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Abstract 
____________________________________________________________________________________________________________ 

Many diseases suffer from drug resistance and nucleic acid cargo delivery. To optimize 
pharmaceutics and to enhance their efficiency of cellular uptake, DNA nanomaterial 
tetrahedrons, owing to their precise control in size, shape, excellent biocompatibility and 
cellular permeability, reduced cytotoxicity, good stability, ease synthesis and multiple sites for 
targeting design, have attracted attention for targeting cargos delivery. Their nanostructural 
binding efficiency with many cargos depends on their electrostatic attractions among free 
electrons of phosphate oxygen, sugar and base nitrogen. Self-assembled DNA tetrahedrons 
(DTs) alone also can regulate cellular processes to some extent, especially, on migration, 
differentiation, proliferation and autophagy, and their modifications with the attachment of 
aptamers, peptides, nucleic acids, antibodies, different low-molecular-weight drugs and other 
components, make them a novel targeted delivery system as effective nanomedicine. This 
review demonstrates the current progress of DTs towards their synthesis, characterization, 
biomedical applications, biodistribution, elimination and toxicity as possible nanoparticulated 
delivery system. 
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Introduction 

Presently, the demand for developing preventive, predictive 
and non-invasive patient-oriented medicines as therapeutics 
is being increased for the treatment of a specific disease with 
power to leverage qualitative medical care in the life-
threatening diseases 1-3. Both biomolecular and chemical 
drugs as conventional therapy face their obstacles in poor 
solubility, systemic toxicity, enzymatic degradation, cell 
membrane-impermeability, drug resistance and non-specific 
targeting. To overcome these barriers, it is needed to develop 
active targeted system for delivering drug molecules to 
specific site of interest. In recent decades, several artificial 
molecular devices such as applications of viruses, liposomes, 
polymers, metallic nanomaterials, peptides, proteins, 
antibody, DNA, siRNA and synthetic inorganic molecules at the 
nanoscale have been developed to overcome multidrug 
resistance, therapeutic degradation, cytotoxicity, insolubility 
of the hydrophobic drugs, cell barricades, and to target cells 
with higher biological efficiencies and controlled drug release 
4-10. Many of these nanotechnology-devices are recently under 
clinical trials and several are approved by Food and Drug 
Administration (FDA) as clinical therapeutics for human 
applications 11. In spite of the advances in the development of 
the nanotechnology-based delivery system, some of them have 
still few limitations, such as, short DNAs viral delivery into the 
cells showing random insertion sites, mutagenesis and 
cytopathic effects, inherent cytotoxicity and immune toxicity 
by cationic dendrimers, and cytotoxicity of many non-
degraded inorganic nano-elements or residuals in the 
biological system 12-16. In this context, three-dimensional (3D) 
DNA-nanotechnology has been emerged as attractive drug 
delivery system to get maximum efficacy with the minimum 
toxicity 17. Based on the A-T, G-C Watson-Crick base pairing, 
natural DNA nanostructure, stabilized by strong hydrogen 
bond, shows excellent characteristics, such as, precise control 
in shapes and sizes, non-toxicity and biocompatibility, less 
susceptibility to nuclease and cell lysate, easy targeting design 
in multiple sites, and smart cargo delivery 18,19. The most 
efficient DT, consisting of four or more single-chain DNA self-
assembled by base pairing in a specific solution, becomes 
rigid-structure, highly stable and productive 20,21. As a cargo-
carrier, DT exists three main criteria to conjugate cargos, such 
as, pre-linking of the components mostly nucleic acids at the 5ꞌ 
or 3ꞌ end of single strands before self-assembly, decorating of 
an overhang for not interference with the DT formation 
following bondage of the materials via the complementary 
sequence with the overhang, and setting of the components in 
the DNA double helices by physical conjugates.  

As a nano-sized delivery vehicle, DT may penetrate 
independently the negatively charged cell-membrane through 
receptor-mediated endocytotic internalization 22,23 with its 
inherent capability of resisting nuclease attack to retain its 
structural integrity for a long time owing to steric hindrance 
and non-toxic biocompatibility. In this concern, folate or 
peptide-anchored ligand specific DTs loaded with different 
cargos by covalent attachments show their efficiencies against 
tumors 24,25.  

As monoclonal antibodies have limited capability to liberate 
drugs for covalent bonding, penetrating cells, immune 
responsive property and high cost, small peptides mimicking 
antibodies of smaller sizes and biological specificities like 
affibody molecules exhibit their efficiencies in drug targeting 
26,27. Affibody molecules consisting of three α-helix bundle 
domains with fifty eight amino acids obtained from the 
immunoglobulin G protein Z-domain scaffolds lacking cysteins 
and disulfide bridges are used to form affibody-DT 
nanoparticles for the treatment of HER2 over-expressing 
cancers, while DNA-affibody nanoparticles contain one DT and 

two affibody molecules mimicking one Fc and two Fab regions 
of the structured antibody for their binding activities 28-33. In 
addition to acting as a scaffold for anchoring two affibody 
molecules, DT also is utilized as a carrier to bind multiple 
small molecular cargos non-covalently for specific targeting.  

Aptamers, short, single stranded DNA and RNA 
oligonucleotides -ligands, are useful for forming complicated 
three-dimensional structures with DT, and higher binding 
capability with a target MUC1 molecule over-expressed in 
tumor cells 34-37. Furthermore, the binding of tumor-targeting 
aptamer with a DT through DNA complementary base pairing 
loaded with drug within its DNA strands may be an effective 
approach for their specific target drug delivery 21,38-40. When 
cytosine-phosphate-guanine (CpG) motifs, the short 
oligonucleotides where 2ꞌ-deoxycytidine is connected to 2ꞌ-
deoxyguanosine by a phosphodiester bond, are appended to 
the DNA nanostructures, they show agonist property of Toll-
like receptor 9 (TLR9) present in plasmacytoid dendritic cells 
and B cells through their bindings for boosting the immune 
response to treat cancer and allergic diseases 41-43. In addition 
to DNA nanoparticles binding to specific ligands, siRNAs and 
other cargos also can be loaded for their delivery to specific 
target site/s 44-47. This review demonstrates mainly the 
therapeutic efficacies of DT for the treatment of cancer and 
other diseases to judge as very effective delivery vehicle. 

Synthesis and purification of DNA tetrahedron   

DT consists of four isometric single stranded DNAs 21. 
According to Watson-Crick’s hybridization-principle, each 
single stranded DNA possesses three blocks utilized for 
hybridizing with the other three strands respectively to shape 
rigid DNA helices triangles into one of the DT –sides, with two 
terminals of oligonucleotides joined covalently at the vertex 48. 
Each DT –side is splited up by several non-hybridized 
nucleotides for providing enough flexibility to bend. For the 
synthesis of DT (Fig.1), each equimolar single stranded DNA 
sequences is dissolved in 0.5 x TE buffer (10 mmol/L Tris-HCl 
[pH 8.0] and 50 mmol / L MgCl2) to form one triangle of DTs 
while every edge is formed through the specific Watson-Crick 
base pairing by two different single stranded DNAs 49-51, 
where the corresponding DNA optical density (OD) value is 
determined at 260 nm by UV Spectrophotometer. In this way, 
four chains are made with the addition of TE buffer at the 
same concentration. The mixing ratios of four single strand-
DNAs (1:1:1:1) at 1µM / 100 µL in TM buffer is performed for 
the reaction in a polymerase chain reaction (PCR) machine 
with the cycling conditions: denatured at 95◦C for 10 min and 
annealed by natural cooling to 4◦C 21. In this context, all of the 
single stranded DNAs are purified by HPLC with 260 nm 
distinctive absorption peak, while the peak time of DNA 
tetrahedron in the HPLC spectrum becomes faster than that of 
single strand, and the yield is collected at the accompanying 
time point. 

 

Figure 1: Schematic diagram of the synthesis of DNA 
tetrahedrons. 
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 Functionalization of DNA tetrahedron with 
folate / aptamer / affibody and drug 

Free hydrogen groups of drug molecule and folate are 
modified with azide groups and coupled with 3ꞌ-OH of single 
stranded DNAs through click chemistry reactions, while 
addition of different amounts of functional group tagged single 

stranded DNAs may stoichiometrically control the ratios of 
functional groups through specific side chains -hybridization 
52. For the synthesis of folate-DT, DT-drug and folate-DT-drug, 
the molar ratios are set respectively as 1:1, 4:1 and 1:1:3, 
while all the synthesis are accomplished at micromolar levels 
at 37◦C, and kept at 4◦C 53 (Fig.2).  

 

 
Figure 2: Schematic diagram of DNA tetra-Dox, folic acid-DNA tetra and folic acid-DNA tetra-Dox. S1, S2, S3 and S4 indicate the single 
stranded DNA sequences of DNA tetrahedron. The figure denotes the process of targeting of inserted DNAs to tumor cells through 
the cell membrane penetration. 

Aptamer Sgc8c, a DNA sequence with 42 nucleotides, or other 
aptamer-modified DNA tetrahedron,  known to bind to cell 
membrane protein tyrosine kinase 7 (PTK-7) / MUC1 protein 
over-expressed respectively on human T-cell ALL and tumors 

/ MCF-7 cells may also be fabricated under the same 
conditions as DTs using aptamer sequences 54-57 (Table 1) 
(Fig.3).

   

Table 1. The specific sequences of each single-stranded DNA.  

Single-stranded DNAs Directions Detail sequences 
S1 5ꞌ→3ꞌ ATTTATCACCCGCCATAGTAGACGTATCACCA 

GGCAGTTGAGACGAACATTCCTAAGTCTGAA 
S2 5ꞌ→3ꞌ ACATGCGAGGGTCCAATACCGACGATTACAGC 

TTGCTACACGATTCAGACTTAGGAATGTTCG 
S3 5ꞌ→3ꞌ ACTACTATGGCGGGTGATAAAACGTGTAGCAA 

GCTGTAATCGACGGGAAGAGCATGCCCATCC 
S4 5ꞌ→3ꞌ ACGGTATTGGACCCTCGCATGACTCAACTGC 

CTGGTGATACGAGGATGGGCATGCTCTTCCCG 
S5 5ꞌ→3ꞌ ATCTAACTGCTGCGCCGCCGGGAAAATACTGTA 

CGGTTAGATTTTTACATGCGAGGGTCCAATACCG 
ACGATTACAGCTTGCTACACGATTCAGACTTAGG 
AATGTTCG 
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Figure 3: Schematic design of the aptamer-decorated DNA tetrahedron for selective targeting of doxorubicin to MUC1-overexpressed 
breast cancer cells. Four DNA single strands of DNA tetrahedron with a modified MUC1 aptamer (Apt-tail) indicate strand A, 5ꞌ- 
ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTA-3ꞌ, strand B, 5ꞌ-
TATCACCAGGCAGTTGACAGTGTAGCAAGCTGTAATAGATGCGAGGGTCCAATAC-3ꞌ, strand C, 5ꞌ-
TCAACTGCCTGGTGATAAAACGACACTACGTGGGAATCTACTATGGCGGCTCTTC-3ꞌ, strand D, 5ꞌ-
TTCAGACTTAGGAATGTGCTTCCCACGTAGTGTCGTTTGTATTGGACCCTCGCAT-3ꞌ and Apt-tail, 5ꞌ-
AGGAAGAGAGAAGGAAGGGAATTTTTACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTA-3ꞌ. The four DNA 
single strands have been assembled into a DNA tetrahedron through DNA complementary base pairing. One of the four strands has 
been extended with a sticky end exposed outside the tetrahedron. The MUC1 aptamer extended with an Apt-tail can pair with the 
sticky tetrahedron end. The formed aptamer-tetrahedron complex becomes mixed with doxorubicin for forming apt-tetra-dox to 
bind MCF-7 cancer cells for targeted drug delivery. 
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Two 5ꞌ-NH2 labeled DNAs (DNA1,2) are dealt with N€-
maleimidocaproyloxy succinimide ester (EMCS) for generating 
two N€-maleimidocaproyloxy-DNAs (I1,2) 58 (Fig.4). The 
obtained DNAs are dealt with an affibody containing a cysteine 
residue at the C-terminus for affording DNA-affibody chimeras 
(II1,2). The affibody possessing a hexa histidine tag at its N-
terminus is explicited in E Coli BL21 cells and purified utilizing 
a Ni-NTA column 59-61. The coupling reaction yields between 
I1,2 and the affibody do not differ for the incubation time 
ranging from 1-5 h. The produced DNA-affibody chimeras are 
then purified utilizing DEAE-Sepharose CL-6B column for 
removing the surplus affibody in the reaction mixture 
following a procedure for oligonucleotides-purification 62. 
After this chromatography, the un-reacted DNAs in the eluate 
are removed by Ni-NTA chromatography for specific binding 

of the hexahistidine peptide to the attached affibody. After 
purification, the DNA-affibody chimeras are treated with 
Coomassie Brilliant Blue R-250 and ethidium bromide to stain 
and detect protein and DNA, respectively. Afterthat, the two 
pure DNA-affibody chimeras (II1,2) are merged with two single 
stranded DNAs (DNA3 and DNA4) for forming an affibody-
tetrahedron structure (III) containing one DT particle with 
two affibody molecules. These affibody-tetrahedron structure 
III particles are incubated with excess drug for non-covalent 
binding associations at room temperature for 10 min to get 
DT-affibody-drug nanoparticles (IV) 63, which are purified 
further utilizing a Sephadex G-25 column to assess the number 
of drug molecules in the nanoparticles determined by UV-vis 
spectrophotometry.

   

 

Figure 4: Schematic strategy to prepare DNA tetrahedron-affibody nanoparticles (III) and DNA tetrahedron-affibody-drug 
nanoparticles (IV). 

Characterization  

To evaluate whether DNA strands and protein are assembled 
in DT –folate / aptamer / affibody -drug moiety, gel 
electrophoresis is conducted, followed by ethidium bromide 
and / or Coomassie Brilliant Blue staining. To determine the 
structure, size and zeta potential of the DT nanoparticles, 
atomic force microscopy and a dynamic light scattering study 
are performed. Transmission electron microscopy may also be 
preformed for observing the morphology of the DT 
nanoparticulated moiety. 

 

 

 

DNA tetrahedron as delivery vector  

DT can specifically locate and permeate into plasma 
membrane and deliver cargos mainly through actin-driven 
clathrin and cavolae -mediated endocytosis as well as 
macropinocytosis, phagocytosis and clathrin and caveolin -
independent endocytosis 64. Its high flexibility in various sizes 
enables its high capability of cargos-loading with enhanced 
killing efficacy. The programmability of DT may be modified as 
vertex, capsule, mosaic and cantilever functional moieties with 
small molecules, oligonucleotides, antibody, affibody, protein, 
peptides, ligands and photosensitizers to fulfill suitable 
targeted therapies such as chemotherapy, immunotherapy, 
gene silencing and photodynamic therapy 65-67 (Figs.5&6) 
(Table 2). 
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Figure 5: Characteristics of DNA nanostructures for cargo delivery. A. Drug-loading strategies: Cargos may be encapsulated in the 
nanostructures by ligand recruitment, intercalation, hybridization, entrapment and strand modification. B. Targeting strategies: 
Drug-loaded nanostructures may be designed to reach specific locations by utilizing cell-specific peptides, aptamers, ligands, 
antibodies or receptor-specific proteins. C. Strategies for improving biostability: Modifications for improving the stability of DNA 
nanostructures include nucleotide modifications, ligation of nicks, inter-strand cross-linking, hexane diol and hexaethylene glycol 
functional groups, and protein or polyethylene glycol -based protective layers. 
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Figure 6: Reconfigurable DNA carriers. The nanostructures may be triggered for releasing the cargos after reaching the target site by 
(A) an oligonucleotide, complementary to a hairpin nanocarrier region to expand the structure, (B) temperature-triggered 
nanostructure-expansion, (C) toehold-mediated strand exchang to yield single stranded regions to destabilize the nanocarrier, (D) 
cytosine-rich strands forming an i-motif at low pH to destabilize the carrier, (E) nanostructures stabilized by photo-labile 
crosslinkers dissociate on light-exposure to release cargo, (F) nanostructures stabilized by triplex to form oligonicleotide dissociate 
on pH change, (G) dissociation of nanocarriers owing to aptamer sequences remodeling in sticky ends on recognizing antigens, and 
(H) primer strands elongation at sticky ends owing to telomerase activity to yield carrier dissociation. Here, modifications have been 
shown only on the front-faced edges of the tetrahedra.   

Table 2. Modifications and biomedical applications of DNA tetrahedrons in the field of cargos-delivery. 

Cargos Connective 

approaches 

Modifications Cell lines 

In vitro 

In vivo Ref. 

Doxorubicin Inserting L-DNA 

Aptamer 

Aptamer and Folic acid 

Tumor-penetrating peptide 

D/L-Sugar 

Sec7/HeLa 

MCF7 

HT29 

U87MG 

Cancer 

Yes 

No 

No 

No 

Yes 

68,69 

70 

71 

25 

72 

Actinomycin D Inserting - Escherichia coli / 

Staphylococcus aureus 

No 73 

Methylene blue Inserting Photodynamic SCC7 

B16F10 

MDA-MB231 

Yes 68 
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Pyro Inserting Photodynamic SMMC7721 Yes 67 

Floxuridine 
oligomers 

Inserting Floxuridine oligomers, 
Cholesterol conjugated ODNs 

Colorectal cancer Yes 74 

CpG Pre-linking - RAW 264.7 No 75 

CpG ODNs and 
Streptavidin 

Overhang Biotin-CpG ODNs,      CpG ODNs 
and Phosphorothioate ODNs 

Vaccines Yes 76 

siRNA Overhang Folic acid 

Tumor targeting ligands and 2׳-O-
methyl-ODNs 

HeLa 

Cancer 

Yes 

 

24 

24 

ASOs Loop 

 

 

Inserting 

Lipofectamine 2000 

 

 

PNA 

HeLa  

MCF7 

C2C12 

Escherichia coli 

No 

 

 

No 

77 

 

 

78 

Aptamers Overhang 

 

Pre-linking 

 

Overhang 

 

 

Overhang 

- 

 

L-DNA 

 

- 

 

 

Folic acid 

HeLa 

NIH3T3 

NIH3T3 

HeLa 

A549 

MCF7 

HT29 

HT29 

No 

 

No 

 

No 

 

 

No 

79 

 

80 

 

70 

 

 

71 

 

Chemotherapy  

Traditional chemotherapy is utilized to destroy infected or 
cancerous cells by delivering  small molecular drugs such as 
doxorubicin, actinomycin D, paclitaxel, cisplatin and 
adinamycin into infected or tumor tissues specifically through 
inserting a DNA duplex and hindering the biomolecular 
biosynthesis associated strong anticancer efficacy with poor 
selectivity, drug resistance, low uptake and strong adverse 
effect 81-83. As a promising nanovehicle, cage-like spacious DT, 
capable in inserting doxorubicin in GC-regions of DNA, showed 
its higher efficiency compared to free drug to overcome drug 
resistance avoiding P-glycoprotein and multi drug resistance 
(MDR) efflux pumps 84. Paclitaxel, capable to promote tumor 
cell apoptosis through activating the polymerization of 
microtubules and inhibiting their depolymerization and 
ending normal mitosis, was conjugated with DT to treat drug 
resistant tumor cells for getting higher therapeutic efficacy as 
antitumor agent in comparison to free drug treatment 51,85,86. 
Actinomycin D loaded DT showed its higher uptake and killing 
efficiency of bacterial cells after entering cells with its 
degradation by DNase and liberation of drug by RNA synthesis 
inhibition 73. An aptamer, a short stretch of single stranded 
DNA, RNA or polypeptide, having the capability of binding to 
the corresponding ligand with high specificity and affinity, has 
been utilized for site specific active cargos targeting. AS1411, a 
26-mer DNA aptamer, modified with DNA tetrahedron loaded 
drug, have been used to treat and kill most efficiently MCF-7 
breast cancer cells through the specific binding to nucleolin 
over-expressed on the surface of tumor cells 25,87,79,88. MUC1 
aptamer-guided DNA tetrahedron, hybridized with an 
extended sequence at one vertex, was utilized for a targeted 
doxorubicin delivery into Mucin1-positive breast cancer cells 
70. SL2B, a 26-mer DNA strand, capable to target specific 
heparin binding domain (HBD) of vascular endothelial growth 
factor (VEGF165), after functionalization with doxorubicin 

loaded DT and folate caused efficient growth inhibition of HT-
29 cancer cells through their surface recognition of VEGF and 
folate receptors 71. Tumor-penetrating peptide (TPP) aptamer, 
capable to bind neuropilin-1 receptor over-expressed on the 
surface of U87MG human glioma cells, was anchored to one of 
the vertices of a DT for forming a conjugate with drug for 
inhibition of tumor cells proliferation with enhanced cellular 
uptake and killing efficiency 25,89,90. Nuclear localization signals 
(NLSs), the amino acid sequences existed in some 
macromolecular proteins, are needed for some proteins for 
active transporting to the nucleus through recognition by 
karyopherins and interacting with nucleoporins. The NLS 
peptide-modified DNA tetrahedron was utilized to transport 
to the nucleus of HeLa cells through NLS peptide-specific 
binding as nuclear targeting from lysosomes to the nucleus 
91,23. Nowadays, drug loaded DT modified by two affibody 
molecules has shown greater selective efficacies in cellular 
uptake and killing ability towards HER2 over-expressed breast 
cancer cells compared to free drug 92.  

Immunotherapy    

Immunotherapy is an effective treatment technique to cure 
diseased cells chiefly by the stimulation and activation of host 
immune system 93-95. CpG oligodeoxynucleotides (ODNs), 
derived from viral or bacterial genomes, are capable to link 
covalently to the lysine or cysteine residues of an antibody to 
provide strong immune-stimulatory activities recognized by 
TLR9 96-99. Phosphorothiolate modified CpG-DT having 
stability in serum from enzymatic degradation, showed its 
higher target efficiency and strong immune response in 
macrophage-like RAW264.7 cells 75. The small biotin (vitamin 
H) molecule, exhibiting a strong binding affinity with avidin or 
streptavidin protein, may be utilized for site specific loading of 
cargos in DNA assemblies and their site-selective cellular 
uptake and controlled release 100-102. In this context, 
biotinylated DNA tetrahedron was also used as vehicle to 
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deliver antigen streptavidin into mice to stimulate strong and 
continuous antibody responses against the antigen compared 
to free antigen relating DNA-based delivery system for 
synthetic vaccines 76. Furthermore, DNA tetrahedron was 
utilized as a platform to prepare another type of synthetic 
vaccines where DT, modified with streptavidin antigen and 
CpG ODNs-adjuvant, delivered both assembled antigen and 
adjuvant to diseased cells, followed with the higher level of 
anti-streptavidin IgGs and the induction of effective immune 
responses triggering the secretions of IL-6, IL-12 and TNF-α to 
induct cancer cell apoptosis and necrosis 76,103.  

Gene therapy  

Therapeutic ODNs such as small interfering RNAs (siRNAs), 
micro RNAs (miRNAs), antisense oligonecleotides (ASOs) and 
CRISPR-Cas9, are capable to target their genes following 
various mechanisms with high selectivity for the treatments of 
disease-related genes 104,105. siRNAs act by targeting and 
inducting the cleavage of certain complementary mRNAs 
leading to the shutdown of the expressions of mRNA-encoded 
proteins within the eukaryotic RNA interference (RNAi) 
pathway 106. DT, hybridized with siRNA and decorated with 
the folate molecules, showed their higher selective delivery-
efficacy of siRNAs and gene silencing in vivo in tumors 24. 
Similarly, miRNAs, loaded on DNA nanostructures through 
hybridization, exhibited their therapeutic efficacies by 
suppressing tumor growth and blocking cell invasion and 
metastasis 107,108. DT, modified with anti-bla CTX-M-group1 
antisense PNA (PNA4), showed reduced inhibitory 
concentration (to CTX) of E. coli carrying bla CTX-M-3 78. 
CRISPR-Cas9, a prokaryotic immune system, utilized to resist 
foreign plasmid and phage DNAs, acts through the recognition 
of complementary DNA sequences flanked by a 5ꞌ-NGGPAM 
motif by a single guide RNA (sgRNA) for directing Cas9 to 
cleave the recognized DNA 109-112. In this concern, DNA 
nanostructures are being designed with Cas9/sgRNA for their 
efficient therapeutic deliveries as future human therapeutics 
113,114. 

Photodynamic therapy 

Photodynamic therapy (PDT), a cytotoxic treatment utilized to 
kill cancer cells by the liberation of singlet oxygen upon 
irradiation of photosensitized drugs 115,116. Doxorubicin loaded 
and pyropheophorbide (pyro) attached DT showed its 
synergistic efficacies not only to destroy target tumor cells by 
disturbing gene biosynthesis but also to brighten targeted 
cells and produce cytotoxic singlet oxygen upon light 
irradiation 67. Differently, fluorescent methylene blue loaded 
DT exhibited its higher therapeutic uptake and cell cytotoxic 
efficiencies in tumor, propotional to the amount of delivered 
methylene blue 68.  Furthermore, fabrication of DNA 
nanostructure with metallic gold nanoparticles exhibited 
higher cellular accumulation with enhanced antitumor efficacy 
in tumor cells through photothermal ablation 117-119. 

Biodistribution, pharmacokinetics and 
elimination 

All the factors such as size, shape, susceptibility to digestion by 
enzymes, attachment of ligands, encapsulation, animal model 
and routes of administration of DNA nanostructures influence 
their blood residence, tissue distribution and mechanisms of 
elimination. The labeled tetrahedral nanostructures decorated 
with folate ligands and loaded with siRNA were exploited to 
treat tumor through attaching folate receptors over-expressed 
in Luc-KB cells 24,120. The in vivo fluorescence molecular 
computed tomography in a Luc-KB xenograft model in athymic 
Balb/c mice after intravenous injection from 5 min to 24 h and 
12 h post injection ex vivo organ fluorescence analysis showed 

that the targeted nanostructures were accumulated primarily 
in the tumor and kidney and a little accumulation in the liver, 
spleen, lung or heart. The blood half-life of the nanostructures 
was ~25 min which was longer than the administered siRNA 
alone (~6 min). The half-life of the tetrahedrons was longer 
possibly due to the enhancement in their hydrodynamic radius 
size caused by the appended siRNA ligands from normal ~7 
nm per edge to ~20 nm. Another folate-anchored tetrahedral 
nanostructures labeled with a near-infrared (NIR) emitter and 
a radioactive isotope for single-photon emission computed 
tomography (SPECT) imaging and ex vivo analysis showed a 
greater accumulation in the tumors especially for the folate 
receptors and less in the stomach, spleen, lungs and heart, 
whereas free tetrahedrons bearing only the NIR emitter after 
intravenous injection exhibited their accumulation in the 
bladder within few minutes with a blood half-life of ~5-3 min 
in normal healthy ICR mice 121. The high resolution of SPECT 
imaging exhibited the accumulation of the nanostructures in 
the gallbladder and intestines after 2 h intravenous injection, 
whereas combined NIR and SPECT analysis showed their 
major accumulation in the bladder within 2 h of intravenous 
injection 122. The intravenous injection of biotinylated DT 
loaded with ruthenium polypyridyl complexes (RuPOP) into 
nude Balb/c mice bearing HEPG2 tumors exhibited the 
accumulation of nanostructures primarily in the tumor cells 
after 6 h injection, assessed by the fluorescence imaging from 
6-24 h. After 24 h, the accumulation was also observed in the 
mice liver 123.  

The in vivo administered DNA nanostructures are internalized 
into cells by endocytosis and phagocytosis and degraded in 
phagolysosomal compartment by lysozymes, DNases, 
metabolized in liver, degraded in the blood, extracellular 
milieu and other cells by nucleases specifically at pH 8.0 
18,124,125. They undergo biliary excretion and kidney 
elimination through glomerular filtration (< 5 nm diameter), 
while larger particles may be sequestered in tissue for longer 
time or re-entered into the systemic circulation in reduced 
sizes 16,122. 

Toxicity 

DT nanostructures decorated with folate ligands and siRNAs 
showed a minimal immune response of marker IFN-α 
secretion in the blood after 6 h post intravenous injection in 
C57BL/6 mice 24. RuPOP loaded biotinylated DT exhibited 
normal levels of blood biochemical parameters compared to 
tumor free mice based on the estimations of glucose, aspartate 
aminotransferase, alanine aminotransferase, total protein, 
globulin, albumin, albumin-globulin, urea, creatinine, high and 
low -density lipoproteins, cholesterol, triglyceride, creatine 
kinase and lactate dehydrogenase in a HEPG2 xenograft model 
of Balb/c nude mice injected every 2 days for a total of 28 days 
123. The ex vivo tissue histopathology exhibited minimum 
cellular damage, while administration of the RuPOP alone 
caused pulmonary hemorrhage, indicating DNA 
nanostructures had insignificant cellular toxicity as a drug 
delivery carrier.  

Conclusions and future perspectives 

In general, linear DNA nanostructures are vulnerable to 
nucleases and lysozymes in cytoplasm and serum, associated 
with low ionic concentration and pH8.0. However, non-
immunogenic three dimensional programmable structures of 
DT have made them more resistant to easier disassembly, 
while L-DNA shows more stability than natural D-DNA 68. For 
passive targeting, L/D –DT loaded with cargos and / or coated 
with poly ethylene glycol (PEG) or other vesicles may be more 
effective due to their favorable site-oriented targeting, 
membrane penetration capability, suitable biostability and 
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biocompatibility as delivery vehicle to destroy diseased cells 
68,72,126. For active targeting, DTs may also be decorated with 
small molecules, ligands and cargos to conjugate, intercalate, 
encapsulate or bind covalently or non-covalently for 
enhancing their biostability, elonging their circulation time 
and changing their appropriate surface and mechanical 
features to reach to specific target cells. In this context, a 
thorough systematic investigation specifically on prolonged 
repeated doses regarding bio-distribution, pharmacokinetics, 
eliminations, toxicities and effective biological efficiencies 
especially for oral and intravenous administrations for all 
differently functionalized DTs in in vivo animal models is 
needed for their proper pharmaceutical and biomedical 
applications as future therapeutic nanomedicine in clinics to 
benefit the human beings. 
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