




Open Access Full Text Article



Check for updates

Research Article

## Investigation of the Protective Effect of Terebinth (*Pistacia terebinthus* L.) against Ovarian Ischemia-Reperfusion Damage in Rat

Gülsüm Pektanç Şengül<sup>1\*</sup> , Engin Deveci<sup>1</sup> , Seydi Ahmet Şengül<sup>2</sup> , Yavuz Tekelioğlu<sup>3</sup>

<sup>1</sup> Dicle University Faculty of Medicine, Department of Histology and Embryology, Diyarbakır, Turkey

<sup>2</sup> Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Hatay, Turkey

<sup>3</sup> Karadeniz Technical University, Faculty of Medicine, Department of Histology and Embryology, Trabzon, Turkey

### Article Info:



#### Article History:

Received 05 August 2023  
Reviewed 17 Sep 2023  
Accepted 03 Oct 2023  
Published 15 Oct 2023

#### Cite this article as:

Şengül GP, Deveci E, Şengül SA, Tekelioğlu Y, Investigation of the Protective Effect of Terebinth (*Pistacia terebinthus* L.) against Ovarian Ischemia-Reperfusion Damage in Rat, Journal of Drug Delivery and Therapeutics. 2023; 13(10):82-87

DOI: <http://dx.doi.org/10.22270/jddt.v13i10.6264>

#### \*Address for Correspondence:

Gülsüm Pektanç Şengül, Dicle University Faculty of Medicine, Department of Histology and Embryology, Diyarbakır, Turkey

### Abstract

The aim of this study is to investigate the therapeutic and protective effects of *Pistacia terebinthus* L. (terebinth) oil treatment on experimental ovarian ischemia and reperfusion injury in rats. In the study, 32 Sprague-Dawley female rats; They were divided into 4 groups: control, ischemia, ischemia/reperfusion (I/R), ischemia/reperfusion + terebinth oil (I/R + terebinth oil), 8 in each group. Terebinth oil was applied via oral gavage at a daily dose of 2 ml/kg for 4 weeks. In histopathological examination of ovarian sections, the control group showed a regular histological appearance. In the ischemia and I/R groups, degenerations in the epithelium, inflammatory cell infiltration in the lamina propria region, and bleeding due to thrombosis in the enlarged vessels were observed. It was determined that terebinth oil protected the epithelial tissue after ovarian I/R injury, reduced inflammation in the connective tissue, and brought the artery-vein contours to a regular appearance. In the ovarian sections where immunohistochemistry analysis was performed, it was observed that radixin protein expression showed a positive reaction in the granulosa cells and a negative reaction in the stromal areas in the terebinth oil applied group compared to the I/R group. As a result, it was revealed that terebinth oil has a healing and protective effect in the treatment of ovarian ischemia/reperfusion injury.

**Keywords:** Terebinth (*Pistacia terebinthus* L), Ovary, Ischemia, Reperfusion

## INTRODUCTION

Adnexal torsion, the fifth most common gynecological emergency, is an important health problem in women worldwide due to delayed diagnosis or misdiagnosis <sup>1,2,3</sup>. Although it is seen in women of all ages; It is especially common in women of reproductive age <sup>4,5</sup>. This case, which requires urgent surgical intervention to preserve ovarian functions, is caused by partial or complete rotation of the ovary and fallopian tube in the axis formed between the infundibulopelvic ligament and the utero-ovarian ligament <sup>6,5</sup>. Adnexal torsion is more common on the right side because the sigmoid colon on the left supports the left ovary and the right infundibulopelvic ligament is longer <sup>6,7</sup>. The main risk factors that cause adnexal torsion include adnexal mass and ovarian cysts (those that are benign and >5 cm in diameter) <sup>4,7</sup>. It is thought that this situation is due to the increase in adnexal tissue volume and weight. Malignant tumors are less likely to cause torsion due to their adhesion properties to neighboring tissues <sup>8</sup>. Torsion causes obstruction of venous blood flow and lymphatic flow, causing edema and obstruction in the ovaries. The resulting edema further reduces the decreased arterial blood flow, leading to ischemic changes that cause irreversible damage to the ovaries. Ovaries that become necrotic as a result of ischemia lose their functions, and failure to treat

them negatively affects fertility <sup>1,8-10</sup>. Detorsion performed to restore arterial blood flow causes ischemia-reperfusion injury and leads to other complications in the ovaries. Reperfusion causes disruption of cellular integrity in tissues, increase in reactive oxygen species, and apoptosis <sup>7</sup>. Acute abdominal pain, nausea, vomiting and fever resulting from disruption of vascular flow are among the typical clinical findings of adnexal torsion <sup>2</sup>. Medicinal plants are used quite frequently to prevent complications arising from ischemic damage <sup>11-13</sup>. The effect of terebinth (*Pistacia terebinthus* L.) oil on adnexal torsion is unknown. Therefore, this study was designed to investigate the therapeutic and protective effect of terebinth oil application on experimental ovarian ischemia reperfusion injury in rats. *Pistacia terebinthus* L. (Anacardiaceae), which grows in different regions in Turkey and the world, is a plant rich in flavonoids, carotenoids, linoleic acid, oleic acid and phenolic compounds. Its antimicrobial, antioxidant and anti-inflammatory effects have made it a widely used plant preferred in many diseases. <sup>14-16</sup>. It has been reported that terebinth oil is effective in diseases such as wound healing <sup>17</sup>, diabetes mellitus <sup>18</sup>, and cancer <sup>19</sup>.

## MATERIAL AND METHODS

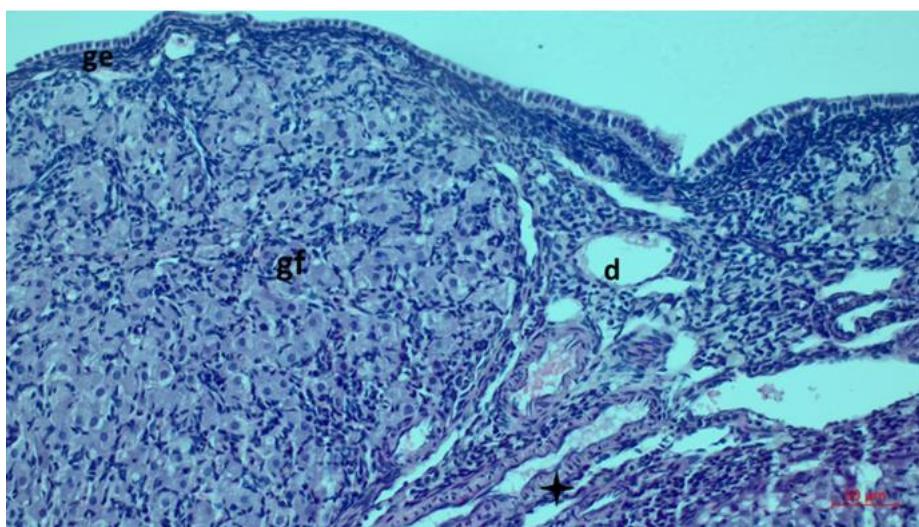
Animals were obtained from Dicle University DÜSAM. Ethics committee approval certificate with code 240638 was received by Dicle University Animal Experiments Local Ethics Committee Presidency (DÜHADAK) on 28/02/2022. Terebinth oil, developed in cooperation with ZADE VITAL and EGE University ARGEFAR, was used in the study. 32 adult Sprague-Dawley female rats, each weighing approximately 250-300 g ( $\pm 10$  g), were randomly divided into four groups, with an equal number of 8 animals in each group. All rats were kept in rooms with controlled humidity (40-60%), temperature (21-24 °C) and light (12-hour light/dark cycle). Water and feed were given ad libitum. Animals were anesthetized with Xylazine (5 mg/kg) (Rompun 2%, Bayer, Germany) and Ketamine hydrochloride (60 mg/kg) (Ketalar, Pfizer, New York, USA) before the operation was performed.

**Control group:** No treatment was applied to the animals. At the end of the experiment, the animals were sacrificed under general anesthesia and their ovarian tissues were removed.

**Ischemia group:** Under general anesthesia, the abdomen of the animals was opened with a 2 cm lower midline incision. Ovarian adnexias were exposed. It was rotated 360° clockwise and the ovaries were fixed to the abdominal wall. The ischemia procedure was applied for 2 hours. Then, before the ovaries were restored, the animals were sacrificed under anesthesia and their ovarian tissues were removed.

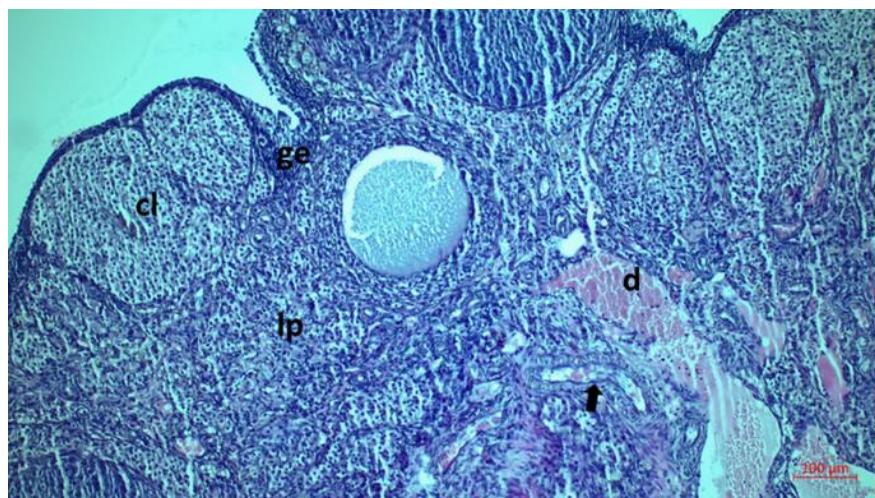
**Ischemia/reperfusion (I/R):** Under general anesthesia, the abdomen of the animals was opened with a 2 cm lower midline incision. The ovarian adnexa were exposed, rotated 360° clockwise, and the ovaries were fixed to the abdominal wall. After torsion was applied for 2 hours, the ovaries were brought to their normal positions and placed in their anatomical location. The ovary was reperfused by detorsion for 2 hours. At the end of the experiment, the animals were sacrificed under anesthesia and their ovarian tissues were removed.

**Ischemia/reperfusion + Terebinth oil (I/R+Terebinth oil):** Under general anesthesia, the abdomen of the animals was opened with a 2 cm lower midline incision. Ovarian adnexias were exposed. It was rotated 360° clockwise and the ovaries were fixed to the abdominal wall. After torsion was applied for 2 hours, the ovaries were brought to their normal positions and placed in their anatomical location. The ovary was reperfused by detorsion for 2 hours. Then, 2 ml/kg terebinth


oil was given orally to the rats every day for 4 weeks. At the end of the 4th week, the animals were sacrificed under anesthesia and their ovarian tissues were removed.

Ovarian tissues were fixed in 10% formaldehyde for 48 hours. Then, the tissue was subjected to routine paraffin wax tissue processing. 5 micron sections were taken from paraffin blocks with a microtome. To examine the histopathology of the sections, the expression of radixin protein on ovarian tissues was examined by Hematoxylin Eosin Staining and Immunohistochemical analysis.

## RESULTS


### Histopathology

In the ovarian section of the control group, the nuclei of germinal epithelial cells were observed to be rich in chromatin and dense. A large enlarged graafian follicle transformed into a corpus luteum was observed. Dilated blood vessels and, in some places, small groups of small inflammatory cells and collagen arrangement were observed parallel to each other and normally around the blood vessels (Figure 1). In the ovarian section of the ischemia group, apoptotic changes and occasional degenerations were observed in the germinal epithelial region. Pictatic nuclei shrinking towards the lumen were observed. Small and degenerative nuclei were detected in the cells in the corpus luteum region, and inflammatory cell infiltrates were detected in the lamina propria region. Additionally, dilated blood vessels, thrombosed blood vessels, and widespread inflammatory cell infiltrates around the vessels were observed (Figure 2). In the ovarian section of the I/R group, hyperplasia was observed in the germinal epithelium, while an increase in the underlying basement membrane thickness was observed. Bleeding due to thrombosis was observed in the vessels expanding towards the stromal region, and although no oocyte II cells were seen in the developed graafian follicles, they were observed to have dense fluid content (Figure 3). In the ovarian section of the I/R and terebinth groups, mild hyperplasia was observed in the germinal epithelium, while the epithelial structure was partially preserved. However, one of the most important effects is that the graafian follicle in the lower parts has a smooth structure, inflammation in the connective tissue in between decreases, and artery-vein contours are regular. In addition, it was determined that the follicular fluid was dense and widespread in a developed graafian follicle and the follicular structures were regular (Figure 4).



**Figure 1: Control group ovary section.**

ge: germinal epithelium, gf: Graaf follicle, d: dilated blood vessel and star: collagen arrangement. Hematoxylin Eosin, Bar: 50  $\mu$ m



**Figure 2: Ovary section in the ischemia group.**

ge: germinal epithelium, cl: corpus luteum, lp: lamina propria, d: dilated blood vessel, black arrow: inflammatory cells. Hematoxylin Eosin, Bar: 100  $\mu$ m



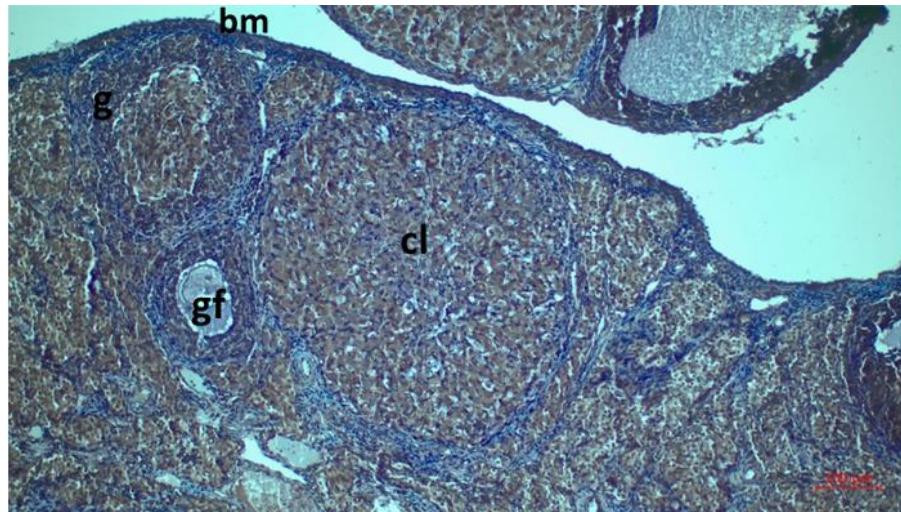
**Figure 3: I/R group ovarian section.**

ge: germinal epithelium, d: dilated blood vessel, gf: graaf follicle. Hematoxylin Eosin, Bar: 100  $\mu$ m



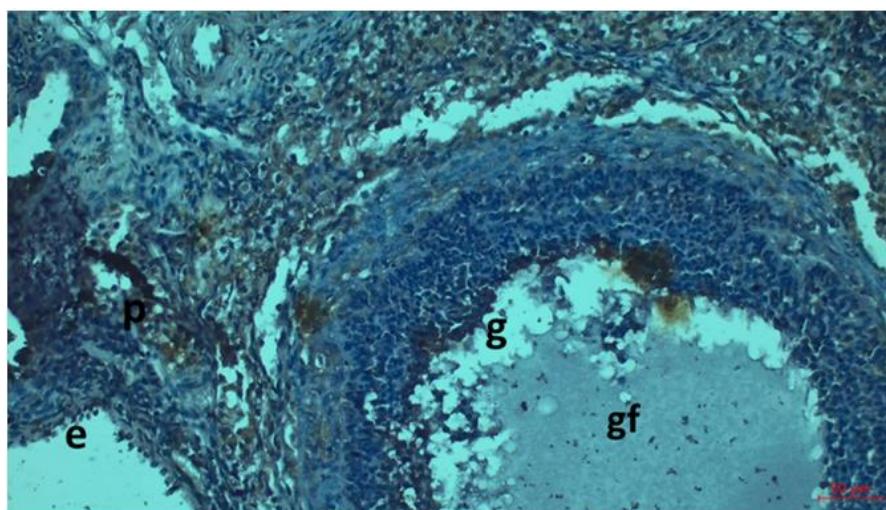
**Figure 4: Ovary section of the I/R + Terebinth group.**

ge: germinal epithelium, gf: Graaf follicle, double black arrow: artery-vein contours. Hematoxylin Eosin, Bar: 50  $\mu$ m


#### Immunohistochemistry

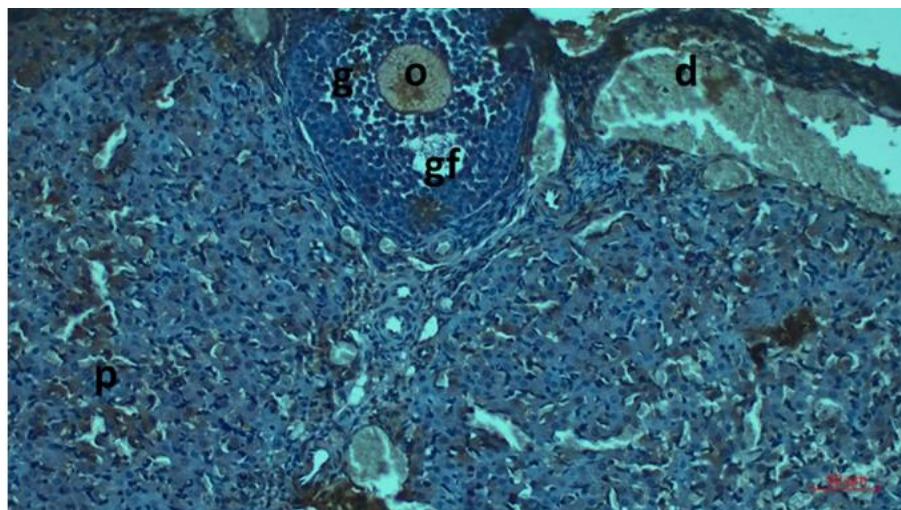
In the ovarian section of the control group, negative radixin expression was observed in the basement membrane, outer parts of the vessels, areas where granulosa cells are located, and connective tissue cells. Mild radixin expression was found in the graaf follicle cells of the corpus luteum. However, considering that radixin is a molecule that exhibits a particularly stimulating pro-inflammatory reaction, it was also

determined that it continued to exert a moderate stimulatory effect in some cells (Figure 5). In the ovarian section of the ischemia group, it was observed that radixin expression showed a positive reaction in the nuclear structures of the epithelial cells, partially in the inflammatory cells in the parenchymal region, and in some granulosa cells close to the lumen. Additionally, dispersion was detected in the theca follicle externa region. It was determined that radixin


expression showed a positive reaction in some cells in this region (Figure 6). In the ovarian section of the I/R group, the density of radixin was observed to be positive in the oocyte II nucleus of a developed graafian follicle, in the membrane pellucida region, in some of the granulosa cells, in the parenchyma region and around the dilated vessel (Figure 7).

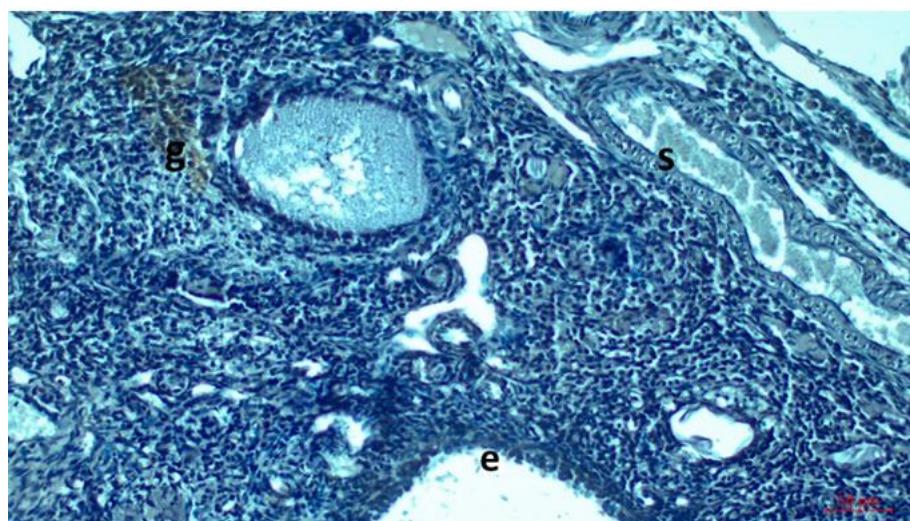
Moderate radixin expression was observed in the epithelial layer in the ovarian section of the I/R + Terebinth group. Partially positive radixin expression was observed in the nuclei of granulosa cells. Negative radixin reaction was detected in the stromal region (Figure 8).




**Figure 5: Radixin control group ovarian section.**

bm: basement membrane, gf: graaf follicle, cl: corpus luteum, g: granulosa cells. Radixin immunostaining, Bar: 100  $\mu$ m




**Figure 6: Ovary section of the ischemia group of the radixin.**

e: epithelial cell, p: parenchyma, g: granulosa cells, gf: graafian follicle. Radixin immunostaining, Bar: 50  $\mu$ m



**Figure 7: Ovary section of the radixin I/R group.**

g: granulosa cells, gf: graaf follicle, p: parenchyma, o: oocyte II, d: dilated blood vessel. Radixin immunostaining, Bar: 50  $\mu$ m



**Figure 8: Ovary section of the radixin I/R+ Terebinth group.**  
e: epithelial cell, g: granulosa cells, s: stromal area. Radixin immunostaining, Bar: 50  $\mu$ m

## DISCUSSION

Adnexal torsion is characterized by the twisting or rotation of the ovary around its supporting ligaments. Thus, it causes occlusion of the ovarian artery and vein and results in ovarian ischemia <sup>20</sup>. Early diagnosis and intervention is very important. Adnexal torsion has serious consequences for women who plan to have more children, as it causes serious ovarian reserve complications. Therefore, it can be treated with adnexectomy or detorsion of the ovary <sup>21</sup>. Ischemia is a serious reversible or irreversible condition that occurs as a result of the interruption of blood flow (arterial and venal blood) feeding the organ or tissue and develops depending on its duration <sup>22</sup>. Reperfusion is; It refers to the resumption of blood flow to the ischemic tissue or organ as a result of medications or surgical interventions <sup>23</sup>. It is very important to ensure reperfusion after ischemia without delay. However, reoxygenation of the tissue after reperfusion may paradoxically cause reperfusion injury, and this condition is more pathological than ischemic injury <sup>24</sup>. Terebinth plant has different biological activities and has been reported to have high antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties due to the richness of secondary compounds in its fruits and resins <sup>14</sup>. It is also used in traditional Turkish folk medicine to treat peptic ulcer, asthma, gastralgia, rheumatism, sunstroke, cough (externally), skin inflammation, intestinal looseness and throat inflammation <sup>25</sup>. Uyar et al. showed that meningicin had a protective effect on liver, kidney and pancreatic tissue damage in diabetic rats due to its antidiabetic effect <sup>18</sup>. Another study revealed that topical applications of terebinth oil had beneficial effects on wound healing <sup>26</sup>.

In the study by Zhang et al., it was determined that the mRNA level of radixin in oocytes was approximately 700 times higher than that in ovarian somatic cells and other tissues. Additionally, immunofluorescence signals of radixin have been demonstrated to be present in both the membrane and cytoplasm of oocytes at all stages of folliculogenesis, including quiescent primordial follicles <sup>27</sup>. In another study, the role of ERM and EWI-2 and EWI-F proteins in gamete fertilization was investigated. Individual inhibition of the expression of each protein (Ezrin, Radixin, Moesin, EWI-2, and EWI-F) showed no effect on fertilization, but combined inhibition of EWI-2/EWI-F or the three ERMs resulted in a significant reduction in the fertilization index. It has been found to trigger <sup>28</sup>. Wakayama and colleagues demonstrated that radixin binds

to both actin and tubulin as a result of immunoprecipitation in mouse testis. It has been suggested that radixin immunoreactivity is observed in the apical cytoplasm of Sertoli cells from the 1st to the 2nd week after birth and that radixin plays a role in the maturation of Sertoli cells <sup>29</sup>. In a different study, it was stated that radixin was distributed along both the sinusoidal (basal) and canalicular (apical) membranes in hepatocytes and its highest concentrations were seen in the canalicular membrane <sup>30</sup>. As a result of the I/R we performed in the rat ovary, radixin expression was; It was observed that there was a significant positive reaction in the nuclear structures that broke away from the epithelial cells, in some granulosa cells that fell off close to the lumen, and in the inflammatory cells around the vessels in the parenchymal region and stromal area. In addition, it was observed that the apoptotic process, which developed due to inflammation in the tissue after ischemia, continued. As a result of I/R + terebinth application; While moderate positive radixin expression was observed in some of the epithelial cells and occasionally in the nuclei of granulosa cells, negative radixin expression was detected in the stromal area. However, as a result of the study, it was noteworthy that the nuclei of the granulosa cells shrank, while the radixin reaction was negative.

## CONCLUSION

As a result, it was observed that terebinth oil provided healing activity by reducing the negative effects resulting from ovarian ischemia/reperfusion injury. It can be thought that the reason for this situation is that the oil obtained from the plant has anti-inflammatory and antioxidant properties.

## ACKNOWLEDGEMENT

This study was a part of doctorate thesis of Gülsüm PEKTANÇ SENGÜL. This study was funded by Dicle University Scientific Research Platform (DÜBAP) with project number TIP.22.034"

## REFERENCES

- 1- Oelsner G, Shashar D, Torsion A, Clinical Obstetrics And Gynecology, Volume 49, Number 3, 459-463.  
<https://doi.org/10.1097/00003081-200609000-00006>  
PMid:16885653
- 2- Fawole AO and Awonuga DO, Gynaecological Emergencies in the Tropics: Recent Advances in Management, Annals of Ibadan Postgraduate Medicine. 2007;5(1).

https://doi.org/10.4314/aipm.v5i1.63539 PMid:25161432  
PMcid:PMC4110985

3- Ashwal E, Hiersch L, Krissi H, Eitan R, Less S, Wiznitzer A, and Peled Y, Characteristics and Management of Ovarian Torsion in Premenarchal Compared With Postmenarchal Patients, *Obstetrics & Gynecology*, 2015;126(3).  
https://doi.org/10.1097/AOG.00000000000000995  
PMid:26244532

4- Huang C, Hong MK, Ding DC, A review of ovary torsion, *Tzu Chi Medical Journal* 2017;29(3):143-147.  
https://doi.org/10.4103/tcmj.tcmj\_55\_17 PMid:28974907  
PMcid:PMC5615993

5- Adeyemi-Fowode O, McCracken KA, Todd NJ, Torsion A, *J Pediatr Adolesc Gynecol* 2018;31:333-338.  
https://doi.org/10.1016/j.jpag.2018.03.010 PMid:29653167

6- Sasaki KJ, and Miller CE, Adnexal Torsion: Review of the Literature, *Journal of Minimally Invasive Gynecology*, 2014;21(2).  
https://doi.org/10.1016/j.jmig.2013.09.010 PMid:24126258

7- Kaplan S, Türk A, Effects of vitamin B12 on rat ovary with ischemiareperfusion injury, *Biotechnic & Histochemistry* 2022;97(4):284-289,  
https://doi.org/10.1080/10520295.2021.1961863  
PMid:34353191

8- Huchon C, Fauconnier A, Adnexal torsion: a literature review, *European Journal of Obstetrics & Gynecology and Reproductive Biology* 2010;150:8-12.  
https://doi.org/10.1016/j.ejogrb.2010.02.006 PMid:20189289

9- Boynukalın FK, Güven S, Güven ES, Polat M, Over Torsiyonuna Genel Bakış, *Kocatepe Tıp Dergisi Kocatepe Medical Journal* 2016;17:30-35. https://doi.org/10.18229/ktd.31378

10- Wilkinson C, Sanderson A, Adnexal torsion d A multimodality imaging review, *Clinical Radiology* 2012;67:476e483.  
https://doi.org/10.1016/j.crad.2011.10.018 PMid:22137723

11- Asır F, Deveci E, Gokalp OE, Şahin F, Ermış IS, The Effect of Momordica charantia on Ovarian Ischemia-Reperfusion, *Journal of Biosciences and Medicines*, 2021;9:8-14.

12- Eser A, Hızlı D, Haltas H, Namuslu M, Kosus A, Kosus N, Kafalı H, Effects of curcumin on ovarian ischemia-reperfusion injury in a rat model, *Biomedical Reports* 2015;3:807-813.  
https://doi.org/10.3892/br.2015.515 PMid:26623020  
PMcid:PMC4660605

13- Yayla M, Cetin D, Adalı Y, Kilic P, Toktay E, Potential therapeutic effect of pomegranate seed oil on ovarian ischemia/reperfusion injury in rats, *Iran J Basic Med Sci*, 2018;21(12).

14- Gülaçlı Topçu, Mehmet Ay, Ali Bilici, Cengiz Sarıkürkü, Mehmet Öztürk, Ayhan Ulubelen, A new flavone from antioxidant extracts of Pistacia terebinthus, *Food Chemistry* 2007;103:816-822.  
https://doi.org/10.1016/j.foodchem.2006.09.028

15- Durmaz G, Gökmen V, Changes in oxidative stability, antioxidant capacity and phytochemical composition of Pistacia terebinthus oil with roasting, *Food Chemistry* 2011;128:410-414.  
https://doi.org/10.1016/j.foodchem.2011.03.044  
PMid:25212149

16- Aydin C, Özcan M, Some physico-mechanic properties of terebinth (Pistacia terebinthus L.) fruits, *Journal of Food Engineering* 2002;53:97-101. https://doi.org/10.1016/S0260-8774(01)00145-5

17- Sindak N, Akgül MB, Gülaydin A, Karakoç Z, Effects of Topical Terebinth Berry Oil and Different Experimental Mixtures on Wound Healing in Japanese Quails (Coturnix Coturnix Japonica), *Van Vet J*, 2017;28(2):69-74.

18- Uyar A, Abdulrahman NT, A histopathological, immunohistochemical and biochemical investigation of the antidiabetic effects of the Pistacia terebinthus in diabetic rats, *Biotechnic & Histochemistry* 2020;95(2):92-104  
https://doi.org/10.1080/10520295.2019.1612092  
PMid:32013588

19- Ersür FE, Kreeci OA, Yilmaz O, Özsahin AD, Effects of Pistacia terebinthus L. Subsp. *palaestina* and *Rhus coriaria* L. Plants on Some Biochemical Parameters of Brain Tissue of Sprague-Dawley Rats in Experimental Breast Cancer Model, *KSU J. Agric Nat* 2022;25(Suppl 1):33-41.  
https://doi.org/10.18016/ksutarimdoga.vi.1074615

20- Becker JH, de Graaff J, Vos MC, Torsion of the ovary: a known but frequently missed diagnosis. *Eur J Emerg Med* 2009;16:124-126.  
https://doi.org/10.1097/MEJ.0b013e32831cbaf8  
PMid:19262396

21- Chen M, Chen CD, Yang YS, Torsion of the previously normal uterine adnexa. Evaluation of the correlation between the pathological changes and the clinical characteristics. *Acta Obstet Gynecol Scand* 2001;80:58-61.  
https://doi.org/10.1080/791201835

22- Lakzaei, H., Safari, T., and Komeili, G. R., Interaction of Sex Hormones and the Renin-Angiotensin System in Ovariectomized Rats Subjected to IschemiaReperfusion Induction. *Advanced Biomedical Research*, 2019;8.  
https://doi.org/10.4103/abr.abr\_172\_19 PMid:31737581  
PMcid:PMC6839270

23- El Amki, M., and Wegener, S. Improving cerebral blood flow after arterial recanalization: a novel therapeutic strategy in stroke. *International Journal of Molecular Sciences*, 2017;18(12):2669.  
https://doi.org/10.3390/ijms18122669 PMid:29232823  
PMcid:PMC5751271

24- Eduardo E, Montalvo-Jave, Tomas Escalante-Tattersfield, Jose A. Ortega-Salgado, Enrique Piña, and David A. Geller, Factors In The Pathophysiology Of The Liver Ischemiareperfusion Injury. *J Surg Res*. 2008 June 1;147(1):153-159.  
https://doi.org/10.1016/j.jss.2007.06.015 PMid:17707862  
PMcid:PMC2443391

25- Tuzlaci E, Aymaz PE, Turkish folk medicinal plants, part IV: Gonen (Balikesir). *Fitoterapia*, 2001;72:323-343.  
https://doi.org/10.1016/S0367-326X(00)00277-X  
PMid:11395255

26- Akgül MB, Sindak N, Karakoç Z, Gülaydin A, Topikal Olarak Uygulanan Menençig Yağı ve Gliserin Solüsyonun Japon Bildircinlerinde (Coturnix Coturnix Japonica) Yara İyileşmesi Üzerine Etkileri. *Harran Univ Vet Fak Derg*, 2016;5(2):146-151.

27- Zhang Y, Wang Y, Feng X, Zhang S, Xu X, Li D, Niu S, Bo Y, Wang C, Li Z, Xia G, Zhang H, Oocyte-derived microvilli control female fertility by optimizing ovarian follicle selection in mice, *Nature Communications* https://doi.org/10.1038/s41467-021-22829-2  
PMid:33953177 PMcid:PMC8100162

28- Cohen, L Wang, S Marques, C Italy-Radio, S Barbaux, B Lefèvre, C Gourier and A Ziyyat, Oocyte ERM and EWI Proteins Are Involved in Mouse Fertilization, *Frontiers in Cell Developmental Biology*, 14 March 2022 https://doi.org/10.3389/fcell.2022.863729  
PMid:35359433 PMcid:PMC8963852

29- Wakayama T, Nakata H, Kurobo M, Sai Y, and Iseki S, 'Expression, Localization, and Binding Activity of the Ezrin/Radixin/Moesin Proteins in the Mouse Testis' *Journal of Histochemistry & Cytochemistry*, 2009;57(4):351-362.  
https://doi.org/10.1369/jhc.2008.952440 PMid:19064715  
PMcid:PMC2664978

30- Fouassier L, Duan CY, Feranchak AP, Yun CHC, Simon ESF, J. Fitz G, Doctor RB, Ezrin-Radixin-Moesin-Binding Phosphoprotein 50 Is Expressed at the Apical Membrane of Rat Liver Epithelia, *HEPATOLOGY* Vol. 2001;33(1).  
https://doi.org/10.1053/jhep.2001.21143 PMid:11124833