

Available online on 15.08.2023 at http://jddtonline.info

# Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited









Research Article

# Comparative Analysis of Phytochemical and Antioxidative Properties of Different Solvent Extracts of *Codium tomentosum* Stackhouse for Therapeutic Application

Babini C K a,b, Reena Aa,\*

- <sup>a</sup> PG and Research Department of Microbiology, Mohamed Sathak College of Arts & Science, Chennai, India
- <sup>b</sup> Kumararani Meena Muthiah College of Arts & Science, Chennai, India

#### Article Info:

#### Article History:

Received 08 June 2023 Reviewed 12 July 2023 Accepted 28 July 2023 Published 15 August 2023

#### Cite this article as:

Babini C K, Reena A, Comparative Analysis of Phytochemical and Antioxidative Properties of Different Solvent Extracts of *Codium tomentosum* Stackhouse for Therapeutic Application, Journal of Drug Delivery and Therapeutics. 2023; 13(8):72-80

DOI: http://dx.doi.org/10.22270/jddt.v13i8.6169

#### \*Address for Correspondence:

Reena A, PG and Research Department of Microbiology, Mohamed Sathak College of Arts & Science, Chennai, India

#### **Abstract**

Seaweeds are a phenomenal source of bioactive components in marine environments yet to be explored extensively. The study focused on estimating and identifying phytochemical components, metabolites, antioxidant efficiency of edible and green tomentosum (Chlorophyta). Qualitative phytochemical analysis of five solvent extracts revealed the presence of Phenol, Flavonoids, Terpenoids, Alkaloids, Tannins, Steroids, Carbohydrates, Glycosides, Amino acids and Proteins. Total phenol content (TPC) equivalent to GAE of five extracts estimated shown highest in chloroform and lowest in methanol - CE ( $194.53 \pm 0.008$  mg GAE/g) and ME (138.97± 0.007mg GAE/g). Total flavonoid content (TFC) quercetin equivalent (QE) was reported lowest in aqueous extract AE (59.982 ± 0.024 mg QE/g) and highest in chloroform - CE (213.07± 0.014 mg QE/g). The secondary metabolites profile of methanol extract analyzed by GC-MS revealed prominent components, Hexadecanoic acid, Flavones, Oleic acid, Dodecanoic acid, Pentadeconoic acid, and phenol derivative having a spectrum of bioactivity. In vitro, the Antioxidant activity of the five solvent extracts of Codium tomentosum was confirmed by DPPH and ABTS methods. It is evident from the present investigation that the edible green seaweed Codium tomentosum Stack House is a promising source of bioactive components that could be further explored for antimicrobial, anticancer, and antibiofilm properties through green synthesis of nanoparticles for pharmaceutical and nutraceutical applications.

Keywords: Codium tomentosum, phytochemical, GC-MS, anti-oxidative, edible seaweed

#### **INTRODUCTION**

Bioactive components isolated from natural sources are in high demand due to their various bioactivities such as antimicrobial, anti-oxidative, anti-cancer, anti-inflammatory, and anti-diabetic properties.1-2 Living organisms produces Reactive oxygen species (ROS) during the normal metabolic process. Free radicals such as superoxide anion (O2), hydroxyl radical (OH.), nitric oxide (NO) and hydrogen peroxide (H2O2) are various forms of activated oxygen that create oxidative stress in the cell. Oxidative stress damages the cellular mechanism and causes diseases like ulcerative colitis, cancer, atherosclerosis. cardiovascular diseases. ageing rheumatoid arthritis.3-4 Antioxidants minimize oxidative stress, thereby decreasing cellular damage by scavenging the free radicals or preventing radical formation. Natural antioxidants emerge as a better option for synthetic antioxidants, which pose poisonous and carcinogenic effects<sup>5</sup>-6. Hence antioxidants from harmless and easily available natural sources are expanding attention.

Marine is a huge natural resource hub with potential biota with various applications. Since ancient times in India, China and other countries, thousands of natural products were isolated and exploited from marine flora, microalgae, seaweed, and mangrove plants for biomass and medical applications. Seaweed is a natural treasure with essential bioactive phytochemicals, polysaccharides, fibre, amino acids,  $\omega\text{--}3$  fatty acids, minerals, iodine and vitamins.  $^{10\text{--}11}$ 

Seaweeds are classified based on the pigment into Phaeophycean (fucoxanthin - Brown seaweed), Chlorophyta (chlorophyll a, chlorophyll b - Green seaweed), and seaweed-Rhodophyta (Red phycocyanin, phycoerythrin). 12-13 Bioactive components of seaweeds possess various therapeutic significance, such as antiinflammatory,<sup>14</sup> anti-diabetic,<sup>15</sup> anti-bacterial,<sup>16</sup> anti-viral, anti-fungal, anti-cancer, 17-18 and antioxidant properties. 1,19-20 In order to fight nutritional deficiencies, seaweeds are also used as a supplement in traditional food cultures 21 and for extracting and isolating bioactive substances to formulate nutraceutical supplements.<sup>22</sup> Phytochemical components as potential functional food intended to protect against metabolic deficiency and non-communicable diseases.<sup>23,12</sup> The present study concentrated on Codium tomentosum Stack House, with a wide biotechnological application 24 is an edible green seaweed that grows up to 30 cm long and belongs to the family Codiaceae in the Phylum Chlorophyta. The fronds have a

ISSN: 2250-1177 [72] CODEN (USA): JDDTA0

velvety texture and are firm, spongy, and covered in colourless hair visible when submerged <sup>25</sup>. The current study intends to determine the antioxidative activity and to identify the phytochemical compounds and the metabolites present in the five different solvents (Methanol, Chloroform, Hexane, Aqueous and Ethyl Acetate) extracts of C. tomentosum. Solvents of various polarity are employed to determine the best choice of solvent for the extraction process in seaweeds. Standard methods of Qualitative and quantitative phytochemical assay were carried out. The antioxidant potential of Codium sp was characterised by DPPH and ABTS biochemical methods by evaluating their 1,1-diphenyl 2 picrylhydrazyl radical (DPPH) and 2,2'-azinobis-(3ethylbenzothiazoline-6-sulfonate) (ABTS) radical cation scavenging abilities. The primary and secondary metabolites were identified by GC-MS analysis from high polar solvent extract (Methanol) of *Codium tomentosum*.

#### **MATERIALS AND METHODS:**

#### Sample collection and processing

Green Seaweed *Codium sp* was collected from the coastal region of Mandapam, Ramanadhapuram, Tamil Nadu. The collected Samples were thoroughly washed with seawater to remove the surface debris and further washed with distilled water. The cleansed seaweed was shade dried, powdered and stored for further extraction. The seaweed was authenticated as *Codium tomentosum* - Stack house (Fig.1a) by the botanist of the Botanical Survey of India, Howrah, India.



Figure (1a): Codium tomentosum Stackhouse



Figure (1b): Solvent extraction by Soxhlet

#### **Extract preparation**

Five solvents with different polarities, Hexane, Chloroform, Ethyl acetate, Methanol and Aqueous, were employed to prepare extracts in soxhlet at the proper temperature. The extracts were concentrated, dried and stored at 4°C. (Fig.1b)

#### **Characterization of Extracts**

#### Qualitative analysis of Phytochemical

Qualitative Phytochemical analysis of all the extracts was carried out by standard methods for the following components - Alkaloids, Terpenoids, Steroids, Phenol, Flavonoid, Tannin, Carbohydrate, Saponin and Glycosides.<sup>26-29</sup>

#### **Test for Alkaloids:**

Concentrated 2 mL HCl was added to 2 mL algal extract. A few drops of Mayer's reagent were added. The appearance of a green or white precipitate indicates the presence of alkaloids.

#### Test for steroids:

To 0.5~mL of extract, 2~mL of chloroform and 1~ml sulphuric acid ( $H_2SO_4$ ) was added. The appearance of a reddish-brown ring at the interface indicates the presence of Steroids.

#### Test for tannins:

5% ferric chloride was added to 1~mL of algal extract. The formation of a dark blue or greenish-black colour indicates the presence of tannins.

#### **Test for Terpenoids:**

Chloroform (2 mL) and concentrated Sulphuric acid were added to  $0.5\ \text{mL}$  of algal extract for terpenoid identification.

The presence of terpenoids is confirmed by forming a reddishbrown hue at the contact.

#### Test for flavonoids:

 $2\,$  mL of algal extract was mixed with  $1\,$  mL 2N sodium hydroxide (NaOH). The yellow colour formation confirms the presence of flavonoids.

#### Test for phenol:

Algal extract (1ml) was diluted with 2 mL of distilled water, and a few drops of 10% ferric chloride were added. The presence of phenols is identified by forming a blue or green colour.

#### Test for carbohydrate:

To the 2mL of seaweed extract, 5mL of Fehling's solution was added and heated to a boil. The formation of a yellow or brownish-red cuprous oxide precipitate indicated the presence of carbohydrates.

#### Test for glycosides:

Ammonium solution (10%) and 3 mL chloroform were added to 2 mL algal extract. The formation of pink colour identifies the presence of glycosides.

#### Test for saponins:

To the 2ml algal extract, an equal volume of distilled water was added and agitated for 15 minutes. The formation of foam indicates the presence of saponins.

ISSN: 2250-1177 [73] CODEN (USA): JDDTA0

#### Test for amino acids and proteins

To  $1.0\,$  ml of seaweed extract, 5-8 drops of 5 % sodium hydroxide solution were added, followed by two drops of 1 % copper sulphate. The formation of pink or purple colour confirmed the presence of amino acids and proteins.

#### **Quantitative Phytochemical Analysis**

#### **Estimation of Total Phenol (TPC)**

The Folin-Ciocalteau method was used to determine the total phenolic content of the methanol extract  $^{30\text{-}33}$ . An aliquot of 0.1 ml of seaweed extract was mixed with 3 ml of distilled water, and then 0.5 ml of Folin-Ciocalteau reagent was added. To this, 20% sodium carbonate was added and mixed thoroughly. The tubes were incubated in a boiling water bath for 30 min and then cooled, and absorbance was measured at 760 nm. Total phenol concentration was estimated by a standard calibration curve using different concentrations of gallic acid (0.01- 0.1 mM), and the results were expressed as mg of gallic acid equivalents (GAEs) per g of extract.

#### **Estimation of Total Flavonoid Content (TFC)**

The aluminium chloride method estimated the TFC of Methanol extracts of seaweed. $^{34}$  0.5 ml of 2% AlCl $_{3}$  in an ethanol solution was added to 0.5 ml of extract, after one hour of incubation at room temperature, the yellow colour developed. Absorbance was measured at 420 nm with a UV-visible spectrophotometer. A standard graph was prepared using quercetin, and the total flavonoid content was expressed in mean as quercetin equivalent (mg QE /g).

#### Gas chromatography-Mass Spectrometry (GC-MS)

GCMS analyzed the methanol extract of the *Codium sp* was Shimadzu-QP2010 Plus Model. The following chromatographic conditions were used: Helium was used as the carrier gas at a flow rate of 1.05 mL/min; the injector was operated at 250 °C, and column oven temperature was programmed at 45-280°C at a rate of 10°C/min in injection mode. The following MS conditions were used: an ionization voltage of 70 eV; ion source temperature of 200°C; interface temperature of 280°C; and a mass range of 40 to 700 m/z. The mass spectrum of the unknown component was compared with the spectrum of the known components stored in the NIST 14s.lib (National Institute of Standards and Technology) library and the WILEY8.LIB library.

## In vitro antioxidant assays

DPPH' radical scavenging activity

The antioxidant activity of various solvent extracts of *Codium* sp was measured based on the scavenging activity of the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical  $^{35\text{-}36}$ . One mL of 0.1 mM DPPH solution in methanol was mixed with 1 mL of various seaweed extract concentrations (20 -120 µg/mL). The mixture was then allowed to stand for 30 minutes in the dark. Distilled water was used as the reference standard. One mL of methanol and 1 mL of DPPH solution were used as controls. The decrease in absorbance was measured using a UV-Vis spectrophotometer at 517 nm. The percentage of inhibition was calculated using the following formula:

```
% of DPPH radical inhibition
= [Control - Sample/Control] \times 100
```

The IC50 concentration of extracts capable of reducing 50% of DPPH radical were calculated by linear regression using the concentration of samples and the percentage of the inhibition curve.

ABTS●+ Radical Scavenging assay

The antioxidant capacity was determined in terms of the ABTS●+ (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical cation scavenging activity following the procedure described by Delgado-Andrade.<sup>37</sup> ABTS●+ was obtained by reacting 7 mM ABTS stock solution with 2.45 mM potassium persulfate, and the mixture was left to stand in the dark at room temperature for 12-16 h before use. The ABTS solution (stable for 2 days) was diluted with 5 mM phosphate-buffered saline (pH 7.4) to an absorbance of 0.70±0.02 at 730 nm. After adding ethanol and ethanol extracts of varying concentrations (5-30µg/mL) to 1 mL of diluted ABTS●+ solution, the absorbance was measured at 734 nm after 10 min. The ABTS●+ radical-scavenging activity of the samples was expressed as follows:

The IC50 concentration of extracts capable of reducing 50% of ABTS radical was calculated by linear regression using the concentration of samples and the percentage of the inhibition curve. Concentration expressed in  $\mu g/mL$  equivalent to Ascorbic acid Standard.

#### RESULTS AND DISCUSSION

Marine life exhibits an abundance of distinct phytochemical constituents based on their physiological and environmental habitat. Seaweeds have been a good source of bioactive molecules for various applications. Red, Brown and Green seaweeds are recently explored for various environmental, medical <sup>38</sup> and nutraceutical applications <sup>39</sup>. The present study exposed the choice of solvents for extraction, various chemical components and secondary metabolites present in the *Codium tomentosum* with diverse potential.

# **Qualitative Analysis of Phytochemicals**

Table 1 illustrates the results of Codium tomentosum's phytochemical screening. Various metabolites were identified through the current screening of hexane, chloroform, ethyl acetate, methanol, and aqueous extracts. Alkaloids were present in all the extracts except chloroform. Phenol and flavonoids were positive in HE, ME, CE, and EAE, whereas Saponins were absent in chloroform and ethyl acetate extract. Terpenoids, steroids, carbohydrates, glycosides and proteins tested positive in all five solvent extracts 40-41 Among the five solvents, methanol was the best choice, as it was strongly positive for Phenol, flavonoids, tannins and steroids and positive for all other metabolites 42. The Alkaloids, Phenol, Flavonoids, Terpenoids and Tannins were reported as potential therapeutical agents with antibacterial, antiviral, anti-inflammatory, antiulcer and antioxidant activity, 43-44. The presence of carbohydrates, amino acids and proteins proves nutritional value of edible seaweed Codium tomentosum 12,45,27

Table 1: Qualitative analysis of Phytochemicals

| Phytochemicals | Aqueous | Hexane | Methanol | Ethyl Acetate | Chloroform |
|----------------|---------|--------|----------|---------------|------------|
|                | (AE)    | (HE)   | ME)      | (EAE)         | (CE)       |
| Alkaloids      | +       | ++     | ++       | +             | -          |
| Phenols        | -       | +++    | +++      | ++            | +          |
| Flavonoids     | -       | +++    | ++       | ++            | +          |
| Tannins        | +       | +      | +++      | +             | -          |
| Saponins       | +       | ++     | ++       | -             | -          |
| Terpenoids     | +       | ++     | ++       | +             | ++         |
| Steroids       | +       | ++     | +++      | ++            | ++         |
| Carbohydrates  | ++      | ++     | ++       | +             | +          |
| Glycosides     | +       | ++     | ++       | +             | +          |
| Amino acids    | ++      | ++     | ++       | +             | +          |
| Proteins       | ++      | +++    | ++       | ++            | +          |

+++ → Strongly positive, ++ → Moderately positive, + → Positive, - → Absent

#### Quantitative analysis of Phytochemicals

The quantitative analysis of Phenol and Flavonoid contents in the extracts of *Codium sp.* is shown in Table 2. Total phenol content was expressed as mg equivalent to gallic acid (GAE) per gram and mg/g quercetin equivalent (QE) for Flavonoid. Among the five extracts quantified, Chloroform extract reported highest TPC  $194.53\pm0.008$  mg GAE/g, and Methanol extract ( $138.97\pm0.007$  mg GAE/g) with the lowest  $^{46}$ . While the total quantity of flavonoids reported in various extracts ranged from the lowest in aqueous extract ( $59.982\pm0.024$  mg

QE/g) to the highest in chloroform extract (213.07 $\pm$ 0.014 mg QE/g).<sup>47</sup> The solvents employed in the current investigation for the extraction process - chloroform, hexane, ethyl acetate, and methanol were found to be effective in extracting phytochemicals. Flavonoids with antimicrobial, antioxidative, and spasmolytic activity and phenol compounds with antiviral, anti-inflammatory, and anticancer characteristics were reported by Aliyu *et al*<sup>48</sup>. The presence of flavonoids and phenol components implies that *Codium tomentosum* has therapeutic significance.

Table 2: Quantitative analysis of Total Flavonoid and Total Phenol content.

| Component (μg/mg) | Methanol Extract | Chloroform Extract | Hexane Extract | Aqueous Extract | Ethyl Acetate Extract |
|-------------------|------------------|--------------------|----------------|-----------------|-----------------------|
| Phenol            | 138.97±0.007     | 194.53±0.008       | 191.06±0.018   | 142.43±0.018    | 185.01±0.013          |
| Flavonoid         | 154.28±0.003     | 213.07±0.014       | 205.90±0.022   | 59.982±0.024    | 197.85±0.038          |

Values are expressed as mean ± SD (n=3).

#### Gas chromatography-Mass Spectrometry (GC-MS)

In the present GCMS analysis, ten phytochemical components were identified from the methanol extract of *C.tomentosum*. Table 3 represents the profile of the components. The chromatogram is portrayed in Fig. 2. Major components identified were Dodecanoic acid, methyl ester; Flavone; 6.13-Pentacenedione, n-Hexadecanoic acid, Oleic acid, Phenol 2,-

bis{1.1-dimethylethyl}-4 [{4-hydroxy-3,5 -dimethyl phenyl}methyl]. Most of the components were reported to have bioactivity. Fatty acids such as - Oleic acid, Hexadecanoic acid, Flavones and Methyl ester were reported with antioxidant activity. 42,49-51 Dodecanoic acid was reported to have potential antimicrobial and anti-inflammatory activity 52,47

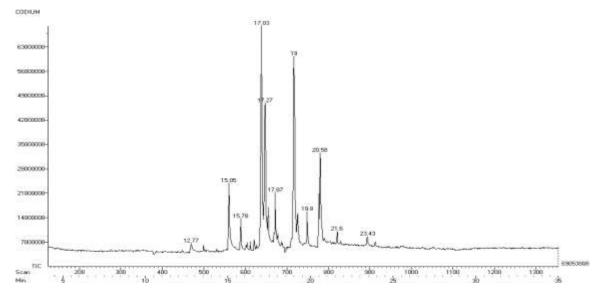



Figure 2: Codium tomentosum GCMS chromatogram

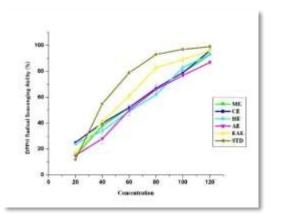
ISSN: 2250-1177 [75] CODEN (USA): JDDTAO

Table 3: GC-MS profile of Methanol extract of Codium tomentosum

| S.No | Structure                               | Compound Name                                                                       | RT    | MW              | MF                                             |
|------|-----------------------------------------|-------------------------------------------------------------------------------------|-------|-----------------|------------------------------------------------|
| 1.   | 5                                       | 4, 7 Methanoazulene,decahydro-<br>1.4.9.9 tetramethyl                               | 15.05 | 206.37<br>g/mol | C <sub>15</sub> H <sub>26</sub>                |
| 2.   |                                         | Flavone                                                                             | 15.78 | 222.24<br>g/mol | C <sub>15</sub> H <sub>10</sub> O <sub>2</sub> |
| 3.   | ~~~\                                    | Dodecanoic acid ,2,8, dimethyl, methyl ester                                        | 17.03 | 242.4 g/mol     | C15H30O2                                       |
| 4.   | J. OHO                                  | Phenol 2- [[3-{4methyl phenyl}carbonyl]-                                            | 17.27 | 272.25g/mol     | C <sub>15</sub> H <sub>12</sub> O <sub>5</sub> |
| 5.   | *************************************** | n-Hexadecanoic acid                                                                 | 17.87 | 256.42<br>g/mol | C <sub>16</sub> H <sub>32</sub> O <sub>2</sub> |
| 6.   |                                         | Pregn-5-en 20 one 3 hydroxy                                                         | 20.58 | 1063.2g/mol     | $C_{15}H_{82}O_{23}$                           |
| 7.   | HOTOGH                                  | Phenol 2,- bis{1.1-dimethylethyl}-4<br>[{4-hydroxy-3,5 –<br>dimethylphenyl}methyl]- | 23.43 | 340.5g/mol      | C23H32O2                                       |
| 8.   | OH                                      | Cyclohexanol,1 methyl-4-{1-<br>methylethylidene}-                                   | 12.77 | 182.26g/mol     | $C_{11}H_{18}O_2$                              |
| 9.   |                                         | 6.13-Pentacenedione                                                                 | 19.8  | 932.2<br>g/mol  | C44H20Br4O4                                    |
| 10.  | OH CHI                                  | Chloramphenicol                                                                     | 21.6  | 323.13<br>g/mol | C11H12Cl2N2O5                                  |
| 11.  | 3                                       | Oleic acid                                                                          | 19    | 282.5<br>g/mol  | C <sub>18</sub> H <sub>34</sub> O <sub>2</sub> |

# 3.4: In vitro Antioxidant assay

Radical Scavenging activity of five solvent extracts of *Codium tomentosum* was observed by DPPH and ABTS methods. The


Percentage of Radical Scavenging ability data is presented in Table 4, and the IC 50 value is in Table 5. Corresponding graphs for DPPH and ABTS, % of RSA in Fig. 3(a),3(b) and IC 50 were depicted in Fig 4.

ISSN: 2250-1177 [75] CODEN (USA): JDDTA0

Table 4: C. tomentosum DPPH and ABTS % RSA

| Test | Concentration |            | % Ra       | dical Scavenging | Ability of <i>C.tomen</i> | tosum      |            |
|------|---------------|------------|------------|------------------|---------------------------|------------|------------|
|      |               | ME         | CE         | HE               | AE                        | EAE        | STD        |
| DPPH | 20            | 15.13±2.49 | 24.58±2.57 | 20.46±2.65       | 14.78±2.66                | 16.71±2.65 | 12.07±0.11 |
|      | 40            | 37.66±3.90 | 39.59±4.01 | 34.00±3.78       | 27.80±6.75                | 41.15±3.88 | 31.36±0.83 |
|      | 60            | 51.62±3.95 | 51.89±4.73 | 48.97±5.38       | 49.73±6.62                | 60.88±1.35 | 46.85±1.29 |
|      | 80            | 66.92±1.04 | 67.10±6.02 | 62.42±1.24       | 65.79±5.69                | 82.79±4.80 | 52.17±0.98 |
|      | 100           | 78.91±4.33 | 79.26±3.96 | 82.82±4.58       | 76.90±3.59                | 89.23±3.17 | 59.73±1.65 |
|      | 120           | 93.23±2.21 | 95.51±1.79 | 92.53±1.35       | 87.21±2.55                | 95.64±1.51 | 76.48±1.81 |
| ABTS | 20            | 10.58±2.65 | 15.62±4.16 | 20.46±5.50       | 10.43±2.47                | 13.05±2.06 | 12.07±0.11 |
|      | 40            | 29.91±3.76 | 31.57±3.25 | 34.00±5.61       | 24.47±4.01                | 40.41±4.83 | 55.47±0.40 |
|      | 60            | 55.41±0.75 | 45.09±5.48 | 48.97±3.36       | 46.03±1.53                | 61.82±2.21 | 79.19±0.57 |
|      | 80            | 60.64±3.54 | 58.85±6.51 | 62.42±4.01       | 56.53±4.62                | 75.88±0.83 | 93.06±0.68 |
|      | 100           | 78.91±4.66 | 79.26±4.25 | 82.82±5.85       | 71.27±6.74                | 88.88±0.97 | 96.71±0.70 |
|      | 120           | 93.23±2.08 | 95.51±2.15 | 92.53±5.41       | 79.90±4.43                | 95.64±2.86 | 99.15±0.54 |

Result expressed Mean ± S.D the experiment was conducted in triplicates (n=3) value



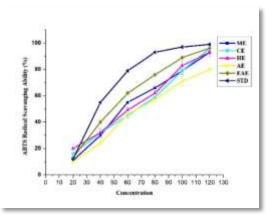



Figure 3(a): DPPH % RSA

Figure 3(b): ABTS% RSA

Table 5: IC 50 value of various solvent extracts of *C.tomentosum* 

| Sample                | IC 50 μg/mL |                   |  |  |
|-----------------------|-------------|-------------------|--|--|
|                       | DPPH        | ABTS <sup>+</sup> |  |  |
| Methanol Extract      | 64.29       | 60.41             |  |  |
| Chloroform Extract    | 84.06       | 56.16             |  |  |
| Hexane Extract        | 60.90       | 60.75             |  |  |
| Aqueous Extract       | 67.38       | 65.06             |  |  |
| Ethyl Acetate Extract | 54.77       | 52.01             |  |  |
| Standard<br>Vitamin C | 3.79        | 2.11              |  |  |

ISSN: 2250-1177 [78] CODEN (USA): JDDTA0

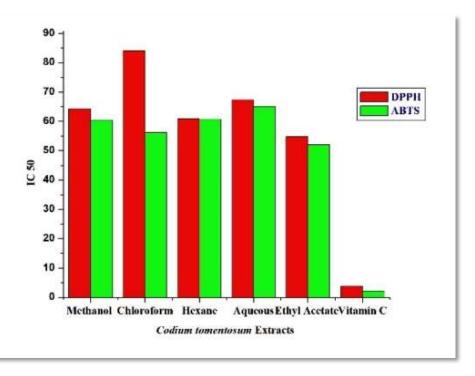



Figure 4: IC 50 of C.tomentosum

The presence of Phenolic components and flavonoids increases the antioxidant activity of the seaweed. Among the scavenging ability of all five extracts compared along with the standard Vitamin C (Ascorbic acid), Ethyl Acetate Exhibited IC 50 value at the lowest concentration of 54.77µg/mL for DPPH and 52.01 µg/mL for ABTS. All the extracts displayed radical scavenging ability, with slight differences in their potency. From the present analysis, Ethyl acetate, Hexane and Methanol extracts disclosed high antioxidant potency, followed by chloroform and Aqueous extracts. The presence of various quantities of phytochemicals in the different solvents supports the difference in the efficacy of antioxidant activity of *Codium tomentosum.* $^{41}$ 

#### **CONCLUSION**

Seaweeds are a rich source of important biological components. Edible seaweeds are consumed raw or cooked for their nutritional value and pharmacological importance. The phytochemical analysis of *Codium tomentosum* indicated the presence of significant therapeutical components such as phenol and flavonoids with antioxidant, anti-microbial, and anti-inflammatory potency. Amongst the solvents employed, Methanol, Ethyl Acetate and Hexane displayed an extended range of phytocomponents and *in vitro* anti-oxidative activity. Separation, Purification, green synthesis of nanoparticles and their toxicity studies (*Codium tomentosum*) paves a promising application in medical and pharmaceutical industries in an eco-friendly approach.

#### **Acknowledgements**

We sincerely thank IIT Madras for their assistance in the GC-MS analysis.

### **Conflicts of interest:**

The authors declare no conflict of interest.

#### **Authors Contribution:**

Babini C K: Investigation, Methodology, Resources, analysis and Writing – original draft

Reena A: Conceptualization, Validation, and Supervision

#### **Funding:**

This research is not financially supported by any funding agencies

#### **REFERENCES**

- Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B. Antioxidant compounds and their antioxidant mechanism. Antioxidants. 2019 Mar 22; 10:1-29.
- Abreu TM, Monteiro VS, Martins AB, Teles FB, da Conceição Rivanor RL, Mota ÉF, Macedo DS, de Vasconcelos SM, Júnior JE, Benevides NM. Involvement of the dopaminergic system in the antidepressant-like effect of the lectin isolated from the red marine alga Solieria filiformis in mice. International journal of biological macromolecules. 2018 May 1; 111:534-41. https://doi.org/10.1016/j.ijbiomac.2017.12.132
- 3. Kokilam G, Vasuki S, Sajitha N. Biochemical composition, alginic acid yield and antioxidant activity of brown seaweeds from Mandapam region, Gulf of Mannar. Journal of applied pharmaceutical science. 2013 Nov 29; 3(11):099-104.
- Padmanabhan KL. Phytochemical analysis and antioxidant activity of seaweed extracts.
- Shannon E, Abu-Ghannam N. Seaweeds as nutraceuticals for health and nutrition. Phycologia. 2019 Sep 3; 58(5):563-77. https://doi.org/10.1080/00318884.2019.1640533
- Mbah CJ, Orabueze I, Okorie NH. Antioxidants properties of natural and synthetic chemical compounds: Therapeutic effects on biological system. Acta Scientific Pharmaceutical Sciences. 2019; 3(6):28-42. https://doi.org/10.31080/ASPS.2019.03.0273
- Sithranga Boopathy N, Kathiresan KJ. Anticancer drugs from marine flora: An overview. Journal of oncology. 2010 Oct; 2010. https://doi.org/10.1155/2010/214186
- Yuan D, Xu Y, Kong B, Cao C, Zhang F, Xia X, Zhang H, Liu Q, Zhao J. Application of seaweed dietary fiber as a potential alternative to phosphates in frankfurters with healthier profiles. Meat Science. 2023 Feb 1; 196:109044. https://doi.org/10.1016/j.meatsci.2022.109044

ISSN: 2250-1177 [79] CODEN (USA): JDDTAO

- Cardoso C, Almeida J, Coelho I, Delgado I, Gomes R, Quintã R, Bandarra NM, Afonso C. Farming a wild seaweed and changes to its composition, bioactivity, and bioaccessibility: The Saccorhiza polyschides case study. Aquaculture. 2023 Mar 15; 566:739217. https://doi.org/10.1016/j.aquaculture.2022.739217
- 10. Bouga M, Combet E. Emergence of seaweed and seaweed-containing foods in the UK: focus on labeling, iodine content, toxicity and nutrition. Foods. 2015 Jun 15; 4(2):240-53. https://doi.org/10.3390/foods4020240
- Oucif H, Benaissa M, Ali Mehidi S, Prego R, Aubourg SP, Abi-Ayad SM. Chemical composition and nutritional value of different seaweeds from the west Algerian coast. Journal of Aquatic Food Product Technology. 2020 Jan 2; 29(1):90-104. https://doi.org/10.1080/10498850.2019.1695305
- Kumar Y, Tarafdar A, Badgujar PC. Seaweed as a source of natural antioxidants: Therapeutic activity and food applications. Journal of Food Quality. 2021 Jun 25; 2021:1-7. https://doi.org/10.1155/2021/5753391
- Chye FY, Ooi PW, Ng SY, Sulaiman MR. Fermentation-derived bioactive components from seaweeds: functional properties and potential applications. Journal of Aquatic Food Product Technology. 2018 Feb 7; 27(2):144-64. https://doi.org/10.1080/10498850.2017.1412375
- 14. Yu Y, Wang L, Fu X, Wang L, Fu X, Yang M, Han Z, Mou H, Jeon YJ. Anti-oxidant and anti-inflammatory activities of ultrasonicassistant extracted polyphenol-rich compounds from Sargassum muticum. Journal of Oceanology and Limnology. 2019 May; 37:836-47. https://doi.org/10.1007/s00343-019-8138-5
- 15. Jia RB, Wu J, Li ZR, Ou ZR, Lin L, Sun B, Zhao M. Structural characterization of polysaccharides from three seaweed species and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats. International journal of biological macromolecules. 2020 Jul 15; 155:1040-9. https://doi.org/10.1016/j.ijbiomac.2019.11.068
- 16. Saleh B, Al-Hallab L, Al-Mariri A. Seaweed Extracts Effectiveness against Selected Gram-negative Bacterial Isolates: Seaweed Extracts for Gram Negative Bacteria. Pakistan Journal of Scientific & Discourse amp; Industrial Research [Internet]. 2019 Aug. 9 [cited 2023 Jul. 14]; 62(2):101-10. https://doi.org/10.52763/PJSIR.BIOL.SCI.62.2.2019.101.110
- 17. El Shafay SM, Ali SS, El-Sheekh MM. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. The Egyptian Journal of Aquatic Research. 2016 Mar 1; 42(1):65-74. https://doi.org/10.1016/j.ejar.2015.11.006
- Elkhateeb MI, El-Bitar AM, Saleh SR, Abdelreheem A. Evaluation of bioactive phytochemical characterization, antioxidant, antimicrobial, and antihemolytic properties of some seaweeds collected from Red Sea coast, Egypt. Egyptian Journal of Aquatic Biology & Fisheries. 2021 Jul 1; 25(4). https://doi.org/10.21608/ejabf.2021.190299
- 19. García V, Uribe E, Vega Gálvez A, Delporte Vergara C, Valenzuela Barra G, López J, Pastén A. Health-promoting activities of edible seaweed extracts from Chilean coasts: assessment of antioxidant, anti-diabetic, anti-inflammatory and antimicrobial potential.
- 20. Rajauria G, Foley B, Abu-Ghannam N. Characterization of dietary fucoxanthin from Himanthalia elongata brown seaweed. Food Research International. 2017 Sep 1; 99:995-1001. https://doi.org/10.1016/j.foodres.2016.09.023
- Wijesekara I, Karunarathna WK. Usage of seaweed polysaccharides as nutraceuticals. In Seaweed polysaccharides 2017 Jan 1 (pp. 341-348). Elsevier. https://doi.org/10.1016/B978-0-12-809816-5.00018-9
- 22. Saikia S, Mahnot NK, Sahu RK, Kalita J. Edible seaweeds as potential source of nutraceuticals. Marine Niche: Applications in Pharmaceutical Sciences: Translational Research. 2020:183-201. https://doi.org/10.1007/978-981-15-5017-1\_10
- Cherry P, Yadav S, Strain CR, Allsopp PJ, McSorley EM, Ross RP, Stanton C. Prebiotics from seaweeds: An ocean of opportunity? Marine drugs. 2019 Jun 1; 17(6):327. https://doi.org/10.3390/md17060327

- 24. Rey F, Cartaxana P, Melo T, Calado R, Pereira R, Abreu H,
  Domingues P, Cruz S, Domingues MR. Domesticated populations of
  Codium tomentosum display lipid extracts with lower seasonal
  shifts than conspecifics from the wild-relevance for
  biotechnological applications of this green seaweed. Marine
  Drugs. 2020 Mar 31; 18(4):188
  https://doi.org/10.3390/md18040188
- Guiry MD. AlgaeBase. World-wide electronic publication. http://www. algaebase. org. 2013.
- Raaman N. Phytochemical techniques. New India Publishing; 2006. (book) https://doi.org/10.59317/9789390083404
- 27. Khan AM, Qureshi RA, Ullah F, Gilani SA, Nosheen A, Sahreen S, Laghari MK, Laghari MY, Rehman SU, Hussain I, Murad W. Phytochemical analysis of selected medicinal plants of Margalla Hills and surroundings. Journal of medicinal plants research. 2011 Nov 9; 5(25):6017-23.
- 28. Deyab M, Elkatony T, Ward F. Qualitative and quantitative analysis of phytochemical studies on brown seaweed, Dictyota dichotoma. International Journal of Engineering Development and Research. 2016; 4(2):674-8.
- 29. Faisal al-hashdy D, El-Shaibany AM, Raweh SM, Humaid AA, El-Aasser MM. Preliminary phytochemical screening for various secondary metabolites, quantitative and qualitative analysis of Yemeni brown seaweed Sargassum vulgare. GSC Biological and Pharmaceutical Sciences. 2022; 20(1):298-313. https://doi.org/10.30574/gscbps.2022.20.1.0294
- 30. SINGLETON V. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods Enzymol.. 1999; 299:152-78. https://doi.org/10.1016/S0076-6879(99)99017-1
- 31. Maurya S, Singh D. Quantitative analysis of total phenolic content in Adhatoda vasica Nees extracts. International Journal of PharmTech Research. 2010 Oct; 2(4):2403-6.
- 32. Kupina, S., Fields, C., Roman, M. C., & Brunelle, S. L. (2018).

  Determination of Total Phenolic Content Using the Folin-C Assay:
  Single-Laboratory Validation, First Action. Journal of AOAC
  International, 2017; 101(5):1466-1472.
  https://doi.org/10.5740/jaoacint.18-0031
- 33. Lamuela-Raventós RM. Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. Measurement of antioxidant activity & capacity: recent trends and applications. 2018 Jan 11:107-15. https://doi.org/10.1002/9781119135388.ch6
- 34. Kamtekar S, Keer V, Patil V. Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of applied pharmaceutical Science. 2014 Sep 27; 4(9):061-5.
- 35. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958 Apr 26; 181(4617):1199-200. https://doi.org/10.1038/1811199a0
- 36. Shoaib M, Rahman G, Shah SW, Umar MN. Synthesis of 4-aminoantipyrine derived Schiff bases and their evaluation for antibacterial, cytotoxic and free radical scavenging activity. ||| Bangladesh Journal of Pharmacology|||. 2015 Apr 17; 10(2):332-6. https://doi.org/10.3329/bjp.v10i2.22471
- 37. Delgado-Andrade C, Rufián-Henares JA, Morales FJ. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. Journal of Agricultural and Food Chemistry. 2005 Oct 5; 53(20):7832-6. https://doi.org/10.1021/jf0512353
- 38. Bartolomeu M, Vieira C, Dias M, Conde T, Couto D, Lopes D, Neves B, Melo T, Rey F, Alves E, Silva J. Bioprospecting antibiotic properties in photodynamic therapy of lipids from Codium tomemtosum and Chlorella vulgaris. Biochimie. 2022 Dec 1; 203:32-9. https://doi.org/10.1016/j.biochi.2022.09.012
- 39. Lopez-Santamarina A, Miranda JM, Mondragon AD, Lamas A, Cardelle-Cobas A, Franco CM, Cepeda A. Potential use of marine seaweeds as prebiotics: A review. Molecules. 2020 Feb 24; 25(4):1004. https://doi.org/10.3390/molecules25041004

- Kren V, Martínková L. Glycosides in medicine: "The role of glycosidic residue in biological activity". Current medicinal chemistry. 2001 Sep 1; 8(11):1303-28. https://doi.org/10.2174/0929867013372193
- 41. Celikler S, Vatan O, Yildiz G, Bilaloglu R. Evaluation of antioxidative, genotoxic and antigenotoxic potency of Codium tomentosum Stackhouse ethanolic extract in human lymphocytes in vitro. Food and chemical toxicology. 2009 Apr 1; 47(4):796-801. https://doi.org/10.1016/j.fct.2009.01.010
- 42. Chandralega G, Ramadas V. Screening of phytochemicals, fatty acid composition and in-vitro analysis of antioxidant property of green edible seaweed Caulerpa lentillifera (family: Caulerpaceae). J Pharm Sci Res. 2020; 11(3):1495-505.
- 43. Jeeva S, Marimuthu J, Domettila C, Anantham B, Mahesh M. Preliminary phytochemical studies on some selected seaweeds from Gulf of Mannar, India. Asian Pacific Journal of Tropical Biomedicine. 2012 Jan 1; 2(1):S30-3. https://doi.org/10.1016/S2221-1691(12)60125-7
- 44. Najah Z, Elsherif KM, Alshtewi M, Attorshi H. Phytochemical Profile and Heavy Metals Contents of Codium Tomentosum and Sargassum Honschuchi. J App Chem. 2015; 4(6):1821-7.
- 45. Roy S, Anantharaman P. Biochemical compositions of seaweeds collected from Olaikuda and Vadakkadu, Rameshwaram, Southeast Coast of India. Journal of Marine Science: Research & Development. 2017; 7(7):1-5. https://doi.org/10.4172/2155-9910.1000240
- 46. Houchi S, Mahdadi R, Khenchouche A, Song J, Zhang W, Pang X, Zhang L, Sandalli C, Du G. Investigation of common chemical components and inhibitory effect on GES-type β-lactamase

- (GES22) in methanolic extracts of Algerian seaweeds. Microbial pathogenesis. 2019 Jan 1; 126:56-62. https://doi.org/10.1016/j.micpath.2018.10.034
- 47. Rabecca R, Doss A, Pole RP, Satheesh S. Phytochemical and antiinflammatory properties of green macroalga Codium tomentosum. Biocatalysis and Agricultural Biotechnology. 2022 Oct 1; 45:102492 https://doi.org/10.1016/j.bcab.2022.102492
- 48. Aliyu AB, Musa AM, Sallau MS, Oyewale AO. Proximate composition, mineral elements and anti-nutritional factors of Anisopus mannii NE Br. (Asclepiadaceae). Trends in Applied Sciences Research. 2009; 4(1):68-72. https://doi.org/10.3923/tasr.2009.68.72
- 49. Ertas A, Yilmaz MA, Firat M. Chemical profile by LC-MS/MS, GC/MS and antioxidant activities of the essential oils and crude extracts of two Euphorbia species. Natural product research. 2015 Mar 19; 29(6):529-34. https://doi.org/10.1080/14786419.2014.954113
- 50. Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chemical biology & drug design. 2012 Sep; 80(3):434-9. https://doi.org/10.1111/j.1747-0285.2012.01418.x
- 51. Valentão P, Trindade P, Gomes D, de Pinho PG, Mouga T, Andrade PB. Codium tomentosum and Plocamium cartilagineum: Chemistry and antioxidant potential. Food chemistry. 2010 Apr 15; 119(4):1359-68. https://doi.org/10.1016/j.foodchem.2009.09.015
- 52. Subavathy P, Thilaga RD. GC-MS analysis of bioactive compounds from whole body tissue methanolic extract of Cypraea arabica (L. 1758). World journal of pharmaceutical research. 2016;5(3):800.