: Abstract
E?ir"r *E Article History: Many diseases suffer from drug resistance and nucleic acid cargo delivery. To optimize
R pharmaceutics and to enhance their efficiency of cellular uptake, DNA nanomaterial

tetrahedrons, owing to their precise control in size, shape, excellent biocompatibility and

ol [rrT]
E,_*Fr_'-'i" _y‘;ﬁ Received 21 Nov 2023

':;?!_'?;_-:__‘5 - a' iiz‘;;‘:;%d2045]Lann22002244 cellular permeability, reduced cytotoxicity, good stability, ease synthesis and multiple sites for
Fﬂ."ﬂﬁ_-’: Published 15 Feb 2024 targeting design, have attracted attention for targeting cargos delivery. Their nanostructural

binding efficiency with many cargos depends on their electrostatic attractions among free
electrons of phosphate oxygen, sugar and base nitrogen. Self-assembled DNA tetrahedrons
(DTs) alone also can regulate cellular processes to some extent, especially, on migration,
Mandal AK, DNA tetrahedron as nanoparticulated differentiation, proliferation and autophagy, and their modifications with the attachment of
delivery system in combating diseases, Journal of Drug  aptamers, peptides, nucleic acids, antibodies, different low-molecular-weight drugs and other
Delivery and Therapeutics. 2024; 14(2):178-191 components, make them a novel targeted delivery system as effective nanomedicine. This
DOI: http://dx.doi.org/10.22270/jddt.v14i2.6326 review demonstrates the current progress of DTs towards their synthesis, characterization,
biomedical applications, biodistribution, elimination and toxicity as possible nanoparticulated
delivery system.

Cite this article as:

*Address for Correspondence:
Keywords: Diseases; Drug resistance; DNA tetrahedron; nanoparticulated delivery system;
Ardhendu Kumar Mandal, Central Instrumentation Nanomedicine
Division, CSIR-Indian Institute of Chemical Biology, 4,
Raja S.C. Mullick Road, Jadavpur, Kolkata - 700032, India

Graphical Abstract

Metabolism of DNA
tetrahedron by systemic
enzymes to biodegradable
DNA particles
S Elimination of
cleavag® 2 DNA particles
°
Endosome Cargo releas® pé |
Nitlas Recycling in the Acct(litcpulaﬁoxi of ReSnaJ c(lg:;nce
ic ci i non degradable | (< eter’
Cytosol systemic circulation e e (<Snm )

ISSN: 2250-1177 [178] CODEN (USA): JDDTAO


http://jddtonline.info/
http://dx.doi.org/10.22270/jddt.v14i2.6326
https://crossmark.crossref.org/dialog/?doi=10.22270/jddt.v14i2.6326&amp;domain=pdf
https://orcid.org/0000-0001-8336-1220

Ardhendu Kumar Mandal
Introduction

Presently, the demand for developing preventive, predictive
and non-invasive patient-oriented medicines as therapeutics
is being increased for the treatment of a specific disease with
power to leverage qualitative medical care in the life-
threatening diseases 1-3. Both biomolecular and chemical
drugs as conventional therapy face their obstacles in poor
solubility, systemic toxicity, enzymatic degradation, cell
membrane-impermeability, drug resistance and non-specific
targeting. To overcome these barriers, it is needed to develop
active targeted system for delivering drug molecules to
specific site of interest. In recent decades, several artificial
molecular devices such as applications of viruses, liposomes,
polymers, metallic nanomaterials, peptides, proteins,
antibody, DNA, siRNA and synthetic inorganic molecules at the
nanoscale have been developed to overcome multidrug
resistance, therapeutic degradation, cytotoxicity, insolubility
of the hydrophobic drugs, cell barricades, and to target cells
with higher biological efficiencies and controlled drug release
410 Many of these nanotechnology-devices are recently under
clinical trials and several are approved by Food and Drug
Administration (FDA) as clinical therapeutics for human
applications 11, In spite of the advances in the development of
the nanotechnology-based delivery system, some of them have
still few limitations, such as, short DNAs viral delivery into the
cells showing random insertion sites, mutagenesis and
cytopathic effects, inherent cytotoxicity and immune toxicity
by cationic dendrimers, and cytotoxicity of many non-
degraded inorganic nano-elements or residuals in the
biological system 12-16, In this context, three-dimensional (3D)
DNA-nanotechnology has been emerged as attractive drug
delivery system to get maximum efficacy with the minimum
toxicity 17. Based on the A-T, G-C Watson-Crick base pairing,
natural DNA nanostructure, stabilized by strong hydrogen
bond, shows excellent characteristics, such as, precise control
in shapes and sizes, non-toxicity and biocompatibility, less
susceptibility to nuclease and cell lysate, easy targeting design
in multiple sites, and smart cargo delivery 1819, The most
efficient DT, consisting of four or more single-chain DNA self-
assembled by base pairing in a specific solution, becomes
rigid-structure, highly stable and productive 2021, As a cargo-
carrier, DT exists three main criteria to conjugate cargos, such
as, pre-linking of the components mostly nucleic acids at the 5'
or 3' end of single strands before self-assembly, decorating of
an overhang for not interference with the DT formation
following bondage of the materials via the complementary
sequence with the overhang, and setting of the components in
the DNA double helices by physical conjugates.

As a nano-sized delivery vehicle, DT may penetrate
independently the negatively charged cell-membrane through
receptor-mediated endocytotic internalization 2223 with its
inherent capability of resisting nuclease attack to retain its
structural integrity for a long time owing to steric hindrance
and non-toxic biocompatibility. In this concern, folate or
peptide-anchored ligand specific DTs loaded with different
cargos by covalent attachments show their efficiencies against
tumors 2425,

As monoclonal antibodies have limited capability to liberate
drugs for covalent bonding, penetrating cells, immune
responsive property and high cost, small peptides mimicking
antibodies of smaller sizes and biological specificities like
affibody molecules exhibit their efficiencies in drug targeting
2627, Affibody molecules consisting of three a-helix bundle
domains with fifty eight amino acids obtained from the
immunoglobulin G protein Z-domain scaffolds lacking cysteins
and disulfide bridges are used to form affibody-DT
nanoparticles for the treatment of HER2 over-expressing
cancers, while DNA-affibody nanoparticles contain one DT and
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two affibody molecules mimicking one Fc and two Fab regions
of the structured antibody for their binding activities 2833, In
addition to acting as a scaffold for anchoring two affibody
molecules, DT also is utilized as a carrier to bind multiple
small molecular cargos non-covalently for specific targeting.

Aptamers, short, single stranded DNA and RNA
oligonucleotides -ligands, are useful for forming complicated
three-dimensional structures with DT, and higher binding
capability with a target MUC1 molecule over-expressed in
tumor cells 3437, Furthermore, the binding of tumor-targeting
aptamer with a DT through DNA complementary base pairing
loaded with drug within its DNA strands may be an effective
approach for their specific target drug delivery 21.38-40, When
cytosine-phosphate-guanine  (CpG) motifs, the short
oligonucleotides where 2'-deoxycytidine is connected to 2'-
deoxyguanosine by a phosphodiester bond, are appended to
the DNA nanostructures, they show agonist property of Toll-
like receptor 9 (TLR9) present in plasmacytoid dendritic cells
and B cells through their bindings for boosting the immune
response to treat cancer and allergic diseases 41-43. In addition
to DNA nanoparticles binding to specific ligands, siRNAs and
other cargos also can be loaded for their delivery to specific
target site/s 4447. This review demonstrates mainly the
therapeutic efficacies of DT for the treatment of cancer and
other diseases to judge as very effective delivery vehicle.

Synthesis and purification of DNA tetrahedron

DT consists of four isometric single stranded DNAs 21
According to Watson-Crick’s hybridization-principle, each
single stranded DNA possesses three blocks utilized for
hybridizing with the other three strands respectively to shape
rigid DNA helices triangles into one of the DT -sides, with two
terminals of oligonucleotides joined covalently at the vertex 48.
Each DT -side is splited up by several non-hybridized
nucleotides for providing enough flexibility to bend. For the
synthesis of DT (Fig.1), each equimolar single stranded DNA
sequences is dissolved in 0.5 x TE buffer (10 mmol/L Tris-HCI
[pH 8.0] and 50 mmol / L MgClz) to form one triangle of DTs
while every edge is formed through the specific Watson-Crick
base pairing by two different single stranded DNAs 49-51,
where the corresponding DNA optical density (OD) value is
determined at 260 nm by UV Spectrophotometer. In this way,
four chains are made with the addition of TE buffer at the
same concentration. The mixing ratios of four single strand-
DNAs (1:1:1:1) at 1pM / 100 pL in TM bulffer is performed for
the reaction in a polymerase chain reaction (PCR) machine
with the cycling conditions: denatured at 95 ° C for 10 min and
annealed by natural cooling to 4 - C 21. In this context, all of the
single stranded DNAs are purified by HPLC with 260 nm
distinctive absorption peak, while the peak time of DNA
tetrahedron in the HPLC spectrum becomes faster than that of
single strand, and the yield is collected at the accompanying
time point.

S1 82 S3 S4

Self-assembly

95°C,4°C

ss DNA

etrahedral DNA nanostructure

Figure 1: Schematic diagram of the synthesis of DNA
tetrahedrons.
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Functionalization of DNA tetrahedron with
folate / aptamer / affibody and drug

Free hydrogen groups of drug molecule and folate are
modified with azide groups and coupled with 3'-OH of single
stranded DNAs through click chemistry reactions, while
addition of different amounts of functional group tagged single
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stranded DNAs may stoichiometrically control the ratios of
functional groups through specific side chains -hybridization
52, For the synthesis of folate-DT, DT-drug and folate-DT-drug,
the molar ratios are set respectively as 1:1, 4:1 and 1:1:3,
while all the synthesis are accomplished at micromolar levels
at 37 - C,and kept at 4 - C 53 (Fig.2).

. Folic acid

For DNA tetra,

S1: 5’>-CAGTTGAGACGAACATTCCTAAGTCTGAAATT
TATCACCCGCCATAGTAGACGTATCACCAGG-3’

S2: 5’-GCTACACGATTCAGACTTAGGAATGTTCGACA
TGCGAGGGTCCAATACCGACGATTACAGCTT-3’

S3: 5’-GTGATAAAACGTGTAGCAAGCTGTAATCGACG
GGAAGAGCATGCCCATCCACTACTATGGCGG-3’

S4: 5’-CTCGCATGACTCAACTGCCTGGTGATACGAGG
ATGGGCATGCTCTTCCCGACGGTATTGGACC-3’

Figure 2: Schematic diagram of DNA tetra-Dox, folic acid-DNA tetra and folic acid-DNA tetra-Dox. S1, S2, S3 and S4 indicate the single
stranded DNA sequences of DNA tetrahedron. The figure denotes the process of targeting of inserted DNAs to tumor cells through

the cell membrane penetration.

Aptamer Sgc8c, a DNA sequence with 42 nucleotides, or other
aptamer-modified DNA tetrahedron, known to bind to cell
membrane protein tyrosine kinase 7 (PTK-7) / MUC1 protein
over-expressed respectively on human T-cell ALL and tumors

Table 1. The specific sequences of each single-stranded DNA.

/ MCF-7 cells may also be fabricated under the same
conditions as DTs using aptamer sequences 5457 (Table 1)

(Fig.3).

Single-stranded DNAs Directions Detail sequences

S1 5'-3' ATTTATCACCCGCCATAGTAGACGTATCACCA
GGCAGTTGAGACGAACATTCCTAAGTCTGAA

S2 5'-3' ACATGCGAGGGTCCAATACCGACGATTACAGC
TTGCTACACGATTCAGACTTAGGAATGTTCG

S3 5'-3' ACTACTATGGCGGGTGATAAAACGTGTAGCAA
GCTGTAATCGACGGGAAGAGCATGCCCATCC

S4 5'-3' ACGGTATTGGACCCTCGCATGACTCAACTGC
CTGGTGATACGAGGATGGGCATGCTCTTCCCG

S5 5'-3' ATCTAACTGCTGCGCCGCCGGGAAAATACTGTA
CGGTTAGATTTTTACATGCGAGGGTCCAATACCG
ACGATTACAGCTTGCTACACGATTCAGACTTAGG
AATGTTCG

ISSN: 2250-1177

[180]

CODEN (USA): JDDTAO




Ardhendu Kumar Mandal Journal of Drug Delivery & Therapeutics. 2024; 14(2):178-191

SI
?I oY 2! l

3, 51 5/ 51

A B C D Td

Dox Apt-Tail

44
Apt-Td-Dox Apt-Td

MUCI Protein

Figure 3: Schematic design of the aptamer-decorated DNA tetrahedron for selective targeting of doxorubicin to MUC1-overexpressed
breast cancer cells. Four DNA single strands of DNA tetrahedron with a modified MUC1 aptamer (Apt-tail) indicate strand A, 5'-

ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTA-3!, strand B, 5'-
TATCACCAGGCAGTTGACAGTGTAGCAAGCTGTAATAGATGCGAGGGTCCAATAC-3!, strand C, 5"
TCAACTGCCTGGTGATAAAACGACACTACGTGGGAATCTACTATGGCGGCTCTTC-3', strand D, 5"
TTCAGACTTAGGAATGTGCTTCCCACGTAGTGTCGTTTGTATTGGACCCTCGCAT-3' and Apt-tail, 5'-

AGGAAGAGAGAAGGAAGGGAATTTTTACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTA-3'. The four DNA
single strands have been assembled into a DNA tetrahedron through DNA complementary base pairing. One of the four strands has
been extended with a sticky end exposed outside the tetrahedron. The MUC1 aptamer extended with an Apt-tail can pair with the
sticky tetrahedron end. The formed aptamer-tetrahedron complex becomes mixed with doxorubicin for forming apt-tetra-dox to
bind MCF-7 cancer cells for targeted drug delivery.
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Two 5'-NH2 labeled DNAs (DNAi2) are dealt with Ne-
maleimidocaproyloxy succinimide ester (EMCS) for generating
two N¢€-maleimidocaproyloxy-DNAs (I12) 58 (Fig.4). The
obtained DNAs are dealt with an affibody containing a cysteine
residue at the C-terminus for affording DNA-affibody chimeras
(II1,2). The affibody possessing a hexa histidine tag at its N-
terminus is explicited in E Coli BL21 cells and purified utilizing
a Ni-NTA column 5961, The coupling reaction yields between
I12 and the affibody do not differ for the incubation time
ranging from 1-5 h. The produced DNA-affibody chimeras are
then purified utilizing DEAE-Sepharose CL-6B column for
removing the surplus affibody in the reaction mixture
following a procedure for oligonucleotides-purification 62.
After this chromatography, the un-reacted DNAs in the eluate
are removed by Ni-NTA chromatography for specific binding

Journal of Drug Delivery & Therapeutics. 2024; 14(2):178-191

of the hexahistidine peptide to the attached affibody. After
purification, the DNA-affibody chimeras are treated with
Coomassie Brilliant Blue R-250 and ethidium bromide to stain
and detect protein and DNA, respectively. Afterthat, the two
pure DNA-affibody chimeras (II1,2) are merged with two single
stranded DNAs (DNA3 and DNA4) for forming an affibody-
tetrahedron structure (III) containing one DT particle with
two affibody molecules. These affibody-tetrahedron structure
[IT particles are incubated with excess drug for non-covalent
binding associations at room temperature for 10 min to get
DT-affibody-drug nanoparticles (IV) 63, which are purified
further utilizing a Sephadex G-25 column to assess the number
of drug molecules in the nanoparticles determined by UV-vis
spectrophotometry.
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Figure 4: Schematic strategy to prepare DNA tetrahedron-affibody nanoparticles (III) and DNA tetrahedron-affibody-drug

nanoparticles (IV).
Characterization

To evaluate whether DNA strands and protein are assembled
in DT -folate / aptamer / affibody -drug moiety, gel
electrophoresis is conducted, followed by ethidium bromide
and / or Coomassie Brilliant Blue staining. To determine the
structure, size and zeta potential of the DT nanoparticles,
atomic force microscopy and a dynamic light scattering study
are performed. Transmission electron microscopy may also be
preformed for observing the morphology of the DT
nanoparticulated moiety.
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DNA tetrahedron as delivery vector

DT can specifically locate and permeate into plasma
membrane and deliver cargos mainly through actin-driven
clathrin and cavolae -mediated endocytosis as well as
macropinocytosis, phagocytosis and clathrin and caveolin -
independent endocytosis 64. Its high flexibility in various sizes
enables its high capability of cargos-loading with enhanced
killing efficacy. The programmability of DT may be modified as
vertex, capsule, mosaic and cantilever functional moieties with
small molecules, oligonucleotides, antibody, affibody, protein,
peptides, ligands and photosensitizers to fulfill suitable
targeted therapies such as chemotherapy, immunotherapy,
gene silencing and photodynamic therapy 6567 (Figs.5&6)
(Table 2).
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Figure 5: Characteristics of DNA nanostructures for cargo delivery. A. Drug-loading strategies: Cargos may be encapsulated in the
nanostructures by ligand recruitment, intercalation, hybridization, entrapment and strand modification. B. Targeting strategies:
Drug-loaded nanostructures may be designed to reach specific locations by utilizing cell-specific peptides, aptamers, ligands,
antibodies or receptor-specific proteins. C. Strategies for improving biostability: Modifications for improving the stability of DNA
nanostructures include nucleotide modifications, ligation of nicks, inter-strand cross-linking, hexane diol and hexaethylene glycol
functional groups, and protein or polyethylene glycol -based protective layers.
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Figure 6: Reconfigurable DNA carriers. The nanostructures may be triggered for releasing the cargos after reaching the target site by
(A) an oligonucleotide, complementary to a hairpin nanocarrier region to expand the structure, (B) temperature-triggered
nanostructure-expansion, (C) toehold-mediated strand exchang to yield single stranded regions to destabilize the nanocarrier, (D)
cytosine-rich strands forming an i-motif at low pH to destabilize the carrier, (E) nanostructures stabilized by photo-labile
crosslinkers dissociate on light-exposure to release cargo, (F) nanostructures stabilized by triplex to form oligonicleotide dissociate
on pH change, (G) dissociation of nanocarriers owing to aptamer sequences remodeling in sticky ends on recognizing antigens, and
(H) primer strands elongation at sticky ends owing to telomerase activity to yield carrier dissociation. Here, modifications have been

shown only on the front-faced edges of the tetrahedra.

Table 2. Modifications and biomedical applications of DNA tetrahedrons in the field of cargos-delivery.

Cargos Connective Modifications Cell lines In vivo Ref.
approaches In vitro
Doxorubicin Inserting L-DNA Sec7/Hela Yes 68,69
Aptamer MCF7 No 70
Aptamer and Folic acid HT29 No 71
Tumor-penetrating peptide U87MG No 25
D/L-Sugar Cancer Yes 72
Actinomycin D Inserting - Escherichia coli / No 73
Staphylococcus aureus
Methylene blue Inserting Photodynamic SCC7 Yes 68
B16F10
MDA-MB231
ISSN: 2250-1177 [184] CODEN (USA): JDDTAO
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Pyro Inserting Photodynamic SMMC7721 Yes 67
Floxuridine Inserting Floxuridine oligomers, Colorectal cancer Yes 74
oligomers Cholesterol conjugated ODNs
CpG Pre-linking - RAW 264.7 No 75
CpG ODNs and Overhang Biotin-CpG ODNs, CpG ODNs Vaccines Yes 76
Streptavidin and Phosphorothioate ODNs
siRNA Overhang Folic acid HeLa Yes 24
Tumor targeting ligands and 2'-0- | Cancer 24
methyl-ODNs
ASOs Loop Lipofectamine 2000 HeLa No 77
MCF7
C2C12
Inserting PNA Escherichia coli No 78
Aptamers Overhang - HeLa No 7
NIH3T3
Pre-linking L-DNA NIH3T3 No 80
HeLa
Overhang - A549 No 70
MCF7
HT29
Overhang Folic acid HT29 No 71
Chemotherapy loaded DT and folate caused efficient growth inhibition of HT-

Traditional chemotherapy is utilized to destroy infected or
cancerous cells by delivering small molecular drugs such as
doxorubicin, actinomycin D, paclitaxel, cisplatin and
adinamycin into infected or tumor tissues specifically through
inserting a DNA duplex and hindering the biomolecular
biosynthesis associated strong anticancer efficacy with poor
selectivity, drug resistance, low uptake and strong adverse
effect 81-83, As a promising nanovehicle, cage-like spacious DT,
capable in inserting doxorubicin in GC-regions of DNA, showed
its higher efficiency compared to free drug to overcome drug
resistance avoiding P-glycoprotein and multi drug resistance
(MDR) efflux pumps 8+ Paclitaxel, capable to promote tumor
cell apoptosis through activating the polymerization of
microtubules and inhibiting their depolymerization and
ending normal mitosis, was conjugated with DT to treat drug
resistant tumor cells for getting higher therapeutic efficacy as
antitumor agent in comparison to free drug treatment 518586,
Actinomycin D loaded DT showed its higher uptake and killing
efficiency of bacterial cells after entering cells with its
degradation by DNase and liberation of drug by RNA synthesis
inhibition 73. An aptamer, a short stretch of single stranded
DNA, RNA or polypeptide, having the capability of binding to
the corresponding ligand with high specificity and affinity, has
been utilized for site specific active cargos targeting. AS1411, a
26-mer DNA aptamer, modified with DNA tetrahedron loaded
drug, have been used to treat and kill most efficiently MCF-7
breast cancer cells through the specific binding to nucleolin
over-expressed on the surface of tumor cells 25877988, MUC1
aptamer-guided DNA tetrahedron, hybridized with an
extended sequence at one vertex, was utilized for a targeted
doxorubicin delivery into Mucinl-positive breast cancer cells
70, SL2B, a 26-mer DNA strand, capable to target specific
heparin binding domain (HBD) of vascular endothelial growth
factor (VEGFies), after functionalization with doxorubicin
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29 cancer cells through their surface recognition of VEGF and
folate receptors 71. Tumor-penetrating peptide (TPP) aptamer,
capable to bind neuropilin-1 receptor over-expressed on the
surface of UB7MG human glioma cells, was anchored to one of
the vertices of a DT for forming a conjugate with drug for
inhibition of tumor cells proliferation with enhanced cellular
uptake and killing efficiency 258990, Nuclear localization signals
(NLSs), the amino acid sequences existed in some
macromolecular proteins, are needed for some proteins for
active transporting to the nucleus through recognition by
karyopherins and interacting with nucleoporins. The NLS
peptide-modified DNA tetrahedron was utilized to transport
to the nucleus of HeLa cells through NLS peptide-specific
binding as nuclear targeting from lysosomes to the nucleus
9123, Nowadays, drug loaded DT modified by two affibody
molecules has shown greater selective efficacies in cellular
uptake and killing ability towards HERZ2 over-expressed breast
cancer cells compared to free drug 92.

Immunotherapy

Immunotherapy is an effective treatment technique to cure
diseased cells chiefly by the stimulation and activation of host
immune system 93-95. CpG oligodeoxynucleotides (ODNs),
derived from viral or bacterial genomes, are capable to link
covalently to the lysine or cysteine residues of an antibody to
provide strong immune-stimulatory activities recognized by
TLR9 9699, Phosphorothiolate modified CpG-DT having
stability in serum from enzymatic degradation, showed its
higher target efficiency and strong immune response in
macrophage-like RAW264.7 cells 75. The small biotin (vitamin
H) molecule, exhibiting a strong binding affinity with avidin or
streptavidin protein, may be utilized for site specific loading of
cargos in DNA assemblies and their site-selective cellular
uptake and controlled release 100102, [n this context,
biotinylated DNA tetrahedron was also used as vehicle to
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deliver antigen streptavidin into mice to stimulate strong and
continuous antibody responses against the antigen compared
to free antigen relating DNA-based delivery system for
synthetic vaccines 76. Furthermore, DNA tetrahedron was
utilized as a platform to prepare another type of synthetic
vaccines where DT, modified with streptavidin antigen and
CpG ODNs-adjuvant, delivered both assembled antigen and
adjuvant to diseased cells, followed with the higher level of
anti-streptavidin IgGs and the induction of effective immune
responses triggering the secretions of IL-6, IL-12 and TNF-a to
induct cancer cell apoptosis and necrosis 76:103,

Gene therapy

Therapeutic ODNs such as small interfering RNAs (siRNAs),
micro RNAs (miRNAs), antisense oligonecleotides (ASOs) and
CRISPR-Cas9, are capable to target their genes following
various mechanisms with high selectivity for the treatments of
disease-related genes 104105, siRNAs act by targeting and
inducting the cleavage of certain complementary mRNAs
leading to the shutdown of the expressions of mRNA-encoded
proteins within the eukaryotic RNA interference (RNAIi)
pathway 106, DT, hybridized with siRNA and decorated with
the folate molecules, showed their higher selective delivery-
efficacy of siRNAs and gene silencing in vivo in tumors 24
Similarly, miRNAs, loaded on DNA nanostructures through
hybridization, exhibited their therapeutic efficacies by
suppressing tumor growth and blocking cell invasion and
metastasis 107108, DT, modified with anti-bla CTX-M-group1
antisense PNA (PNA4), showed reduced inhibitory
concentration (to CTX) of E. coli carrying bla CTX-M-3 78.
CRISPR-Cas9, a prokaryotic immune system, utilized to resist
foreign plasmid and phage DNAs, acts through the recognition
of complementary DNA sequences flanked by a 5'-NGGPAM
motif by a single guide RNA (sgRNA) for directing Cas9 to
cleave the recognized DNA 109112 In this concern, DNA
nanostructures are being designed with Cas9/sgRNA for their

efficient therapeutic deliveries as future human therapeutics
113,114,

Photodynamic therapy

Photodynamic therapy (PDT), a cytotoxic treatment utilized to
kill cancer cells by the liberation of singlet oxygen upon
irradiation of photosensitized drugs 115.116. Doxorubicin loaded
and pyropheophorbide (pyro) attached DT showed its
synergistic efficacies not only to destroy target tumor cells by
disturbing gene biosynthesis but also to brighten targeted
cells and produce cytotoxic singlet oxygen upon light
irradiation ¢7. Differently, fluorescent methylene blue loaded
DT exhibited its higher therapeutic uptake and cell cytotoxic
efficiencies in tumor, propotional to the amount of delivered
methylene blue 68, Furthermore, fabrication of DNA
nanostructure with metallic gold nanoparticles exhibited
higher cellular accumulation with enhanced antitumor efficacy
in tumor cells through photothermal ablation 117-119,

Biodistribution, pharmacokinetics and
elimination

All the factors such as size, shape, susceptibility to digestion by
enzymes, attachment of ligands, encapsulation, animal model
and routes of administration of DNA nanostructures influence
their blood residence, tissue distribution and mechanisms of
elimination. The labeled tetrahedral nanostructures decorated
with folate ligands and loaded with siRNA were exploited to
treat tumor through attaching folate receptors over-expressed
in Luc-KB cells 24120, The in vivo fluorescence molecular
computed tomography in a Luc-KB xenograft model in athymic
Balb/c mice after intravenous injection from 5 min to 24 h and
12 h post injection ex vivo organ fluorescence analysis showed
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that the targeted nanostructures were accumulated primarily
in the tumor and kidney and a little accumulation in the liver,
spleen, lung or heart. The blood half-life of the nanostructures
was ~25 min which was longer than the administered siRNA
alone (~6 min). The half-life of the tetrahedrons was longer
possibly due to the enhancement in their hydrodynamic radius
size caused by the appended siRNA ligands from normal ~7
nm per edge to ~20 nm. Another folate-anchored tetrahedral
nanostructures labeled with a near-infrared (NIR) emitter and
a radioactive isotope for single-photon emission computed
tomography (SPECT) imaging and ex vivo analysis showed a
greater accumulation in the tumors especially for the folate
receptors and less in the stomach, spleen, lungs and heart,
whereas free tetrahedrons bearing only the NIR emitter after
intravenous injection exhibited their accumulation in the
bladder within few minutes with a blood half-life of ~5-3 min
in normal healthy ICR mice 121. The high resolution of SPECT
imaging exhibited the accumulation of the nanostructures in
the gallbladder and intestines after 2 h intravenous injection,
whereas combined NIR and SPECT analysis showed their
major accumulation in the bladder within 2 h of intravenous
injection 122, The intravenous injection of biotinylated DT
loaded with ruthenium polypyridyl complexes (RuPOP) into
nude Balb/c mice bearing HEPG2 tumors exhibited the
accumulation of nanostructures primarily in the tumor cells
after 6 h injection, assessed by the fluorescence imaging from
6-24 h. After 24 h, the accumulation was also observed in the
mice liver 123,

The in vivo administered DNA nanostructures are internalized
into cells by endocytosis and phagocytosis and degraded in
phagolysosomal compartment by lysozymes, DNases,
metabolized in liver, degraded in the blood, extracellular
milieu and other cells by nucleases specifically at pH 8.0
18124125 They undergo biliary excretion and kidney
elimination through glomerular filtration (< 5 nm diameter),
while larger particles may be sequestered in tissue for longer
time or re-entered into the systemic circulation in reduced
sizes 16122,

Toxicity

DT nanostructures decorated with folate ligands and siRNAs
showed a minimal immune response of marker IFN-o
secretion in the blood after 6 h post intravenous injection in
C57BL/6 mice 2% RuPOP loaded biotinylated DT exhibited
normal levels of blood biochemical parameters compared to
tumor free mice based on the estimations of glucose, aspartate
aminotransferase, alanine aminotransferase, total protein,
globulin, albumin, albumin-globulin, urea, creatinine, high and
low -density lipoproteins, cholesterol, triglyceride, creatine
kinase and lactate dehydrogenase in a HEPG2 xenograft model
of Balb/c nude mice injected every 2 days for a total of 28 days
123, The ex vivo tissue histopathology exhibited minimum
cellular damage, while administration of the RuPOP alone
caused  pulmonary  hemorrhage, indicating DNA
nanostructures had insignificant cellular toxicity as a drug
delivery carrier.

Conclusions and future perspectives

In general, linear DNA nanostructures are vulnerable to
nucleases and lysozymes in cytoplasm and serum, associated
with low ionic concentration and pH8.0. However, non-
immunogenic three dimensional programmable structures of
DT have made them more resistant to easier disassembly,
while L-DNA shows more stability than natural D-DNA 68. For
passive targeting, L/D -DT loaded with cargos and / or coated
with poly ethylene glycol (PEG) or other vesicles may be more
effective due to their favorable site-oriented targeting,
membrane penetration capability, suitable biostability and
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biocompatibility as delivery vehicle to destroy diseased cells
6872126, For active targeting, DTs may also be decorated with
small molecules, ligands and cargos to conjugate, intercalate,
encapsulate or bind covalently or non-covalently for
enhancing their biostability, elonging their circulation time
and changing their appropriate surface and mechanical
features to reach to specific target cells. In this context, a
thorough systematic investigation specifically on prolonged
repeated doses regarding bio-distribution, pharmacokinetics,
eliminations, toxicities and effective biological efficiencies
especially for oral and intravenous administrations for all
differently functionalized DTs in in vivo animal models is
needed for their proper pharmaceutical and biomedical
applications as future therapeutic nanomedicine in clinics to
benefit the human beings.
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