

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited

Open Access Full Text Article

Check for updates

Review Article

Nanomaterials as targeted delivery system of therapeutics for inhibition of cancer

Ardhendu Kumar Mandal

Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India

Article Info:

Article History:

Received 06 Oct 2023
Reviewed 02 Nov 2023
Accepted 23 Nov 2023
Published 15 Dec 2023

Cite this article as:

Mandal AK, Nanomaterials as targeted delivery system of therapeutics for inhibition of cancer, Journal of Drug Delivery and Therapeutics. 2023; 13(12):201-223

DOI: <http://dx.doi.org/10.22270/jddt.v13i12.6014>

Address for Correspondence:

Ardhendu Kumar Mandal, Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata - 700032, India

Abstract

Cancer, a disease with complex pathological process, is the principal cause of mortality and morbidity throughout the world. Conventional chemotherapy faces drawbacks regarding its low bioavailability, insolubility, high dose requirements, low therapeutic indices, cytotoxicity, multiple drug resistance-development, biological barriers related obstruction, and non-specific targeting. Cancer drug resistance includes over-expression of drug efflux transporters, hypoxic environment, and defective apoptotic pathways. To overcome these discrepancies, a lot of nanomaterials (NMs), as emerging delivery system, have attracted attention for carrying and delivering therapeutics to the desired sites of interest. For improving the targeting potential of the anticancer cargos, NMs are optimized for their sizes, shapes, and surfaces for enhancing their circulation time and targeting efficiency. The NMs through encapsulation or conjugation of cargos with ligands may target them to the cancer site/s with enhanced therapeutic efficacy in a controlled release manner. Generally, NMs, as cancer therapy, are utilized to target cancer cells, tumor microenvironment, and immune system mainly through enhanced permeability and retention (EPR) effect, stimuli-responsive targeting or modifying their surfaces with targeting ligands such as transferin, integrins, sugar, folic acid and antibodies for the enhancement of tissue targeting recognition and their internalization. This review demonstrates mainly the biomedical applications of NMs as delivery vehicles or systems functionalized with ligands and therapeutic agents to target cancer cells / tissues passively, actively or physically with higher inhibitory therapeutic efficacies against cancer.

Keywords: Cancer; Conventional chemotherapy; Nanomaterials; Biomedical applications; Therapeutic targeting; Inhibitory therapeutic efficacies

Introduction

Cancer includes a conjunction of different diseases owing to the consequence of gene mutations involving unregulated growth of cells through the interference with different cell processes such as attachment, division, or motility, and spreading into other tissues to form metastasis, leading to mortality ¹⁻⁴. Exposure of toxicants / pollutants, infections, poor diet, obesity, or lack of physical activity may damage genes and other bio-molecules, leading to carcinogenic mutations ⁵⁻⁷. In general, surgery or radiation therapy or chemotherapy as well as gene therapy, as the primary therapeutic approaches, are utilized to target solid tumors or destroy cancerous cells respectively for the survival of patients ⁸⁻¹¹. However, chemotherapeutics / genes and radiation not only kill cancerous cells but also destruct normal healthy cells or surrounding cells respectively owing to their non-specificity to target diseased cells, associated with the requirements of high toxic drug dosages, toxic side effects, drug non-targeting for blood-brain barrier and other biological barriers, and emergence of drug resistance, aggravating the healthy condition of the patients ¹²⁻¹⁴.

The multiple factors for the developing of drug-resistance in cancerous cells include the evolution and spontaneous intrinsic mutations, and the consequence of the acquired or extrinsic uptake of drugs ¹⁵. The chief mechanisms of drug resistance denote the drug inactivation, drug efflux, drug

target alteration, reduced drug uptake, DNA damage repair and cell death -inhibition ¹⁶. Epithelial-mesenchymal transition (EMT), a biological process to trigger tumors to metastatic forms, may induce apoptosis-resistant cancer progression through induction of over-expressed pre-mRNA processing factor (PRPF) ¹⁷⁻¹⁹. Over-expression of tau, a microtubular-associated protein, has been disclosed to engage in drug inactivation in different cancer cells ²⁰. Different mutations in tyrosine kinase inhibitors (TKI) and epidermal growth factor receptor (EGFR) in lung cancer have shown their enhanced drug resistance accompanied by the amplification in the MET gene ²¹. The alteration or over-expression of cell transporter proteins (ATP-binding cassette) or drug efflux protein (P-gp) may affect the drug uptake, export and accumulation, making chemotherapeutics unusable or pumping outside the cells, developing drug resistance ²². Apoptosis and autophagy, comprehended as programmed cell death and necrosis, may be inhibited or modified to induce cancer cell-resistance. Apoptosis-resistance may be gained through receptors like the tumor necrosis factor family, or mitochondria, whereas autophagy is linked to hypoxic processes ²³. Changes in the programmed cell death ligand (PD-L1) may generate resistance in anaplastic lymphoma kinase proteins in lung cancer, while resistance to phosphoinositide 3-kinase (PI3K) may reduce oxidative stress and prevent cell death in a hypoxia micro-tumor environment ²⁴. DNA damage repair systems may be constrained by gene silencing or mutation to develop resistance in cancer cells,

resulting in further mutations and enhanced resistance²⁵. Tumor heterogeneity and microenvironment can also take part in drug resistance through differential gene expression, motility or metastatic potential, relating to epigenetic, genetic, proteomic and transcriptomic factors, such as, chromosomal rearrangements or translocations of RNA and lesion-specific responses, and interfering and modifying cell communication by extracellular matrix growth factors and stromal cells²⁶⁻²⁸.

Gene therapy involves the delivery, replacement or transfer of defective genetic materials with the functional and the healthy copies of that genes to cancerous cells or the surrounding tissue to cause cell death, or reduce / eliminate the growth of cancer cells, or to regulate the altered genes or genetic mutations of cancer by silencing or enhancing the expression of specific genes^{10,11}.

To overcome the conventional therapeutic obstacles against cancer-growth, nanotechnology-based NMs (organic, inorganic and lipid) have attracted attention and emerged as optimistic delivery systems as well as carriers for cancer therapy owing to their unique physicochemical and biological characteristics for specific targeting of therapeutics to diseased site/s^{9,14,29-31}.

It is reported that nanomaterials-conjugated cargos such as drugs including herbal, genes, sugars, proteins and antibodies may be selectively accumulated in tumors through EPR effect with reduced peripheral exposure, and may extravasate via enlarged pores of capillary endothelium as passive targeting³²⁻³⁴. Cancer cells can over-express a lot of tumor-specific receptors, such as for polyunsaturated fatty acids, monoclonal antibodies, folic acid, aptamers, oligopeptides, transferrin, and hyaluronic acid, utilized to target for delivering cytotoxic agents into tumors³⁵. NMs are functionalized with various ligands such as peptides, proteins and antibodies for interacting with over-expressed receptors at the target site/s, and accumulated through active targeting, and controlled cargos-release, accompanied by triggering a change in different stimuli such as pH, temperature, response to enzymes or antigens, magnetic field, heat and light³⁶⁻³⁸. This review is focused chiefly on the recent advances of the significant targeted therapeutic efficacies of a lot of NMs conjugated with ligands and cargos against cancer through passive, receptor-mediated active and / or endogenous / exogenous stimuli -responsive targeting and release of cargos to the specific site/s of interest.

Nanomaterials used in cancer therapy

A few organic polymeric NMs include nanogel/hydrogel/aerogel-based polylactic acid (PLA), poly (amino acids), poly (lactic-co-glycolic acid) (PLGA), poly (ϵ -caprolactone) (PCL), polyacrylamide, polyacrylate, poly (styrene-maleic anhydride), N-(2-hydroxypropyl)-methacrylamide copolymer (HPMA), dendrimers, chondroitin sulfate (CS), gelatin, dextran (DEX), aligate, hyaluronic acid, chitosan, poly ethylene glycol (PEG), co-polymeric micelle, and graphene oxide, whereas lipid-based NMs include mainly liposomes, exosomes, solid lipid nanoparticles (SLNs), nano/micro lipid-micelle bubbles and lipid nano-emulsions (LNEs) or nanostructured lipid carriers (NLCs)^{39-58, 31,34}.

A few inorganic NMs include nanorod, quantum dots, layered double hydroxides, carbon dot/nanotubes, mesoporous silica, metallic and magnetic NPs^{42,44,53,56,58-61,10}. A few other NMs include albumin-based nanocarriers, monoclonal antibody, and hybrid NPs^{44,39,40,58,56,10,62-66}.

Surface functionalization

Surface-functionalizations for targeted delivery of the NMs with ligands and cargos may be achieved through electrostatic adsorption, click chemistry or covalent attachment^{67,68}. Hydrophobic drugs may be attached by the π - π stacking mechanism to improve dispersion and facilitate release of the drugs and genes⁶⁹⁻⁷¹. A few targeting molecules to deliver selectively to cancerous cells may be anchored through click chemistry or covalent modifications⁷²⁻⁷⁵. Biological molecules such as proteins, peptides and nucleic acid may be anchored through electrostatic attraction, click chemistry or covalent interactions to enable ameliorated biocompatibility, solubility and enhanced shielding from uncontrolled degradation and cleavage^{69,70}. A few ferromagnetic and magnetic particles may be entangled within the materials' cavities or anchored to their surfaces for magnetic field-assisted particular delivery⁷⁶.

Mechanisms of targeting

NMs / NPs mediated drug targeting to cancerous cells enhances the therapeutic efficacy of the delivery systems or nanocarriers specifically to protect normal cells from cytotoxicity. The targeting mechanisms may be divided into passive, active and stimuli-responsive targeting (Figures 1 and 2).

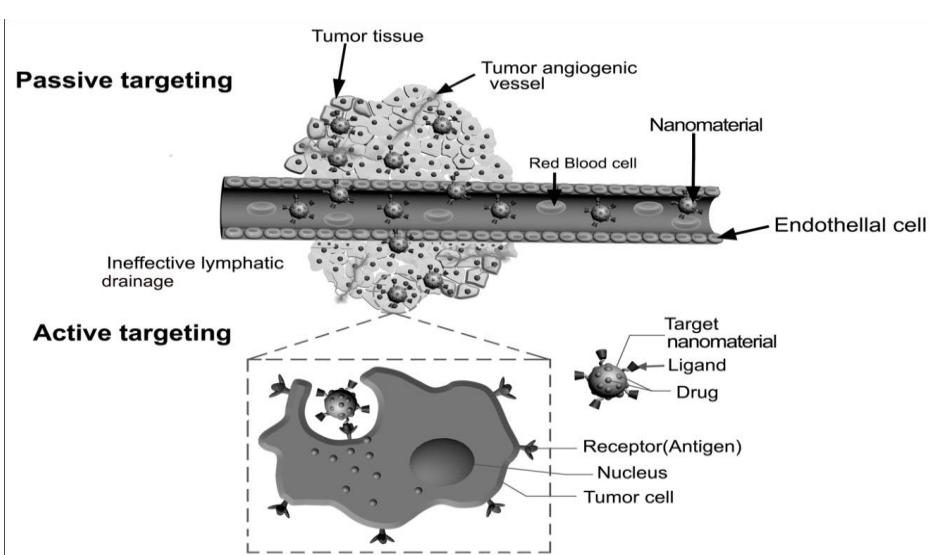


Figure 1. Passive targeting of nanomaterials in the target tissue through EPR effect, whereas active tissue targeting of ligand-conjugated nanomaterials through specific recognition of over-expressed receptor/s.

Passive targeting

In passive targeting of NMs, natural anatomical structures and physiological processes are taken into consideration, which direct their *in vivo* distribution and disposition. Passive targeting can be done by alteration of materials' composition, surface charge, and size.

Passive targeting is utilized considering the different characteristics of tumor and normal cells or tissues. High proliferation of cancerous cells induces neovascularization, and enlarged pores in the vascular wall results in worsening particles-selectivity of tumor vessels in comparison to normal vessels⁴⁰. The defective and rapid angiogenesis enables drug-loaded NMs to penetrate the leaky blood vessels and to supply, accumulate and release drug contents within tumor cells/tissues through EPR effect of NMs owing to also poor lymphatic cancerous drainage^{40,41}.

Active targeting

In active targeting, there is physical or chemical modifications of NMs' surface which help the NMs to be targeted towards a

particular cell basically through a receptor mediated endocytosis.

Active targeting is utilized to target cancer cells through the direct interactions between receptors and ligands. The ligands on the NMs' surface are used to target the over-expressed receptor molecules of cancer cell-surface to internalize NMs and to release therapeutic cargos through receptor-mediated endocytosis distinguishing the non-targeted healthy cells⁴⁰. The targeting ligand-moieties include chiefly amino acids, peptides, monoclonal antibodies, carbohydrates and vitamins, and the receptors include mainly folate, transferrin, glycoproteins, and the epidermal growth factor, while the ligands bind specifically to receptors on targeted cells⁴⁰.

Stimuli-responsive targeting

Target-specific deliveries of nanomaterial therapeutics may be performed on the basis of stimuli-responsive factors induced by either endogenous (pH, enzyme, redox) or exogenous (light, temperature, acoustic) stimuli^{42-44,77}.

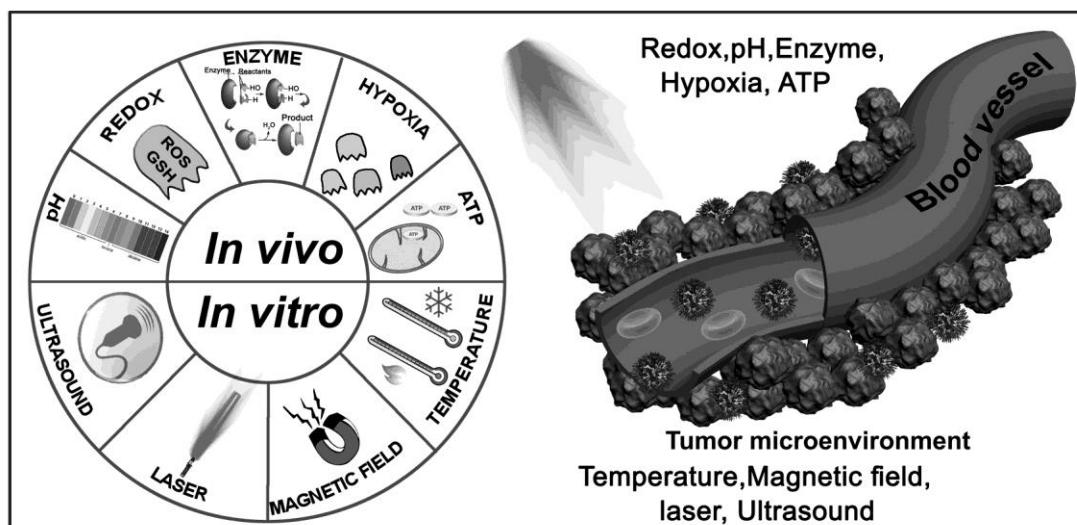


Figure 2. Schematic representation of endogenous and exogenous stimuli-responsive targeting to tumor tissue.

Biomedical applications of nanomaterials as delivery vehicles/systems

In general, NMs are utilized to deliver to targeted cells/tissues as cargo-carriers or systems to get effective therapeutic efficacy against diseases^{59,78-82}.

Targeting to cancerous cells

A few cargo-loaded NMs such as polymers, micelle, liposome, mesoporous silica, carbon nanotube, iron oxide, layered double hydroxide, protein, and PEI-modified nanographene oxide have been utilized to get higher therapeutic efficacies against multi/drug resistance, cancer cells / cancer, drug toxicity/side effect, neurotoxicity, and tumor proliferation through passive targeting to cancerous cells (Table 1).

A few investigators have utilized different polymeric NPs to trap various cargo molecules such as anti-miR10b/anti-miR-21, miR-34a/DOX, retinoic acid/DOX, CIS/RAPA, curcumin

(CUR), CUR-anti-P-gp, CUR-5-FU, bortezomib, PTX, CPT, epigallocatechin gallate, green tea (Polyphenol EGCG), phytolaccaceae, polygalaceae, quercetin, resveratrol, noscapine or betulinic acid through electrostatic or hydrophobic bonding to target and release them against various cancer and cancer cells for getting higher anti-cancer efficacy^{43,56,58} (Table 1). Several polymeric NMs such as cyclodextrin-PEG, γ -cyclodextrin-propylene diamine (GCD-PDA), PEG-PLGA, HA-PLGA, PAMAM dendrimers, poly-L-lysine dendrimers, PEG-PLL, FA-chitosan, nano gel, hydrogel and silica-polymer have been utilized to load / conjugate with CPT, BBR, DTX, CIS and BBR, DOX, epigallocatechin gallate/siRNA, CIS/DOX, PTX, CUR and P53 through covalent / electrostatic / chelation or π - π bonding for treating different cancer and cancer cells, solid malignancies, EAC tumors, solid tumor, the growth of tumor cells and adenocarcinoma cells to get higher anti-cancer efficacies^{43,44,53,58,49} (Table 1, and Table 1. Contd. 1).

Table 1. A few nanomaterial therapeutics used in cancer therapy.

Nanomaterials	Therapeutics	Enhanced efficacy target against
<i>Polymers</i>	Anti-miR10b/anti-miR-21, MiR-34a/DOX, Retinoic acid/DOX CIS/RAPA Curcumin Curcumin-anti-P-gp Curcumin-5-FU Bortezomib Paclitaxel Camptothecin (CPT) Epigallocatechin gallate Green tea (Polyphenol EGCG) Phytolaccaceae Polygalaceae Quercetin Resveratrol Noscapine Betulinic acid CPT Berberine (BBR) DTX BBR CIS; BBR DOX CPT BBR	Breast cancer Melanoma Human breast cancer cells (MDA-MB-231), prostate cancer, pancreatic cancer cells (BxPC3, MiaPaca), human epithelial cervical cancer cells (HeLa), drug resistant KB-V1 cervical cancer cells MDA-MB-231 cells Colon cancer TNBC(MDA-MB-468, HCC1937), proteasome function, tumor growth Lung cancer Breast cancer, glioma Prostate cancer Prostate cancer cell growth Lung adenocarcinoma, A549 lung cancer cells A549 lung cancer cells HeLa cells, IGROV-1 tumors NCI-H460 non-small lung cancer cells, prostate cancer MCF-7 breast cancer cells Lung cancer Lung and ovarian cancer 4T1 cancer cells Solid malignancies HeLa, MCF-7 cancer cells, EAC tumors Lung cancer cells (NCI-H460); Human breast cancer cells (MCF-7, MDA-MB-468) Solid tumor Murine C26, human colon carcinoma HT-29 tumors Growth of CNE1 tumor cells
<i>Cyclodextrin-PEG</i>		
γ -cyclodextrin-propylene diamine (GCD-PDA)		
PEG-PLGA		
HA-PLGA		
PAMAM dendrimers		
Poly-L-lysine (PLL) dendrimers		
PEG-PLL		
FA-chitosan		

Graphene NMs such as GO-hydrogel, GO-aerogel, rGO, rGO-iron, rGO-polydomamine, GO-gold, amphiphilic graphene ethyldium bromide, PEI-NGO and graphene quantum dot have been used to anchor or load DOX, 5FU, PTX, MTX, CPT, RV, CUR, BBR, polyphenolic green tea, glucose, hSET1 antisense, miRNA-101, pDNA, ADM/anti-miR-21 and cysteamine through hydrophobic/electrostatic bonding against various cancer and cancer cells, and tumors for achieving higher anti-cancer therapeutic efficacies ^{46,47,52,54,55,48,50,51,53,43} (Table 1. Contd. 1). Several investigators have exhibited the targeting capability of carbon dot and nanotube (CNT) through nanomaterial attachment of BBR, anti-P-gp antibody(Ab)/DOX or pRNA (TP53) via hydrophobic/electrostatic bonding to overcome multi-drug resistance and to get higher biological efficiencies against tumor, leukemia and breast cancer cells ^{44,53,56} (Table

1. Contd. 1). A few polymeric micelles composed of core-shell structure formed by the self-assembly of amphiphilic polymers in aqueous solution for improving the bioavailability and hydrophobicity of drugs, have been used to load cargos such as THZ/DOX, DOX/PTX, msurvivin T34A gene/DOX, PTX/TR3siRNA, green tea catechin derivatives, protein herceptin and quercetin through hydrophobic or electrostatic bonding and to treat against breast, lung, melanoma or pancreatic cancer, and breast and ovarian cancer cells to reduce their carcinogenic severity, while methoxy-PEG-PLA, PEG-b-PAPA and PLGA-PEI NPs have been applied for the treatments of lung, breast, ovarian and gastric cancer, or breast cancer cells to get higher anti-carcinogenic efficacies ^{43,44,58,56} (Table 1. Contd. 1).

Table 1. Contd. 1

Nanomaterials	Therapeutics	Enhanced efficacy target against
<i>Polymer</i>		
Nano gel	Epigallocatechin gallate/siRNA, CIS/DOX	Breast cancer
Nano hydrogel	PTX, CIS; CUR	Lung cancer; A549 lung adenocarcinoma cells
Silica-polymer	P53	Lung cancer
<i>Graphene</i>		
GO-hydrogel	DOX, 5FU, PTX, MTX, CPT, RV, CUR, BBR	Breast cancer cells (MCF-7), Cancer
GO-aerogel	DOX	Stomach cancer, tumors
rGO	CUR; polyphenolic green tea	MDA-MB-231, SKBR3 breast cancer cells; Colon cancer cells (HT29, SW48)
rGO-iron	Glucose	Prostate cancer cells (LNCaP)
rGO-polydomamine	hSET1 antisense	Breast cancer cells (MCF-7)
GO-gold	miRNA-101	Breast cancer cells (MCF-7, MDA)
Amphiphilic graphene-ethyldium bromide	Plasmid DNA(pDNA)	AGS cancer cells
PEI-nano graphene oxide (NGO)	ADM/anti-miR-21	Breast cancer
Graphene quantum dot	BBR, Cysteamine	HeLa, MDA-MB-231 cancer cells
<i>Carbon</i>		
Carbon dot	BBR	Growth of tumor cells
Carbon nanotube (CNT)	Anti-P-gpAb/DOX	Human leukemia cells (K562)
SWCNT: Ethylenediamine (CNT)	pRNA (TP53)	Breast cancer cells (MCF-7)
<i>Micelle</i>		
	THZ/DOX; DOX/PTX	Breast cancer; Lung cancer
	Msurvivin T34A gene/DOX	Melanoma
	PTX/TR3siRNA	Pancreatic cancer
	Green tea catechin derivatives, protein herceptin	Breast cancer cells (BT-474, SKBR-3), ovarian cancer cells (SKOV-3)
	Quercetin	Lung cancer
Methoxy-PEG-PLA	PTX	Lung, breast, ovarian cancer
PEG-b-PAPA	PTX	Breast, gastric cancer
PLGA-PEI	pDNA	Breast cancer cells (MCF-7)
<i>Liposome</i>	DOX	Karposi's sarcoma, multiple myeloma, ovarian cancer

A few researchers have utilized liposomes to encapsulate/load various cargos such as DOX, cytarabine, daunorubicin, ranGTP/DOX, VEGFsiRNA/PTX, PTX/TRAIL, DFO/YC1, BBR, BBR/BBR and PTX, curcumin, epigallocatechin-3-gallate, vincristine, quercetin, resveratrol, oleanolic acid, baicalein, combretastatin A4, betulinic acid, PTX/epigallocatechin gallate, curcumin and resveratrol or combretastatin and DOX through passive diffusion, hydrophobic or electrostatic bonding for the treatment of karposi's multiple myeloma, ovarian cancer, intrathecal lymphomatous meningitis, karposi's sarcoma, breast cancer, melanoma, pancreatic cancer, different cancer/carcinoma cells, drug resistant cancer cells, glioma cells, lung, colon and prostate cancer, and tumor

cells, whereas magnetic, FA-PEG or anti-CD44-aptamer - liposomes loaded with artemisinin, C9-C16 BBR and DOX, or siRNA (protamine) for the treatment of different cancer cells, fibrosarcoma tumor growth and breast cancer to achieve significant anti-cancer efficacies ^{43,44,53,58,56} (Table 1. Contd. 1 and 2). A few investigators have used solid, 17 β -estradiol cationic, PEI-stearic acid-g-chitosan, cationic PEG-PLA and Fab'-heparin binding EGF -lipids or nano/micro lipid-micelle bubbles, loaded or conjugated with docetaxel, PTX, artemisone, resveratrol, antisense oligodeoxynucleotide, pDNA, siRNA (CDK1), siRNA (polo-like kinase 1) or HSVtk gene/GCV to treat different cancer cells, cancer or tumor for availing higher therapeutic efficacies ^{56,58,57} (Table 1. Contd. 2).

Table 1. Contd. 2

Nanomaterials	Therapeutics	Enhanced efficacy target against
<i>Liposome</i>	Cytarabine; Daunorubicin RanGTP/DOX, VEGFsiRNA/PTX PTX/TRAIL; DFO/YC-1 BBR BBR/BBR and PTX Curcumin (CUR) Epigallocatechin-3-gallate Vincristine; Quercetin Resveratrol Oleanolic acid Baicalein Combretastatin A4 Betulinic acid PTX/epigallocatechin gallate Curcumin and resveratrol Combretastatin and DOX	Intrathecal lymphomatous meningitis; Karposi's sarcoma Breast cancer Melanoma; Pancreatic cancer HepG2 cancer cells Drug resistant breast cancer stem cells Growth of B16BL6 melanoma cells Breast cancer cells (MCF-7) Meth A sarcoma; C6 glioma cells Resistant lung cancer cells U14 cervical carcinoma cells Carcinoma cells (U14, HeLa) Tumor vascular endothelial cells Growth of human lung, colon cancer Breast cancer cells (MDA-MB-231) Prostate cancer Growth of B16-F10 tumors
Magnetic liposome	PTX Artemisinin	Cancer cells (MCF-7, HeLa), fibrosarcoma tumor growth Breast cancer
FA-PEG-liposome Anti-CD44- aptamer-liposome	C9-C16 BBR and DOX siRNA (Protamine)	MCF-7/ADR cancer cells Gene expression (MDA-MB-231) in TNBC model
<i>Lipid</i>		
Solid lipid 17 β -estradiol cationic lipid PEI-stearic acid-g-chitosan lipid Cationic lipid PEG-PLA Fab'-heparin binding EGF lipid	Docetaxel PTX; Artemisinin derivatives artemisone Resveratrol Antisense oligodeoxynucleotide (ER α and ER β) pDNA (PEDF) siRNA (CDK1) siRNA (polo-like kinase 1)	Breast cancer cells (MCF-7) C6 glioma cells, A549 lung cancer cells; Melanoma cells Cell proliferation and skin cancer Breast cancer cells (MCF-7) Breast cancer cells (MCF-7) Breast cancer cells (MCF-7) (TNBC cells) Polo-like kinase 1 expression, tumor growth (MDA-MB-231)
Nano/micro lipid-micelle bubbles	Herpes simplex thymidine kinase (HSVtk) gene / ganciclovir (GCV)	Lung adenocarcinoma cells (A549), colon carcinoma cells (HT29, C26), mammary carcinoma cells (EMT6), tumor

Several researchers have shown the targeted utilizations of mesoporous silica nanoparticles (MSNs) loaded with different cargos such as CUR, BBR and CPT, combretastatin A4 and DOX, CPT/DOX or P-gp siRNA/DOX or quercetin via hydrophobic/covalent or electrostatic/hydrophobic bonding against tumor spheroids, oral cancer cells, hepatocellular and breast carcinoma cells, HeLa tumor cells, tumor growth, cervical or breast cancer, whereas HA-MSN, or disulfide/cancer membranes-disulfide mesoporous organo

silica, loaded with BBR and DOX / DOX, BBR with / without glutathione against hepatocarcinoma cells to get higher biological effectiveness ^{58,43,56,53} (Table 1. Contd. 3). A few scientists have utilized layered double hydroxide (LDH) NMs through their loading with 5-FU/siRNA by hydrophobic/electrostatic bonding to overcome drug resistance and to get higher anti-carcinogenic efficacies against various cancer cell lines ⁴⁴ (Table 1. Contd. 3). A few investigators have shown the targeting and anti-metastatic

activities of PTX or noscapine -loaded (hydrophobic bonding) human serum albumin (HSA) NPs against metastatic breast cancer or breast cancer cells^{44,58} (Table 1. Contd. 3). A few investigators have applied iron oxide (Fe_3O_4) and iron oxide-arginine NPs loaded/coated with DOX/CIS, phospholipid-PEG,

epi-DOX, DOX, ODNs, GM-CSF, BBR, SAN, CUR, baicalein and methotrexate through covalent or electrostatic bonding to treat against breast, solid cancer, tumor cells and breast cancer cells for achieving higher anti-cancer efficacies^{43,44,60,53,58,56} (Table 1. Contd. 3).

Table 1. Contd. 3

Nanomaterials	Therapeutics	Enhanced efficacy target against
<i>Silica</i>	CUR; BBR and CPT; Combretastatin A4 and DOX	Tumor spheroids and oral cancer cells (Nt-8e); Hepatocellular carcinoma cells (HepG2); Breast cancer cells (MCF-7, SK-BR-3), tumor growth, HeLa tumor cells
Mesoporous silica (MSN)	CPT/DOX; P-gp siRNA/DOX Quercetin	Cervical cancer; Breast cancer Breast cancer cells (MDA-MB-231, MCF-7)
HA-MSN	BBR and DOX / DOX	Hepatocellular carcinoma cells
Disulfide / cancer membranes-disulfide mesoporous organo silica	BBR with / without glutathione	HepG2 hepatocarcinoma cells
<i>Layered double hydroxide (LDH)</i>	5-FU/siRNA	Cancer cell lines
<i>Protein</i>		
Human serum albumin	PTX Noscapine	Metastatic breast cancer Breast cancer cells (SK-BR-3)
<i>Iron oxide (Fe_3O_4)</i>	DOX/CIS Phospholipid-PEG coated Epi-DOX, DOX, ODNs, GM-CSF BBR, SAN CUR, Baicalein Iron oxide-arginine	Breast cancer Solid cancer Cancer, tumor cells Solid tumors MDA-MB-231 breast cancer cells Breast cancer cells (MCF-7, 4T1, HFF-2)
<i>Silver (Ag)</i>	<i>Andrographis paniculata</i> aqueous / methanol extract	HeLa carcinoma cells / Neuroblastoma cells
FA-PEG-Ag	BBR	Breast cancer cells (MDA-MB-231), tumor growth
<i>Nickel oxide (NiO)</i>	<i>Andrographis paniculata</i> extract (andrographolide, 14-deoxyandrographolide, neoandrographolide)	Breast cancer cells (MCF-7)
<i>Zinc oxide (ZnO)</i>	BBR CUR	A549 lung adenocarcinoma cells AGS gastric cancer cells

A few researchers have used silver (Ag) or FA-PEG-Ag synthesized or loaded with *Andrographis paniculata* aqueous/methanol extract or BBR for treating HeLa carcinoma/neuroblastoma cells or breast cancer cells and tumor growth to get higher anti-cancer efficacy^{61,53} (Table 1. Contd. 3). A few researchers have utilized nickel oxide synthesized with *Andrographis paniculata* extract against breast cancer cells to achieve higher therapeutic efficacy⁶¹

(Table 1. Contd. 3). Several researchers have used zinc oxide loaded with BBR or CUR against adenocarcinoma or gastric cancer cells to get higher anti-cancer efficacy^{53,58} (Table 1. Contd. 3). A lot of other researchers have utilized different gold (Au) nanocomposites loaded with various cargos through hydrophobic/electrostatic bonding to target cancer cells or tumor growth for achieving higher anti-cancer therapeutic efficacies^{10,53,56} (Table 1. Contd. 4).

Table 1. Contd. 4

Nanomaterials	Therapeutics	Enhanced efficacy target against
<i>Gold (Au)</i>		
MTX-AuNPs	MTX	Lewis lung carcinoma cells (LL2)
DOX-PEG-AuNPs	DOX	Multi drug resistant cancer cells (ADR/MCF-7)
DOX-Hyd@AuNPs	DOX, Hyd	ADR / MCF-7 cancer cells
CPP-DOX-AuNPs	CPP, DOX	A549 and HeLa cancer cells
FA-AuNPs	BBR	HeLa cancer cells
FA-Au-SMCC-DOX	SMCC, DOX	HDF, C0045C and HepG2-R cancer cells
DOX@PVP-AuNPs	DOX	H460, H520 and A549 lung cancer cells
DOX-BLM-PEG-AuNPs	DOX, BLM	Cervical carcinoma cells (HeLa)
Au-P(LA-DOX)-b-PEG-OH/FA NPs	DOX	4T1 mouse mammary carcinoma cells
FA-BHC-AuNPs	BHC	HeLa and Vero cancer cells
PTX-RBC-EpCam-AuNPs	PTX, EpCam	4T1 mouse mammary carcinoma cells
OPT-PEG-Carb-AuNPs	OPT	Lung/colon cancer cells (HCT15, HT29 / RKO)
(Pt(R,R-dach))-AuNPs	(Pt(R,R-dach))	A549, HCT116/15, HT29, RKO cancer cells
DAU-PA-AuNPs	DAU	U266 and Molt-4 lymphoblast cells
BLM-RGD-AuNPs	BLM	Metastatic MDA-MB-231 breast cancer cells
FA-CPA-AuNPs	CPA	Breast cancer cells
GMC-plectin1-peptide-Au	GMC	Pancreatic ductal adenocarcinoma cells (PDAC)
CPC/CIS/DOX-L-aspartate-AuNPs	CPC/CIS/DOX	Hepatocellular carcinoma cells
VCR-AuNPs@liposomes	VCR	HeLa cancer cells
ETP-HPMC/PVA-AuNPs	ETP	Lung carcinoma cells (NCI-H69)
6-MP-AuNPs	6-MP	K-562 leukemia cells
5-FU-glutathione-AuNPs	5-FU	Colorectal cancer cells
Tf pep-Au-prodrug Pc4	Pc4	LN229 and U87 glioma cancer cells
PEG-AuNPs	siRNA (c-Myc)	MCF-7 cancer cells
Polyethylene-AuNPs	siRNA (eukaryotic elongation factor 2 kinase)	Tumor growth (MDA-MB-231)

Receptor mediated active targeting

Recognition of the targeted cancer cell through the binding of over-expressed cancer cell-receptor by surface functionalized ligand to deliver therapeutics selectively to cancerous cells, is a desirable strategy for receptor mediated endocytic active targeting. Receptor-mediated NMs enhance accumulation of the cargos within cancerous cells and restrict their growth compared to non-targeted controls through increased site-specific cargo-concentration in cancerous cells and limited off-targeted drug-cytotoxicity in healthy cells/tissues^{42,77,83}. A few over-expressed cancerous receptors as ligands-surface-functionalized nanomaterial therapeutic targets and delivery for cancer treatments are depicted below (Table 2)^{25,42,44,77}.

For availing growing requirements of iron (Fe) to maintain cell- division and growth, transferrin receptor (TfR), the membrane-associated glycoprotein, over-expressed on the tumor-surfaces, functions to mediate iron acquisition through binding iron-bound transferrin plasma protein with subsequent receptor-mediated endocytosis^{42,77}. A few investigators have utilized TfRs with various ligand targets and drug cargos such as Tf and DOX/dihydroartemisinin/PTX, TfR ligand (7 pep) and DOX, Tf + TRAIL and DOX, Tf + Folate

and DOX, T7 peptide + TAT and DOX, and TfR mAb and DNM, with different nanocarriers such as liposome, niosome, iron oxide, micelle and HSA to treat against breast, glioma and colon cancer for getting higher anti-cancer efficacies such as higher cellular uptake, enhanced intracellular cargos-delivery, and bypassing of drug-resistance, resulting in cancer cells-death^{40,42,77} (Table 2). Several researchers have used transferrin/MMP-2 receptor with ligand target OX-26/CTX and cargo PC27 loaded with PEG-liposome for treating glioma to get higher anti-cancer efficacy²⁵ (Table 2).

The folate receptor (FR), named as vitamin B9 or folic acid receptor, over-expressed on cancer cells, composed of cysteine-rich cell-surface glycoprotein, functions to bind and internalize and transport folate into tumor cells through receptor-mediated endocytosis for the synthesis of nucleic acids^{40,42,77}. A lot of investigators have exhibited that folate receptors have been utilized for ligand targets with cargo-loading such as folate with DOX/MTX/DOC/PTX/CIS, folate + Asp8 with DOX, and folate + transferrin with DOX, conjugated with different nanocarriers, such as liposome, organic, micelle, conjugate, BSA or liquid crystal for the treatment of several cancer diseases such as lung, cervical, prostate, breast, breast metastasis or glioma to get higher therapeutic anti-cancer

efficacies such as less side effect, reduced tumor burden and cancer cells-death ⁴² (Table 2).

Biotin receptor, known as vitamin B7 receptor, over-expressed on cancer cells, is related to the binding and internalization of biotin (the coenzyme for carboxylase enzymes), and its transport into the cancer cells via receptor-mediated endocytosis for utilization of cellular carbohydrates, fats and amino acids [84-89]. A few investigators have used biotin receptor for ligand target and drug application such as biotin and arginine modified hydroxypropyl-β-cyclodextrin (HCD) NPs with PTX to treat breast, lung, cervical and hepatocellular cancer for getting higher anti-cancer efficacies ⁸⁹ (Table 2).

The human epidermal growth factor receptor-2 (HER-2), the transmembrane glycoprotein having an intracellular tyrosine

kinase domain, over-expressed in various cancer cells, may function in dimerized form with other ErbB family receptors in the actuation of the HER signaling pathways for pathogenic tumor growth and progress ^{40,42,77}. A few researchers have utilized HER-2 receptors for ligand target conjugated with cargos-loaded different NPs such as anti-HER-2 humanized mAb trastuzumab (Herceptin) / anti-HER-2scFv / Neu peptide (FCDGFYACYADV) or KCCYSL (P6.1peptide) conjugated with MTN/PTX or RAPA loaded conjugate or liposome, trastuzumab loaded gelatin+HSA, DOX, PTX or DOC loaded HSA, PEI/PLGA or PLGA, DOX loaded liposome, and gadolinium loaded liposome to treat breast cancer for getting higher anti-cancer efficacy with overcoming chemotherapeutic resistance ⁴² (Table 2).

Table 2. A few over-expressed receptors on cancer cell surface and their targeting by cargos-loaded nano-carriers/systems.

Receptor	Ligand target	cancer	Nanocarrier/System	Cargo
<i>Transferrin</i>	Transferrin (Tf)	Breast	Liposome, Niosome	DOX
		Glioma	Iron oxide	Dihydroartemisinin
	TfR ligand (7pep)	Breast	Micelle	PTX
	Tf + TRAIL	Colon	Micelle	DOX
	Tf + Folate	Glioma	HSA	DOX
	T7 peptide +TAT, TfR mAb	Glioma	Liposome	DOX, DNM
<i>Transferrin/ MMP-2</i>	OX-26/CTX	Glioma	PEG-Liposome	PC27
<i>Folate</i>	Folic acid	Lung, Cervical	Liposome, Organic	DOX, MTX and DOC
	Folate	Cervical	Micelle, Liposome	DOX, PTX
		Prostate	Conjugate	DOX
		Breast	BSA	PTX
		Breast metastasis	Micelle, Liquid crystal, Organic	PTX, DOC and CIS, DOX
	Folate + Asp8		Liposome	DOX
	Folate + Tf	Glioma	Liposome	DOX
<i>Biotin</i>	Biotin	Breast, Lung, Cervical, Hepatic	HCD	PTX
<i>HER2</i>	Trastuzumab	Breast	Conjugate, Liposome	MTN, PTX and RAPA
	Anti-HER2 scFv	Breast	Gelatin + HSA	Trastuzumab
	Neu peptide (FCDGFYACYADV)	Breast	HSA, PEI/PLGA, PLGA	DOX, PTX, DOC
	KCCYSL (P6.1peptide)	Breast	Liposome	DOX
			Liposome	Gadolinium
<i>α_vβ₃Integrin</i>	RGD	Endothelial, Glioma	Micelle	DOX, PTX
		Lung, Melanoma, Breast	Organic, Conjugate, Silica	PTX, DOX, CPT
	RGD + Estrone	Breast	Organic	PTX
	RGD + pH	Glioma	Liposome	DOX
	RGD + YPSMA-1mAb	Prostate	Micelle	PTX

$\alpha\beta_3$ integrin receptor, the transmembrane glycoprotein receptor expressed highly in tumor neovascular endothelial cells, is related to intervene cell attachment via binding to extracellular matrix (ECM) proteins for attaching cells within tissue and perform a major role in cancer cell migration, invasion, and metastasis^{40,42,77}. A few researchers have used $\alpha\beta_3$ integrin receptor for various ligand targets and cargos loaded NPs such as RGD (peptide), RGD+estrone, RGD+pHA or RGD+YPSMA-1mAb with DOX, PTX or CPT loaded micelle, organic, conjugate, silica or liposome for the treatment of cancer such as endothelial, glioma, lung, melanoma, breast or prostate to get higher anti-carcinogenic efficiencies such as higher endocytosis and improved tumor suppressed features⁴² (Table 2).

Prostate-specific membrane antigen (PSMA) receptor, expressed in many prostate cancer cells, is used as receptor target against prostate cancer⁴² (Table 2. Contd. 1). Several investigators have utilized PSMA receptor for various ligand targets with cargos loaded NMs such as A10PSMA aptamer (Apt), YPSMA-1mAb+RGD or anti-PSMA+anti-CD14mAb with CIS, DOC, shRNA, PTX, or fluorophore loaded PLGA, micelle or PAMAM NMs to treat against prostate cancer for getting higher anti-prostate cancer efficiencies with bypassing multi-drug resistance (MDR)⁴² (Table 2. Contd. 1).

Asialoglycoprotein receptors (ASGPRs), the integral membrane proteins such as lectin / galactose receptors expressed on the surfaces of carcinoma cells, are used to bind asialoglycoprotein and glycoproteins to remove sialic acid and to expose galactose residues and to endocytose them^{77,90,91}. Several investigators have utilized ASGPRs for different ligand targets and cargos loaded NMs such as lactobionic acid or galactose with QC/SRF or SRF/DOX loaded phospholipid-protein shell-oily core (PPSOC) NPs or janus gold nanorods (JGNs) to treat against hepatocellular carcinomas for getting higher receptor-mediated endocytosed anti-cancer efficiency⁷⁷ (Table 2. Contd. 1).

Lactoferrin receptor (LfR), a single-chain cationic iron-binding glycoprotein, expressed in glioma cells, has been utilized for ligand target lactoferrin with DOX loaded PEG-BSA NPs through LfR-mediated endocytosis in brain tissue to treat glioma for getting higher uptake of DOX against blood brain barrier (BBB) as well as enhanced therapeutic anti-cancer efficacy²⁵ (Table 2. Contd. 1).

Low density lipoprotein receptor (LDLR) composed of apolipoprotein B-100 (ApoB-100) forming hydrophobic core surrounded by a hydrophilic shell, has been used for ligand target peptide 22-decorated with PTX loaded PEG-PLA NPs against BBB-related glioma for getting LDLR-mediated endocytosed higher anti-glioma drug efficacy²⁵ (Table 2. Contd. 1).

Low density lipoprotein receptor-related protein (LRP), a transmembrane protein belonging to the LDLR family, expressed highly on glioma cancerous cells, has been utilized for ligand target angiopep-2 decorated with DOX or PTX loaded gold or PEG-PCL NPs to treat against glioma for getting higher anti-glioma efficacy²⁵ (Table 2. Contd. 1).

Insulin receptor, a membrane glycoprotein over-expressed in glioma cells, has been used for ligand target 83-14 murine monoclonal antibody decorated with PEGylated immunoliposomes (PILs) for targeting genes to brain tumors through insulin receptor-mediated endocytosis to get higher anti-glioma efficiency²⁵ (Table 2. Contd. 1).

Estrogen receptor (ER), a type of nuclear receptor over-expressed on breast cancer cells, binds to hormone estrogen (estradiol), and acts as transcription factor for regulating cell proliferation⁴². A few researchers have utilized ERs for ligand targets estrone/estrone+RGD/17 β -estradiol, or estrogen analog tamoxifen conjugated with DOX/NOS/PTX, PTX/DOX, pCMV- β -Gal gene, or tamoxifen loaded liposome/gelatin/chitosan, organic/carbon nanotube, liposome, or gold (Au) NMs respectively to treat breast cancer for getting higher anti-cancer efficacies⁴² (Table 2. Contd. 1).

Table 2. Contd. 1

Receptor	Ligand target	cancer	Nanocarrier/System	Cargo
PSMA	A10PSMA Apt	Prostate	PLGA	CIS, DOC, shRNA
	YPSMA-1mAb+RGD	Prostate	Micelle	PTX
	Anti-PSMA+Anti-CD14mAb	Prostate	PAMAM	Fluorophore
ASGP	Lactobionic acid, Galactose	Hepatocellular	PPSOC, JGN	QC/SRF, SRF/DOX
Lactoferrin	Lactoferrin	Glioma	PEG-BSA	DOX
LDL	Peptide-22	Glioma	PEG-PLA	PTX
LRP	Angiopep-2	Glioma	Gold, PEG-PCL	DOC, PTX
Insulin	83-14 murine mAb	Glioma	PEG-Immunoliposome	-
Estrogen	Estrone	Breast	Liposome, Gelatin, Chitosan	DOX, NOS, PTX
	Estrone+RGD, 17 β -Estradiol	Breast	Organic, Carbon nanotube, Liposome	PTX, DOX, pCMV- β -Gal
	Tamoxifen	Breast	Gold	Tamoxifen
Androgen	Testosterone	Prostate	Liposome	5-FU
	α and β -bicalutamide	Prostate	Gold	α and β -bicalutamide
LHRH	Peptide	Breast	HSA, Liposome	MTX, MXT
ICAM1	Anti-ICAM1mAb	Breast	Iron oxide, Liposome	N/A, Lcn2siRNA
	LFA-1	Cervical	Urethane acrylate nonionomer	PTX

<i>CXCR4</i>	LFC131 peptide Anti-CXCR4mAb Peptide R	Lung, Breast Breast Lung	Chitosan, PAMAM Liposome Liposome	DOC, DOX DOX DOX
--------------	--	--------------------------------	---	------------------------

Androgen receptor (AR), a nuclear receptor over-expressed on prostate cancer cells, binds testosterone and dihydrotestosterone for acting as master regulator of genes in castrate-resistant prostate cancer, and as a transcription factor in regulating cancer genes for tumor growth ⁴². A few investigators have used ARs for ligand targets testosterone or α and β -bicalutamide conjugated with 5-FU or α and β -bicalutamide loaded liposome or gold NPs respectively against prostate cancer to get augmented anti-prostate cancer efficacies ⁴² (Table 2. Contd. 1).

Luteinizing hormone-releasing hormone receptors (LHRHRs), the transmembrane proteins over-expressed on a variety of cancer cells, have been explored with peptide modified NPs for the targeted delivery of therapeutics against cancer through receptor-mediated endocytosis ⁷⁷. A few investigators have utilized ligand target LHRH-peptide conjugated MTX or MXT encapsulated with HSA or liposome against breast cancer to get enhanced cellular uptake and augmented tumor suppression ⁷⁷ (Table 2. Contd. 1).

Intracellular adhesion molecule-1 receptor (ICAM-1R), a transmembrane glycoprotein expressed on cancerous endothelial and immune cells, binds ICAM-1 to compose clusters in the cell membrane for inducing an intracellular signaling cascade to disrupt vascular junction and enhance endothelial permeability on inflamed endothelium ⁴². A few researchers have utilized ICAM-1R for conjugated ligand targets such as anti-ICAM-1mAb or ICAM-1 ligand lymphocyte function-associated antigen-1(LFA-1) peptide with anti-angiogenic Lcn2siRNA or PTX encapsulated casein-coated iron oxide (IO), liposome or urethane acrylate nonionomer (UAN) NPs to treat against breast or cervical cancer for getting enhanced cellular uptake and higher anti-angiogenic efficacies ⁴² (Table 2. Contd.1).

The chemokine receptor type-4 (CXCR4), a G-protein coupled receptor (GPCR) with seven trans-membrane domains over-

expressed on cancerous cells, acts to regulate immune cell processes, proliferation, angiogenesis and metastasis ⁴². A few researchers have utilized CXCR4 for different ligand-targets such as LFC131 peptide, anti-CXCR4 mAb, or peptide-4 conjugated with DOC or DOX loaded chitosan, PAMAM or liposome NPs to treat against lung or breast cancer for getting higher therapeutic efficacies such as enhanced cellular uptake and drug release with cancerous cell-death, decreased cancer migration and invasion, and reduced tumor growth and metastasis ⁴² (Table 2. Contd. 1).

The family of cluster of differentiation (CD) receptors, such as CD14, CD22, CD44 and CD133, a diverse set of immune-regulatory cell surface marker-proteins, over-expressed on cancer stem cells (CSCs), are functional for delivery-targets to inhibit tumor metastasis and improve survivability ⁴². A few investigators have used CD14, CD22, CD44, or CD133 for ligand-targets anti-CD14 mAb+anti-PSMA, anti-CD22 mAb, hyaluronic acid (HA) or aptamer respectively with fluorophore, CPM/BTM, PTX, DOX, or salinomycin loaded PAMAM, organic, micelle/organic, liposome or organic NMs to treat against prostate, lymphoma, breast, melanoma or bone cancer for availing higher anti-cancer efficacies ⁴² (Table 2. Contd.2).

The interleukin receptors (ILRs), a family of cytokine receptors belonging to the immunoglobulin super-family, are functional for the receptor-mediated cell internalization to deliver cargos to the targeted site/s for inhibiting cancer ⁴². A few researchers have utilized IL-4 and IL-13 receptors for ligand-targets AP1 peptide, Pep-1, or IL-13 conjugated with DOX, or DOC loaded liposome/organic, liposome, or organic NMs for the treatment of colon/glioma, lung, or glioma cancer respectively to get higher anti-cancer efficacies ⁴² (Table 2. Contd. 2).

Table 2. Contd. 2

Receptor	Ligand target	cancer	Nanocarrier/System	Cargo
<i>CD</i>				
CD14	Anti-CD14 mAb+Anti-PSMA	Prostate	PAMAM	Fluorophore
CD22	Anti-CD22 mAb	Lymphoma	Organic	CPM, BTM
CD44	Hyaluronic acid	Breast Melanoma	Micelle, Organic Liposome	PTX, DOX DOX
CD133	Aptamer	Bone	Organic	Salinomycin
<i>IL</i>				
IL4	AP1 peptide Pep-1	Colon,Glioma Lung	Liposome, Organic Liposome	DOX DOX
IL13	IL13	Glioma	Organic	DOC
<i>EGFR</i>	Anti-EGFR mAb Cetuximab	Breast Lung Pancreatic	Liposome Liposome Inorganic	DOX, ERB,VRB Gemcitabine Gemcitabine
<i>TNF</i>	TRAIL+Transferrin	Colon	HSA	DOX

Glycyrrhetic acid	Glycyrrhetic acid	Liver	Organic	DOX
VEGF	Anti-VEGF mAb AR7+T7 peptide	Pancreatic Glioma	Conjugate Liposome	Gemcitabine DOX,Vincristine

The epidermal growth factor receptor (EGFR), the transmembrane glycoprotein over-expressed on various cancer cells, is functional for binding to EGF ligands to initiate intracellular signaling pathways for regulating cell proliferation, migration and apoptosis ⁴². A few investigators have used EGFR for ligand-targets anti-EGFR mAb or cetuximab conjugated with DOX, ERB, VRB or gemcitabine loaded liposome or inorganic NPs to treat breast, lung or pancreatic cancer for getting higher anti-cancer efficacy ⁴² (Table 2. Contd. 2).

The tumor necrosis factor receptors (TNFRs), the transmembrane protein superfamily of cytokine receptors, expressed in leukocytes, are able to bind TNFs through an extracellular cysteine-rich domain, and involved in cellular inflammation, apoptosis and signal transduction pathways such as differentiation, survival and proliferation ^{42,92-94}. A few researchers have utilized TNFR for ligand-target TRAIL+transferrin conjugated with DOX loaded HSA against colon cancer to get higher anti-cancer efficacy ⁴² (Table 2. Contd.2).

The glycyrrhetic acid receptor (GAR), over-expressed on cancerous cells, are used as the targeting moieties to deliver cargos to the targeted site/s for regulating inflammation and cancer ⁴². A few investigators have used GAR for ligand-target GA conjugated with DOX loaded organic NPs to treat against liver cancer for getting higher anti-cancer therapeutic efficacy ⁴² (Table 2. Contd. 2).

The vascular endothelial growth factor receptors (VEGFRs), the signaling proteins over-expressed on cancerous cells, are involved in binding VEGF to target cargos to the specific site of interest for regulating vasculogenesis and angiogenesis ⁴². A few researchers have utilized VEGFRs for ligand-targets anti-VEGF mAb or AR7+T7 peptide conjugated with gemcitabine, or DOX and vincristine loaded conjugate or liposome NPs to treat against pancreatic cancer or glioma for getting higher anti-cancer efficacies ⁴² (Table 2. Contd. 2).

Stimuli-responsive targeting

Cancer cell proliferation is dependent on energy supply produced by metabolic glycolysis in cancer cells ⁴⁰. Enhanced glycolysis, in turn, yields acidic environment reducing the pH of the tumor microenvironment (TME). The pH-sensitive NPs are utilized to trigger them at low pH level and to release drug contents within the vicinity of cancerous cells ⁴⁰. The TME includes an acidic high concentration of ROS and GSH along with enhanced expression of specific enzymes, such as cathepsin B / MMP-2 ⁷⁷. In response to these endogenous stimuli, cellular alterations in molecular function, dispersion,

degradation kinetics and morphology may induce / facilitate the intracellular internalization or escape from endosomal / lysosomal degradation, and liberation of nanoparticulated pharmaceutical therapeutics ⁷⁷. In addition to endogenous responsive nanosystems, a few exogenous stimuli-responsive NPs also exhibit beneficial targeting activities through utilization of controllable external factors, such as ultrasound, temperature, lasers and magnetism ⁷⁷.

Redox-responsive targeting

Redox species, such as reactive nitrogen species (RNS) and reactive oxygen species (ROS), generated in tumor cells, may construct a complex antioxidant defense system and modulate redox homeostasis ⁷⁷. Hydrogen peroxide (H₂O₂) may either be utilized as an enzymatic substrate for oxygen (O₂) production to alleviate TME-hypoxia, or converted to other active ROS, including superoxide radical (O₂⁻), singlet oxygen (¹O₂) and hydroxyl radical (-OH), while cellular glutathione (GSH) may consume ROS to modulate redox homeostasis ⁷⁷. Carcinogenesis and its progression, caused by hypoxia, may be controlled by the over-production of hypoxia-induced factor (HIF-1 α) and vascular endothelial growth factor (VEGF) in tumor cells, leading to reduced sensitivity of cancer to radiotherapy (RT), development of chemo-resistance, affecting the efficacy of O₂-related treatments such as sonodynamic therapy (SDT) and photodynamic therapy (PDT) ⁷⁷. Matrix metalloproteinases (MMPs), responsible for degradation of matrix proteins, are capable to deplete collagen via the activation of nitric oxide (NO) synthase-induced NO production. NO, can in turn react with ¹O₂ to produce toxic peroxynitrite (ONOO⁻) to kill tumor cells and induce DNA impairment and mitochondrial dysfunction, resulting in cellular apoptosis and tumor metastasis suppression ⁷⁷. A lot of investigators have utilized different nanoplatforms such as liposomes loaded with cisplatin-prodrug functionalized phospholipid and catalase (CAT), metallic nanocarriers (MOF, MnO₂, CeO₂, Pt, Pd and Au-Fe₃O₄), copper oxide (Cu₂O₂), mesoporous silica NPs (MSNs) loaded with arginine and glucose oxidase (Gox), and poly (propylene sulfide)-conjugated with PEG, accompanied with different therapeutic strategies to treat against various cancer diseases for getting higher anti-cancer efficacy with oxidative and nitrosative stress-induced enhanced tumor cell death or inhibition efficiency ⁷⁷ (Table 3). A few researchers have utilized phenylsulfonyl furoxan as NO donor decorated with polymers loaded with prodrug using ester and disulfide bonds or folic acid, and other NO donors such as metal NO complexes, Roussin's black salt and S-nitrosothiols with PDT for targeting tumors to get higher anticancer efficacy ⁷⁷.

Table 3. A few ROS-responsive building blocks for cancer treatment.

Type of chemical bonds	Nanoplatforms	Cancer models	Therapeutic strategies
<i>Phenylboronate ester</i>	G5.NHAc-Toy@TF	Breast	Chemotherapy, CDT
	pPBA(TL)-MN	Breast	Immunotherapy
<i>Thioketal linker</i>	Poly prodrug NP _{DOX/Cy}	Breast	Chemotherapy
<i>Gallic acid-ferrous nanocomplex</i>	BSO/GA-Fe(II)@liposome	Breast	CDT
<i>Bilirubin</i>	DOX@bt-BR NPs	Cervical carcinoma	Chemotherapy
	TH-302@BR-Chitosan NPs	Cervical carcinoma	Chemotherapy, PTT
<i>Ru NP</i>	HA-Ru NAs	Breast	PDT, PTT, CDT
<i>FePt NP</i>	FePt/MoS ₂ -FA	Breast	Immunotherapy, PTT
<i>Manganese ferrite NPs</i>	MFMSN-Ce6	Melanoma	SDT
<i>Catalase (CAT)</i>	CAT@Pt(IV)-liposome	Breast	Chemotherapy, RT
	CAT@HA-HMME	Colorectal	SDT
<i>Horseradish peroxidase</i>	Lipo@HRP, ABTS	Breast	PTT
	PEG-TiO _{1+x} NRs	Breast	SDT, CDT
Bis(3,4,6-trichloro-2-(pent-yloxy carbonyl) phenyl oxalate	POCL	Cervical carcinoma	PDT

GSH-responsive targeting

A number of NPs composed of diselenide bonds, disulfide bonds, carbon-diselenide bonds or sulfonyl groups, may be prepared by cross-linking reactions, while over-produced GSH can break different disulfide bonds to disintegrate NPs and release cargos in cancerous cells⁷⁷. A lot of investigators have utilized GSH-sensitive NPs such as trimeric prodrug functionalized FA decorated with PLGA-CPT with NIR coroconaine dyes through disulfide bonding, prodrug-based platinum (Pt-IV) or Pt-IV-PEG-lipid, multivalent metallic NPs for shifting their valencies in interactions, cerium oxide (CeO₂) NPs, MSNs and Cu-MOF NPs with or without NIR fluorescence and photothermal or chemodynamic therapies to treat against various tumors by regulating GSH and H₂O₂ in the TME for getting enhanced anti-cancer efficacy such as induction of DNA impairment and tumor cell apoptosis⁷⁷.

ROS and GSH dual-responsive targeting

In general, ROS generated from the catalytic oxidation of H₂O₂, may be consumed or removed by the over-produced cellular GSH, resulting in therapeutic interventions. For overcoming this obstacle, selective enhancement of oxidative stress via depletion of GSH concentrations and simultaneous elevation of ROS levels may be an effective strategy for cancer treatment⁷⁷. A few researchers have used Au-anchored carbon dot NMs modified with triphenylphosphine and cinnamaldehyde to treat against tumors, while the dissociation of cinnamaldehyde by acidic endosomes favors

the NMs to react with GSH, accompanied by ROS production, leading to the increment of ROS and simultaneous decrement of GSH, facilitating enhanced anti-cancer efficacy through oxidative-stress induced tumor cell killing⁷⁷.

pH-responsive targeting

In general, tumor cells consume more glucose for metabolic glycolysis with lactic acid production to get energy for maintaining their rapid proliferation, resulting in acidic TME⁷⁷. A few researchers have changed the chemical structures in hydrophilicity via protonation and deprotonation acid-sensitive chemical bonds for designing pH-responsive NPs, which are capable of endosomal escape⁷⁷. A lot of investigators have utilized different therapeutics-loaded NMs having pH-sensitive building blocks with different therapeutic applications to treat against various cancer cells for availing higher anti-cancer efficacies^{42,77} (Table 4). A lot of researchers have used pH-responsive NMs including polyelectrolytes such as poly(aspartic acid-graft-imidazole), poly(histidine), PDMAEMA, anionic poly(Asp), cationic poly(β-amino ester), polysulfonamide, and poly(acrylic acid), and acid-sensitive bond cleavage-based (esters, imines and hydrazines) NMs, including liposomes and micelles, such as hydrazone bond-functionalized liposomes, formyl benzoic acid-PEG-maleimide-functionalized MSN, loaded with different cargos and combined with various therapeutic applications for treating against different cancers to get higher therapeutic anti-cancer efficiencies^{42,77} (Table 4).

Table 4. A few pH-responsive building blocks for cancer treatment.

pH-sensitive building blocks	Therapeutic agents	Cancer models	Therapeutic applications
<i>Poly(diisopropanol amino)ethyl methacrylate</i>	GPDPA NPs	Glioblastoma	Chemotherapy, PTT
<i>Poly(2-(hexamethleneimino)ethyl-methacrylate</i>	siBRD4-loadedTCPA2-NPs HR NMs	Prostatic Glioblastoma	LNCaP-bearing mouse GT Chemotherapy
<i>Poly N,N-dimethylamino ethyl methacrylate-co-2-hydroxyethyl methacrylate (DMAEMA/HEMA)</i>	Trastuzumab, DOC	Breast	Chemotherapy
<i>Benzoic-imine bond</i>	CA-MTX NPs	Cervical carcinoma	Chemotherapy
	nBSA-DOX	Hepatocellular carcinoma	Chemotherapy
	Nd ^{III} IP-N=CH-PEG	Cervical carcinoma	Chemotherapy, PTT
	Au@PP/RA/siRNA	Pancreatic	Chemotherapy
	DOX-ICM	Glioblastoma	Chemotherapy
<i>Amide bond</i>	DOX-CC-NP	Squamous cell carcinoma	Chemotherapy
	PDNBF NPs	Breast	Chemotherapy, PTT
<i>Pyridine-2-imine</i>	Gold nanomachine	Breast	PTT
	PMNP-DOX@RBC	Breast	Chemotherapy, CDT
<i>Gadolinium oxide</i>	Gd ₂ O ₃ NSs	Melanoma	Chemotherapy
	FS-GdNDs	Breast	PTT
<i>Nanodrug complex</i>	MONCs	Breast	Chemotherapy, PDT
	B780/QuNPs	Breast	Chemotherapy, PDT, PTT
<i>Triple DNA sequence</i>	NLNs/DOX	Breast	Chemotherapy
	DNA conjugated AuNPs	Breast	Chemotherapy, PTT

Enzyme-responsive targeting

Owing to excellent catalytic characteristics of enzymes and their abnormal over-expressions (MMPs) on cancer cells, NPs modified with enzyme-responsive linkages, have been used to target cancer cells ⁷⁷. A few researchers have utilized MMP-2 and MMP-9 -responsive NPs such as octapeptide (AcGPLGIAGQ) conjugated PTX, gelatin-functionalized DOX-loaded MSNs, camptothecin-encapsulated MSNs functionalized with targeting cRGD, PTX-encapsulated PEG-PCL functionalized with protamine, Au grafted with complementary DNA strands functionalized with PEG-conjugated therapeutics, micelles conjugated with hydrophilic siRNA and hydrophobic drugs, lipoprotein conjugated PEG cleavable polymers loaded with Gem, and peptides conjugated copolymer loaded with curcumin to treat against various cancers with or without various stimuli applications for getting higher anti-cancer efficacies relating to degradation/hydrolysis of enzyme-cleavable peptides by the over-expressed MMPs (MMP-2 and MMP-9) and the release of cargos in TME ⁷⁷.

A few investigators have utilized various heparanase-responsive NMs such as heparin-based nanogels, protamine and heparin nanocomplex, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) cationic liposomes, loaded with various therapeutic agents, to treat against TME and metastasis for availing higher anti-cancer efficacy through cleavage of heparin or heparin sulfate proteoglycans (HSPGs) by over-expressed heparase-1 on cancerous cells, resulting in release of cargos for tumor cell-killing ⁷⁷. A few other researchers have used cathepsin-responsive NPs to treat against cancer for getting higher anti-cancer efficacy through

degradation of Gly-Phe-Leu-Gly spacer in over-expressed cathepsin-B environments ⁷⁷.

Hypoxia-responsive targeting

The abnormal vigorous metabolism and cell growth in tumor cells may deplete intracellular O₂, altering their hypoxic biological properties such as up-regulation of HIF-1 α , carbonic anhydrase 1X and other enzymes, while tumor cells prefer aerobic glycolysis for obtaining energy rather than the conventional oxidative phosphorylation owing to the Warburg effect ⁷⁷. Many enzymes, involved in electron reduction or donation, such as nitroreductase, azoreductase, methionone synthase reductase, DT-diaphorase (DTD) and inducible nitric synthase, are over-produced in hypoxic tumor cells ⁷⁷. The hypoxia-responsive cargos-loaded NPs, utilizing hypoxia-responsive chemical bonds such as nitro, azo, N-oxide and quinine groups for changing their conformation as well as physicochemical properties such as hydrophobic characteristics and electrons-affinity by losing or gaining their electrons, have been developed and used for tumor treatment to get higher anti-cancer efficacy including prolonged blood-circulation, increased tumor penetration and accumulation, and enhanced cargos-release for tumor cell-killing ⁷⁷ (Table 5).

In hypoxic environment, azobenzene (AZO) compounds utilized to link hydrophobic and hydrophilic moieties in amphiphilic molecules, may be reduced by NAD(P)H quinone dehydrogenase 1 (NQO1) and AZO reductase into two separate aniline groups which render them appropriate for preparing hypoxia-responsive NPs ⁷⁷. A lot of researchers have utilized different AZO-containing NPs such as hypoxic degradable NPs functionalized with AZO-containing

hydrophilic groups loaded with camptothecin and photo-sensitive chlorine e6 for laser-augmented therapy, CDT, PDT or SDT, supramolecular micelles loaded with photo-sensitizer and hypoxia-sensitive prodrug, AZO reductase-triggered NPs conjugated with DOX and siRNA, aptamer/antibody

functionalized with hypoxia-sensitive AZO polymer NPs, MSN functionalized with β -cyclodextrin and 4-(phenyl AZO)benzoic acid, to treat against hypoxic tumors for getting higher anti-cancer efficacies through breakage of the AZO groups and simultaneous enhanced release of cargos in TME ⁷⁷ (Table 5).

Table 5. A few hypoxia-responsive chemical bond-triggered nanoplateforms.

Type of chemical bonds	Therapeutic agents	Therapeutic methods	Cancer models
Azo	DOX@AMOFs@DRHC/CPPs	Chemotherapy	Breast
	DOX@NP	Chemotherapy	Lung
	ALN-HR-PMs/DOX	Chemotherapy	Prostate
	mPEG-AzoPAsp-IM micelles	PDT	Lewis lung carcinoma
	PEG-Azo-PEI DOPE	Chemotherapy	Cervical carcinoma
	CPs-CPT-Ce6 NPs	Chemotherapy, PDT	Cervical carcinoma
	CAGE	Chemotherapy, PDT	Melanoma
Nitro	DOX/CP-NI NPs	Chemotherapy, PDT	Cervical carcinoma
	DOX/FOBD liposome	Chemotherapy	Cervical
	DOX@HMs	Chemotherapy, RT	Breast
	HC/PN/DOX NPs	Chemotherapy, PDT	Lung
	ALP-(MIs)n/DOX	Chemotherapy, RT	Glioma
	NCs/DOX + Ce6 micelles	Chemotherapy, PDT	Breast
	Gd-Au DE NPs-Nit	RT	Nasopharyngeal carcinoma
	HR NP/siRNA	Chemotherapy	Breast
<i>N</i> -oxide	HSA-GOx-Fe ³⁺ -TA (HGTFT)	Chemotherapy, CDT	Breast
	HA@AQ4N-Cu(II)-gossypol NPs	Chemotherapy	Prostatic
	TPZ/UCSs	Chemo / Photodynamic / Immuno therapy	Colorectal
	TENAB NPs	Chemotherapy, PDT, PTT	Cervical carcinoma
	UiO-66-H-P NMOFs	Chemotherapy, PDT	Glioblastoma
	YS-DMONs-AQ4N-GOx	Chemotherapy	Prostatic
	Mn-ADPMSF	Chemotherapy, PTT	Hepatocellular carcinoma
	Lip/Ce6/TPZ NPs	Chemotherapy, PDT	Breast
	AQ4N- ⁶⁴ Cu-hCe6-liposome	Chemotherapy, PDT	Breast

In hypoxic cancerous cells, polymeric -NO₂ groups (namely, 2-nitro imidazole and nitrobenzyl alcohol) are generally converted into -NH₂ through a series of biochemical interactions with nitro-reductase and NADPH. A lot of researchers have utilized different hypoxia-responsive -NO₂ containing NPs, such as nitroimidazole functionalized block co-polymers loaded with therapeutics, HA conjugated 6-(2-nitroimidazole)hexylamine loaded with lactate oxidase and virus, and 2-nitroimidazole-functionalized peptides decorated with cationic lipid like co-polymers loaded with siRNA, to treat against various hypoxic tumors for getting enhanced anti-cancer efficacy through reduced conversion of hydrophobic 2-nitroimidazole to hydrophilic 2-aminoimidazole, leading to degradation of NPs, O₂-depletion, silence of pro-tumorigenic gene (CDC20), and the release of loaded therapeutics in hypoxic tumor cells ⁷⁷ (Table 5).

Tirapazamine, the aromatic N-oxide, and banoxantrone dihydrochloride, the aliphatic N-oxide derivative, exhibit

higher cytotoxicity in hypoxic cancerous cells, while tirapazamine may generate radical species to break DNA via a single-electron reduction reaction catalyzed by different intracellular reductases, resulting in cellular damage and apoptosis, and banoxantrone dihydrochloride (AQ4N) may be reduced by various reductases and its protonated form (AQ4) may use DNA intercalation to suppress topoisomerase II-activity ⁷⁷. A lot of researchers have utilized various hypoxia-responsive conjugated N-oxide NPs such as glucose oxidase (GOx)-conjugated tirapazamine-loaded NPs, tirapazamine-encapsulated porphyrinic-based lanthanide-doped or anti-programmed death-ligand 1 (anti-PD-L1)-conjugated MOFs, banoxantrone dihydrochloride and ⁶⁴Cu-hCe6 encapsulated liposomes, banoxantrone dihydrochloride and GOx encapsulated MSNs, and near-infrared fluorescent banoxantrone dihydrochloride NPs, together with or without CDT, PDT, laser irradiation or image-guided therapy, to treat against various tumors for getting higher anti-cancer efficacies

through O₂-consumed enhanced hypoxic micro-environment creation, oxidative stress-induced higher ·OH generation or GSH-induced cleavage of tetrasulfide bonds of MSNs, and accumulation and release of therapeutics in hypoxic tumor cells leading to cellular death ⁷⁷ (Table 5).

Quinone compounds and their derivatives, such as semiquinones or hydroquinones produced by one or two electron reduction, have been used for tumor treatment owing to their excellent chemical and electronic features, while the elimination of indolequinones may be achieved in hypoxic environment by the bio-reductive action of DT-diaphorase NQO1 over-expressed in cancer cells ⁷⁷. A few researchers have utilized enzyme-responsive conjugated prodrug (dopaquinone and 5-fluorodeoxy uridine) NPs and versatile NPs-functionalized with benzoquinone groups to treat against hypoxic tumors for availing enhanced anti-cancer therapeutic efficacy ⁷⁷.

A lot of investigators have utilized different hypoxia-responsive conjugated NPs such as radio-sensitizer tantalum oxide (TaOx) NPs functionalized with PEG, conjugated manganese (Mn) NPs, FA-modified liposomal TiO-porphyrin NPs, NIR-laser-controlled O₂/Pt²⁺ self-generating prodrug (UCPP)-conjugated NPs, C₃N₄-based NPs, graphene oxide NPs, or pH-sensitive zinc(II) metalated porphyrin NPs, combined with or without laser irradiation/PDT, to treat against hypoxic tumors for getting higher anti-cancer efficacies through the production or release of O₂, and the generation of toxic ·OH and /or ¹O₂ to kill cancer cells ⁷⁷.

Interstitial fluid pressure (IFP)-related targeting

The delivery of therapeutics may be restricted due to elevated IFP for the drops in convection between intra-vascular and extra-vascular spaces ⁷⁷. A few scientists have utilized chemotherapeutic component-encapsulated liposomes applying single heating approach with the combination of hyperthermia and coagulative ablation (45 °C for 2 min and 70 °C for 3 min) to treat against 4T1 tumor bearing Balb/c mice for getting higher anti-tumor efficacy ⁷⁷.

ATP-responsive targeting

The concentration gradients of ATP levels between tumoric intracellular and extracellular fluids have been utilized to develop ATP-responsive NPs for tumor treatments ⁷⁷. A lot of researchers have utilized different cargos-loaded/conjugated NMs such as siRNA-encapsulated ATP-responsive micelles, protein-based NPs conjugated with therapeutics, Mg²⁺ and chaperon, PEI hybridized with ATP-responsive ligands, DOX and siRNA, ATP-binding aptamer DNA functionalized with polymers, ATP-responsive nanogels/HA, to treat against various tumors for getting enhanced anti-cancer efficiencies through increased accumulation and degradation of NMs, and efficient release of the therapeutics into the TME for apoptotic cell death, cell cycle arrest at the G2 phase, as well as tumor inhibition ⁷⁷.

Exogenous stimuli-responsive targeting

Temperature stimuli-responsive nanomaterials include poly-N-isopropylacrylamide (PNIPAAm), poly(2-oxazo line)s

(POxs), poly(vinyl caprolactam) (PNVCL), poly(methyl vinyl ether) (PMVE), and liposomes for their solid-to-liquid phase transition characteristics in accordance with external conditions for having lower critical solution temperature (~30 °C) ⁷⁷. A few researchers have utilized DOX-encapsulated temperature stimuli-responsive liposomes functionalized with iRGD peptide (CCRGDKGPDC) for the treatment against tumor for getting enhanced NPs-internalization by αVβ3-positive tumor cells and ultrasound mediated DOX-release in TME to kill cells ⁷⁷.

A few investigators have used various magnetically responsive NPs such as encapsulated super paramagnetic Fe₂O₃ NPs (SPIONs), magnetic molybdenum disulfide (mMoS₂) modified liposomes, DOX-encapsulated tannic acid-Fe conjugate (TAFs) functionalized with fibronectin, and GSH-responsive MOF loaded with IDO inhibitor and NO donor s-nitrosothiol groups, to treat against tumors for getting higher anti-cancer efficacies such as enhanced NPs-accumulation and cargos-release to kill tumor cells, or improved anti-tumor immunotherapy ⁷⁷.

Ultrasound-mediated external stimulus or sonodynamic therapy (SDT) is capable not only to disrupt NPs and release their cargos at the desired site/s, but also produce CO₂ to accomplish inertial cavitation and augment ROS accumulation to induce cancerous and immunogenic -cells death ⁷⁷. A few researchers have utilized various ultrasound-stimuli-responsive NMs such as cisplatin encapsulated solid lipid NPs, DOX-loaded MSNs, epirubicin-encapsulated micelles, piezoelectric NPs encapsulated with DSPE-PEG and decorated with anti-HER2 Ab, to treat against cancer for getting enhanced anti-cancer efficacies such as higher cellular uptake, enhanced drug-release, cancer cell killing, or suppression in tumor invasiveness and growth ⁷⁷.

Laser (near infrared (NIR)) stimuli-responsive targeting may break light-sensitive functional groups or bonds such as truxylic acid, coumarinyl and pyrenyl methyl esters of the NPs at the lesions ⁷⁷. A few scientists have utilized different laser stimuli-responsive NPs such as photolabile spherical nucleic acid NPs decorated with antisense oligonucleotide and siRNA for their oxidized degradation to release cargos at the tumor site/s for availing enhanced anti-cancer therapeutic efficacy ⁷⁷.

Hybridized and combined targeting

Generally, NMs may accumulate in the tumor site through passive or active targeting. Subsequently, such NMs tuned with endogenous stimuli may liberate cargos in controlled manner, and the release may be highly triggered under the cumulative action of multiple exogenous stimuli such as ultrasound, magnetic, laser, temperature or light at the targeted site ⁷⁷. A lot of researchers have utilized different stimuli-responsive targeting strategies for various therapeutic agents to treat against cancer for getting triggered anti-cancer efficacies such as the receptor or EPR -mediated NMs-internalizations in tumor cells, endosomal escape of the NMs from the acidic endo/lysosomal environment, endogenous stimuli-responsive cargos-release, and the synergistic killing efficiency in the TME through the exogenous stimuli ^{42,77} (Table 6).

Table 6. A few hybridized combinations of cancer nanomedicines.

Targeting strategies	Stimuli-responsiveness	Therapeutic agents	Cancer types/cells
Transferrin	Temperature	TMNP	Breast
	GSH	DMSN@PMAsh-Tf	Lung
	pH / Temperature	LF-PNIPAM-co-AA	Breast
Folic acid (FA)	pH	PEG-FA/(DOX+VER)@ZIF-8	Melanoma
	GSH	FA-S-S-PLGA NPs	Lung
	ROS	Lut/FA-Oxi-aCD NPs	Breast
	pH and GSH	PsEEL-DOX/PTX NMs	Lung
	pH and ROS	DT-NP	Breast
	pH and Laser	HM-Bi@PEG-FA NSs	Lung
	MMP-2	F/TMSP-NLC	Fibrosarcoma
Biotin	pH	B780/Qu NPs	Breast
	GSH	SS-Biotin-Ppy NWs	Breast
Hyaluronic acid (HA)	pH	HA/(R837+1MT)@ZIF-8	Melanoma
	GSH	HL/MOS@M780, LOD NPs	Breast
	pH and GSH	DOX/siGCN5@HPMSNs	Breast
	GSH and Hypoxia	PaHAsC	Melanoma
	Laser	DOX/ICG-CuS@MnO ₂ /HA NPs	Breast
RGD	pH	Met/GOx@His/ZIF-8~RGD	Breast
	GSH	RGD/MoS ₂ /DOX	Cervical
	pH and GSH	CuS DE NPs	Breast
	pH and esterase	IR825@IRI-ATRA/RGD NPs	Breast
	Laser	SPIOCs@HSA(PTX)-RGD	Glioma
	MMP-2	RHMH18@AuD NPs	Ovarian
RGD+FA	Thermal	Graphene oxide	Carcinoma
LHRH	pH, HIFU and ultrasound	LHRH-ELP-DOX	Breast
	GSH	PTX-LHRH-DCMs	Breast
EPR effects	P2, pH and ROS	SRF/Ce6-loaded PEG-M-PPMT NPs	Lung
	pH and cathepsin B	TNV	Melanoma, Colon
RGD and EPR effects	GSH and laser	RDG/shRNA	Breast

Table 6. Contd. 1

Targeting strategies	Stimuli-responsiveness	Therapeutic agents	Cancer types/cells
Hyperthermia (HT)	pH, PTT	GQD-ZIF-8-DOX	4T1 cells
HT	pH, PTT	GO-PEG/PAH-DA/DOX	MCF-7, MCF-7/ADR cells
IL-13R α 2, HT	pH, NIR, PTT	Graphene-silica-PEG-(IL-13 peptide)-DOX	Glioma cells
HA, HT	pH, NIR, PTT	GO-Au-HA-AHD-DOX	Huh-7, CHO cells
HA, HT	pH, NIR, PTT	rGO@MSN-HA-DOX	HeLa cells
Lf, HT	pH, NIR, PTT	rGO-Lf-DOX	RG2, MCR-5 cells
HT	pH, NIR, PTT, CT, PAT	rGO/Bi ₂ S ₃ -PVP-DOX	HeLa, MCF-7, Hep-G2, BEL-7402 cells
HT	pH, NIR, PTT	GQD-MSN-DOX	4T1 cells
HT	pH, GSH, PTT	GO-Alg-DOX	A549 cells

HT	pH, GSH, NIR, PTT	rGO-BPEI-PEG-DOX	PC3, HeLa cells
Ce6	660nm LED, PDT	GO-PEG-DOX/Ce6	SCC7 cells
Hypocrellin A	470nm LED, PDT	GO-SN-38-hypocrellin A	A549 cells
Ag	pH, 425nm LED, PDT	GQD-Ag-PEG-DOX	HeLa, DU145 cells
ZnPc	pH, 440nm light, PDT	Graphene-(poly-L-lysine)-DOX-ZnPc	HeLa, MCF-7, B-16 cells
HT	pH, 660nm light, PDT, PTT	rGO-Au-spinach extract-FU	HeLa, CHO cells
-	pH	rGO-PF-127-CUR-PTX	A549, MDA-MB-231 cells
Magnetic, HT	pH, PTT	GO-Fe ₃ O ₄ -CPT-MTX	Hep G2 cells
HT	pH, PTT	GO-poloxamer 188-DOX-irinotecan	MDA-MB-231 cells
HT	pH, PTT	GO-PEG-DOX-rapamycin	MDA-MB-231, MCF-7, BT474 cells
TRAIL	pH	GO-PEG-furin cleavable peptide-TRAIL-DOX	A549 cells
Lf	NIR	Graphene-Lf-DTX, PFH	GR2 tumor
Bcl-2, GT	-	GO-PEI-DOX-siRNA	HeLa cells
Anti-miR21, GT	-	GO-PEI-PSS-ADR-(anti-miR-21)	MCF-7, MCF-7/ADR cells
DNA, GT	pH	rGO-chitosan-SPIO-DOX-DNA	A549, C4-2b cells
Magnetic	Laser	ZnFe ₂ O ₄ -rGO	LNCaP, U87MG
RGD, Cy7	Laser	rGONM-PEG-Cy7-RGD	U87MG cells
HA	Laser	PgP/HA-rGO	MDAMB231, A549
RGD, Cy3	Laser	rGONR-PEG-Cy3-RGD	U87MG cells

Table 6. Contd. 2

Targeting strategies	Stimuli-responsiveness	Therapeutic agents	Cancer types/cells
Let-7 g miRNA, GT	pH	GO-Gd-Polyamidoamine-EPI-miRNA	U87 cells
shRNA(shABCG2), GT	pH	GO-chitosan-Aco-PEG-PEI-DOX-shRNA	Hep G2 cells
FA, GT	pH, NIR	GO-PEI-PEG-FA-DOX-siRNA	MCF-7/MDR cells
Magnetic/photo hyperthermia	pH, AMF, NIR, MHT, PTT	GQD/MSN/Fe ₃ O ₄ -DOX	4T1 cells
Magnetic hyperthermia, ROS	NIR, magnetic field, PTT, PDT	GQD-Fe ₃ O ₄ /SiO ₂ -liposome-DOX	Eca-109 cells
ROS, Hyperthermia	660nm, 808nm light, PTT, PDT	GO-PEG-Ce6	KB, 4T1 cells
ROS, Hyperthermia	980nm light, PTT, PDT	GO-PEG-FA	B16F0 cells
ROS, Hyperthermia	775nm light, PTT, PDT	MFG-SiNc ₄	HeLa cells
HA, ROS, Hyperthermia	365,808 nm light, PTT, PDT	rGO-ZnO-HA	MDA-MB-231 cells
HA, Ce6, ROS, Hyperthermia	Hadase, 670,810 nm light, PTT, PDT	GO-HA-Ce6	A549 cells
ROS, Hyperthermia	630,808 nm light, PTT, PDT	UCNPs-NGO/ZnPc	HeLa cells
Hyperthermia, pDNA, GT	808nm light, PTT	PEG-BPEI-rGO/pDNA	NIH/3T3 cells
FA, Hyperthermia, siRNA, GT	808nm light, PTT	GO/FA/siRNA	MIA PaCa-2 cells
Hyperthermia, siRNA, GT	808nm light, PTT	NGO-PEG-PEI	HeLa cells
Hyperthermia, CpG	808nm light, PTT	GO-PEG-PEI-CpG	RAW 264.7 cells
RT, Hyperthermia	808nm light, X-ray, PTT	¹³¹ I-rGO-PEG	4T1 cells
Hyperthermia, Magnetic	LFUS irradiation, pH, SHT	GO-PEG-EPI	GL261 cells
ROS, Hyperthermia	FUS irradiation, SDT, SHT	rGO@MSN-IONP-PEG-RB	SKBr3 cells
ROS, Hyperthermia	NIR, Ultrasound, SDT, PDT	GO-TiO ₂ -MnO _x -PVP	4T1 cells

A lot of investigators have used various stimuli-responsive targeting strategies for different graphene-based therapeutic agents for the treatment of cancer to avail higher anti-cancer efficacies⁶²⁻⁶⁶ (Table 6. Contd. 1 and 2).

Table 6. Contd. 3

Targeting strategies	Stimuli-responsiveness	Therapeutic agents	Cancer types/cells
PSMA, X-ray CT	-	DOX-PSMA-AuNP	LNCaP cells
Photothermal, PET, Optical imaging	PTT, Thermal ablation	DOX@PEG-HAuNS	A431, MDA-MB-231 cells
FA, Hyperthermia	Cy3 luminescence	DOX-FA@AuNR	KB, HeLa cells
cRGD, PET, Optical imaging, CT	PTT	AuNR-DOX-cRGD	U87MG cells
Hyperthermia, TPL	Thermal	AuNR@SiO ₂ -DOX	A549 cells
B-cyclodextrin	Fluorescence (Rhodamine B)	PTX@PEG-AuNP	HeLa, A549, MG63 cells
Thermal ablation	Thermal	CIS@AuNR	OCI AML3, Jurkat T, MCF-7 cells
Optical imaging	PTT, NIR	CET-PEG-AuNR	A431, MCF-7 cells
PET, PAT	PTA, NIR	CET-HAuNS	A431 cells
Photothermal, US	PTT, NIR	AuNS	HeLa cells
Photothermal, X-ray CT	PTT, X-ray absorption	PEG-AuNR	MDA-MB-435 cells
Cy5.5-MMP	PTT, Cy5.5 fluorescence	MMP-AuNR	HeLa cells, SCC-7 tumors
Light scattering	-	siRNA-AuNR	Carcinoma cells
PET, PAT	PTT, Radiotherapy, NIR	siRNA-HAuNS	HeLa cells
MRI, X-ray CT	Radiotherapy	Au@DTDTPA-Gd	Solid tumors
US, X-ray CT	PTT	Au@PLA-(PAH/GO) ₂	Tumors
MRI, Magnetic	PTT	SPIO@AuNS	A431 tumors
HER2, Optical imaging, MRI	PTT, Fluorescence of ICG	Anti-HER2-AuNS@Fe ₃ O ₄ @SiO ₂ -ICG	SKBR3, MDA-MB-231 cells
HER2, OCT	PTT, NIR	Anti-HER2-AuNS@SiO ₂	SKBR3 cells
EGFR, Optical imaging, TPL	PTT	Anti-EGFR-AuNS/AuNR	OECM1, Cal27 cells
FA, X-ray CT	PTT, Radiotherapy	AuNR-SiO ₂ -FA	MGC803 cells
FA, MRI, Hyperthermia	PTT	Fe ₃ O ₄ @SiO ₂ @AuNR@mSiO ₂ -FA	KB cells

A lot of other researchers have applied different stimuli-responsive targeting strategies for various gold nanocomposites-based therapeutic agents to treat cancer for achieving higher therapeutic anti-cancer efficacies¹⁰ (Table 6. Contd. 3).

Conclusions and future perspectives

In this review, different types of NMs have been demonstrated and designed with different characteristics to conjugate them with a variety of ligands and cargos for accumulating them at the desired site/s through passive, active and /or stimulus-responsive targeting/s to reduce the toxicity or other side effects and also to protect them from the deletion or clearance in blood circulation for getting higher therapeutic efficiencies against cancer. However, there are some caveats for their biomedical applications and needed to give further emphasize on optimization of the size and surface of NMs for membrane-protection, optimization of NMs-formulations with variable ligand clustering, multiple binding ligands, and various conjugation densities, scaling up of the NMs at commercial setting, high-throughput screenings, identifications of new receptors with corresponding ligands,

and the explorations of suitable new and promising NMs. In addition, more extensive investigations regarding their interactions with cells, immunotoxicity, biodistribution, pharmacokinetics and elimination, routes of administration specifically oral and intravenous, successful scale-up of NMs-formulations with batch-to-batch contents uniformity, absence of residual organic solvents and surfactants, and effective biological efficacies are required to consider the conjugated NMs as well as NPs as potent nanomedicines for clinical translations.

Abbreviations:

NMs: Nanomaterials; NPs: Nanoparticles; PEG: Poly (ethylene glycol); PLGA: Poly (lactide-co-glycolide); PLA: Poly (D,L-lactide); PAMAM: Poly (amidoamine); PAPA: Poly (α , β -aspartic acid); PEI: Polyethylenimine; DOX: Doxorubicin; CIS: Cisplatin; RAPA: rapamycin; CPT: Camptothecin; DTX: Docetaxel; THZ: Thioridazine; PTX: Paclitaxel; VEGF: Vascular endothelial growth factor; TRAIL: Tumor necrosis factor related apoptosis-inducing ligand; DFO: Deferoxamine; YC1: HIF1 α inhibitor lificiguat known as YC1; P-gp: P-Glycoprotein; 5-FU: 5-Fluorouracil; ADM: Adriamycin; MMP-2: Matrix

metalloproteinase-2; HER-2: Human epidermal growth factor receptor-2; PSMA: Prostate-specific membrane antigen; YPSMA: Mouse monoclonal PSMA antibody; pHA: p-hydroxybenzoic acid; RGD: Arginyl glycyl aspartic acid peptide; ASGP: Asialo glycoprotein; LDL: Low density lipoprotein; LRP: Low density lipoprotein receptor-related protein (LRP); TfR: Transferrin receptor; TAT: Transactivator of transcription; mAb: Monoclonal antibody; CTX: Chlorotoxin; Asp8: Aspartate-8; CD: Cluster of differentiation; HSA: Human serum albumin; BSA: Bovine serum albumin; HCD: Hydroxypropyl- β -cyclodextrin; PPSOC: Phospholipid-protein shell-oily core; JGN: Janus gold nanorod; PCL: Poly(ϵ -caprolactone); DNM: Daunomycin; MTX: Methotrexate; DOC: Docetaxel; MTN: Maytansinoid; QC: Quercetin; SRF: Sorafenib; NOS: Noscapine; LHRH: Luteinizing hormone-releasing hormone; ICAM1: Intracellular adhesion molecule-1; CXCR4: Chemokine receptor type-4; IL: Interleukin; EGFR: Epidermal growth factor receptor; TNF: Tumor necrosis factor; MXT: Mitoxantrone; CPM: Cyclophosphamide; BTM: Bortezomib; ERB: Epirubicin; VRB: Vinorelbine; CDT: Chemodynamic therapy; PTT: Photothermal therapy; PDT: Photodynamic therapy; SDT: Sonodynamic therapy; RT: Radiotherapy; MOF: Metal organic framework; NIR: Near-infrared; Au: Gold; Hyd: Hydrazone; CPP: Cell penetrating peptide; FA: Folic acid; SMCC: Succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate; PVP: Poly vinyl pyrrolidone; BLM: Bleomycin; PLA: Poly L-Aspartate; BHC: Berberine hydro chloride; RBC: Red blood cell (Membrane); EpCam: Epithelial cell adhesion molecule (Antibody); OPT: Oxaliplatin; Carb: Carboxylate; (Pt(R,R-dach)): Active ingredient of oxaliplatin; DAU: Daunorubicin; PA: Polyvalent aptamers; CPA: Cyclophosphamide; GMC: Gemcitabine; CPC: Capecitabine; VCR: Vincristine; ETP: Etoposide; HPMC: Hydroxypropyl methylcellulose; PVA: Polyvinyl alcohol; 6-MP: 6-mercaptopurine; Tf pep: Transferrin peptide; rGO: Reduced graphene oxide; CUR: Curcumin; BBR: Berberine; ODNs: Anti-sense oligodeoxynucleotides; GM-CSF: Granulocyte macrophage colony stimulating factor; SAN: Sanazole; HT: Hyperthermia; GQD: Graphene quantum dots; GO: Graphene oxide; GT: Gene therapy; MHT: Magnetic hyperthermia therapy; SHT: Ultrasound hyperthermia therapy; NIR: Near-infrared; ZIF-8: Zeolitic imidazolate framework-8; PAH: Poly(allylamine hydrochloride); DA: 2,3-dimethylmaleic anhydride; IL-13: Interleukin 13; HA: Hyaluronic acid; ADH: Adipic acid dihydrazide; MSN: Mesoporous silica nanoparticles; Lf: Lactoferrin; PVP: Polyvinyl pyrrolidone; CT: Computed tomography; PAT: Photo acoustic tomography; Alg: Alginate; Ce6: Chlorin e6; SN-38: 7-ethyl-10-hydroxycamptothecin; ZnPc: Zn(II)-phthalocyanine; PFH: Perfluorohexane; ADR: Adriamycin; SPIO: Super paramagnetic iron oxide; EPI: Epirubicin; Aco: Aconitic anhydride; AMF: Alternating magnetic field; MFG: Magnetic and fluorescent graphene; SiNc4: Silicon napthalocyanine bis (triethyl silylooxide); LFUS: Low-power focused ultrasound; RB: Rose bengal; CpG: Cytosine-phosphate-guanine; AuNP: Gold nanoparticle; HAuNS: Hollow gold nano-sphere; AuNR: Gold nanorod; SiO₂: Silica oxide; CET: Cetuximab; MMP: Matrix metallo-proteinase; DTDTPA: Diethylene triamine penta acetic acid; Gd: Gadolinium; ICG: Indocyanine green; EGFR: Epidermal growth factor receptor; PET: Positron emission tomography; TPL: Two photon luminescence; PTA: Photo thermal ablation; US: Ultrasound; MRI: Magnetic resonance imaging; OCT: Optical coherence tomography.

Conflict of interests

The author declares no conflicts of interest.

Acknowledgement

This study was supported by the Council of Scientific and Industrial Research (CSIR), Government of India.

References

1. Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of metastasis by NK cells. *Cancer Cell*. 2017; 32(2):135-54. <https://doi.org/10.1016/j.ccr.2017.06.009> PMID:28810142
2. Gallaher JA, Enriquez-Navas PM, Luddy KA, Gatenby RA, Anderson ARA. Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies. *Cancer Res*. 2018; 78(8):2127-39. <https://doi.org/10.1158/0008-5472.CAN-17-2649> PMID:29382708 PMCid:PMC5899666
3. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, et al. Mutations in the p53 gene occur in diverse human tumor types. *Nature*. 1989; 342(6250):705-8. <https://doi.org/10.1038/342705a0> PMID:2531845
4. Sarkar S, Horn G, Moulton K, Oza A, Byler S, Kokolus S, et al. Cancer development, progression, and therapy: An epigenetic overview. *Int J Mol Sci*. 2013; 14(10):21087-113. <https://doi.org/10.3390/ijms141021087> PMID:24152442 PMCid:PMC3821660
5. Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. *Pharm Res*. 2008; 25:2097-116. <https://doi.org/10.1007/s11095-008-9661-9> PMID:18626751 PMCid:PMC2515569
6. Parsa N. Environmental factors inducing human cancers. *Iranian J Publ Health*. 2012; 41(11):1-9.
7. Mandal AK. Chromium induced developments of diseases and their inhibitions by cargos. *Asian J Biochem Genet Mol Biol*. 2022; 12(4):108-19. <https://doi.org/10.9734/ajbgmb/2022/v12i4274>
8. Miller A, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. *Cancer*. 1981; 47:207-14. [https://doi.org/10.1002/1097-0142\(19810101\)47:1<207::AID-CNCR2820470134>3.0.CO;2-6](https://doi.org/10.1002/1097-0142(19810101)47:1<207::AID-CNCR2820470134>3.0.CO;2-6) PMID:7459811
9. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. *Adv Drug Deliv Rev*. 2012; 64:206-12. <https://doi.org/10.1016/j.addr.2012.09.033>
10. Mandal AK. Gold nanoparticles as theranostic delivery system in combating various diseases. In Book: Anatolyivna TV, Editor. "Research advances in Microbiology and Biotechnology Vol. 6". India-United Kingdom: Book Publisher International 2023; cp 8, pp 100-128. <https://doi.org/10.9734/bpi/ramb/v6/5933B>
11. Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, Fisher PB. Gene therapies for cancer: Strategies, challenges and successes. *J Cell Physiol* 2015; 230(2):259-271. <https://doi.org/10.1002/jcp.24791> PMID:25196387 PMCid:PMC4363073
12. Perez E. American pharmaceutical partners announces presentation of abraxane survival data. In: 22nd annual Miami Breast Cancer Conference; Miami:FL.
13. Reshma PL, Unnikrishnan BS, Preethi GU, Syama HP, Archana MG, Remya K, et al. Overcoming drug-resistance in lung cancer cells by paclitaxel loaded galactosyloglucan nanoparticles. *Int J Biol Macromol*. 2019; 136:266-74. <https://doi.org/10.1016/j.ijbiomac.2019.06.075> PMID:31201909
14. Mandal AK, Joardar A. Manganese nanomaterials as delivery system in combating diseases. *Int J Curr Res*. 2021; 13(10):19306-15.
15. Lippert TH, Ruoff HJ, Volm M. Intrinsic and acquired drug resistance in malignant tumors: The main reason for therapeutic failure. *Arzneimittelforschung*. 2008; 58:261-64. <https://doi.org/10.1055/s-0031-1296504> PMID:18677966
16. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: An overview. *Cancers (Basel)*.

2014; 6(3):1769-92. <https://doi.org/10.3390/cancers6031769> PMid:25198391 PMCid:PMC4190567

17. Du B, Shim J. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. *Molecules*. 2016; 21:965. <https://doi.org/10.3390/molecules21070965> PMid:27455225 PMCid:PMC6273543

18. Elaskalani O, Razak NBA, Falaska M, Metharam P. Epithelial-mesenchymal transition as a therapeutic target for overcoming chemoresistance in pancreatic cancer. *World J Gastrointestinal Oncol.* 2017; 9:37-41. <https://doi.org/10.4251/wjgo.v9.i1.37> PMid:28144398 PMCid:PMC5241525

19. Islam SU, Shehzad A, Sonn JK, Lee YS. PRPF over-expression induces drug resistance through actin cytoskeleton rearrangement and epithelial-mesenchymal transition. *Oncotarget*. 2017; 8:56659-71. <https://doi.org/10.18632/oncotarget.17855> PMid:28915620 PMCid:PMC5593591

20. Yang J, Yu Y, Liu W, Li Z, Wei Z, Jiang R. Microtubule-associated protein tau is associated with the resistance to docetaxel in prostate cancer cell lines. *Res Rep Urol.* 2017; 9: 71-7. <https://doi.org/10.2147/RRU.S118966> PMid:28507979 PMCid:PMC5428793

21. Suzawa K, Offin M, Schoenfeld AJ, Plodkowski AJ, Odintsov I, Lu D, et al. Acquired MET Exon 14 alteration drives secondary resistance to epidermal growth factor receptor tyrosine kinase inhibitor in EGFR-mutated lung cancer. *JCO Precis Oncol.* 2019; 3:1-8. <https://doi.org/10.1200/PO.19.00011> PMid:31157314 PMCid:PMC6541452

22. Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Re-visiting the role of ABC transporters in multidrug-resistant cancer. *Nat Rev Cancer.* 2018; 18(7):452-64. <https://doi.org/10.1038/s41568-018-0005-8> PMid:29643473 PMCid:PMC6622180

23. Hu T, Li Z, Gao CY, Cho CH. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. *World J Gastroenterol.* 2016; 22:6876-89. <https://doi.org/10.3748/wjg.v22.i30.6876> PMid:27570424 PMCid:PMC4974586

24. Kim SJ, Kim S, Kim DW, Kim M, Keam B, Kim TM, et al. Alterations in PD-L1 expression associated with acquisition of resistance to ALK inhibitors in ALK-rearranged lung cancer. *Cancer Res Treat.* 2019; 51(3):1231-40. <https://doi.org/10.4143/crt.2018.486> PMid:30653748 PMCid:PMC6639241

25. Wang S, Meng Y, Li C, Qian M, Huang R. Receptor mediated drug delivery systems targeting to glioma. *Nanomater.* 2016; 6:3. <https://doi.org/10.3390/nano6010003> PMid:28344260 PMCid:PMC5302535

26. Dagogo-Jack I, Shaw AT. Tumor heterogeneity and resistance to cancer therapies. *Nat Rev Clin Oncol.* 2018; 15:81-94. <https://doi.org/10.1038/nrclinonc.2017.166> PMid:29115304

27. Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G, Ahronian LG, et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. *Cancer Discov.* 2016; 6(2):147-53. <https://doi.org/10.1158/2159-8290.CD-15-1283> PMid:26644315 PMCid:PMC4744519

28. Mansoori B, Mahammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. *Adv Pharm Bull.* 2017; 7:339-48. <https://doi.org/10.15171/apb.2017.041> PMid:29071215 PMCid:PMC5651054

29. Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC. New generation of multifunctional nanoparticles for cancer imaging and therapy. *Adv Funct Mater.* 2009; 19:1553-66. <https://doi.org/10.1002/adfm.200801655>

30. Sana S, Ghosh S, Das N, Sarkar S, Mandal AK. Vesicular melatonin efficently downregulates sodium fluoride-induced rat hepato and broncho TNF- α , TGF- β expressions and associated oxidative injury: A comparative study of liposomal and nanocapsulated forms. *Int J Nanomed.* 2017; 12:4059-71. <https://doi.org/10.2147/IJN.S124119> PMid:28603418 PMCid:PMC5457176

31. Mandal AK. Dendrimers in targeted drug delivery applications: A review of diseases and cancer. *Int J Polym Mater Polym Biomater.* 2021; 70(4):287-97. <https://doi.org/10.1080/00914037.2020.1713780>

32. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. *J Control Rel.* 2000; 65:271-84. [https://doi.org/10.1016/S0168-3659\(99\)00248-5](https://doi.org/10.1016/S0168-3659(99)00248-5) PMid:10699287

33. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. *Adv Drug Deliv Res.* 2011; 63:131-35. <https://doi.org/10.1016/j.addr.2010.03.011> PMid:20304019

34. Mandal AK, Ghosh D, Sarkar S, Ghosh A, Swarnakar S, Das N. Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine induced carcinoma. *Nanomed (Lond).* 2014; 9(15):2323-37. <https://doi.org/10.2217/nmm.14.11> PMid:24593002

35. Jaracz S, Chen J, Kuznetsova LV, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates. *Bioorg Med Chem.* 2005; 13:5043-54. <https://doi.org/10.1016/j.bmc.2005.04.084> PMid:15955702

36. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. *Adv Drug Deliv Rev.* 2014; 66:2-25. <https://doi.org/10.1016/j.addr.2013.11.009> PMid:24270007 PMCid:PMC4219254

37. Ruoslahti E. Specialization of tumor vasculature. *Nat Rev Cancer.* 2002; 2(2):83-90. <https://doi.org/10.1038/nrc724> PMid:12635171

38. Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. *Cancer Biol Med.* 2017; 14:228-41. <https://doi.org/10.20892/j.issn.2095-3941.2017.0052> PMid:28884040 PMCid:PMC5570600

39. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: Current progress and perspectives. *J Hematol Oncol.* 2021; 14:85. <https://doi.org/10.1186/s13045-021-01096-0> PMid:34059100 PMCid:PMC8165984

40. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. *Front Mol Biosci.* 2020; 7:193. <https://doi.org/10.3389/fmolb.2020.00193> PMid:32974385 PMCid:PMC7468194

41. Hosseini M, Haji-Fatahaliha M, Jadidi-Niaragh F, Majidi J, Yousefi M. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. *Artific Cells Nanomed Biotechnol.* 2016; 44:1051-61. <https://doi.org/10.3109/21691401.2014.998830> PMid:25612903

42. Large DE, Soucy JR, Hebert J, Auguste DT. Advances in receptor-mediated, tumor-targeted drug delivery. *Adv Ther.* 2019; 2:1800091. <https://doi.org/10.1002/adtp.201800091>

43. Wei X, Song M, Li W, Huang J, Yang G, Wang Y. Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance. *Theranos.* 2021; 11(13):6334-54. <https://doi.org/10.7150/thno.59342> PMid:33995661 PMCid:PMC8120214

44. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. *Signal Transduc Target Ther.* 2018; 3:7. <https://doi.org/10.1038/s41392-017-0004-3> PMid:29560283 PMCid:PMC5854578

45. Mandal AK, Das S, Mitra M, Chakrabarti RN, Chatterjee M, Das N. Vesicular flavonoid in combating diethylnitrosamine induced hepatocarcinoma in rat model. *J Experiment Therapeut Oncol.* 2008; 7(2):123-33.

46. Ghawanmeh AA, Ali GAM, Algarni H, Sarkar SM, Chong KF. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. *Nano Res.* 2019; <https://doi.org/10.1007/s12274-019-2300-4>.

47. Ayazi H, Akhavan O, Raoufi M, Varshochian R, Motlagh NSH, Atyabi F. Graphene aerogel nanoparticles for in-situ loading / pH sensitive releasing anticancer drugs. *Colloids and Surfaces B: Biointerfaces*. 2020; 186:110712. <https://doi.org/10.1016/j.colsurfb.2019.110712> PMid:31846894

48. Babavalian A, Tekie FSM, Ayazi H, Ranjbar S, Varshochian R, Rad-Malekshahi M, Akhavan O, Dinarvand R. Reduced polydopamine coated graphene for delivery of Hset1 antisense as a photothermal and gene therapy of breast cancer. *J Drug Deliv Sci Technol*. 2022; 73: 103462. <https://doi.org/10.1016/j.jddst.2022.103462>

49. Wu H, Zhao Y, Mu X, Wu H, Chen L, Liu W, Mu Y, Liu J, Wei X. A silica polymer composite nanosystem for tumor targeted imaging and p53 gene therapy of lung cancer. *J Biomater Sci, Polymer Edition*. 2015; 26(6):384-400. <https://doi.org/10.1080/09205063.2015.1012035> PMid:25624096

50. Assali A, Akhavan O, Adeli M, Razzazan S, Dinarvand R, Zanganesh S, Soleimani M, Dinarvand M, Atyabi F. Multifunctional core-shell nanoplatforms (gold@graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery. *Nanomed: Nanothechnol Biol Med*. 2018; 14: 1891-1903. <https://doi.org/10.1016/j.nano.2018.05.016> PMid:29885900

51. Rezaei A, Akhavan O, Hashemi E, Shamsara M. Toward chemical perfection of graphene-based gene carrier via Ugi multicomponent assembly process. *Macromolecules*. 2016; 17: 2963-2971. <https://doi.org/10.1021/acs.biomac.6b00767> PMid:27499268

52. Hatamie S, Akhavan O, Sadrnezhad SK, Ahadian MM, Shirodkar MM, Wang HQ. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. *Mater Sci Eng C*. 2015; 55: 482-489. <https://doi.org/10.1016/j.msec.2015.05.077> PMid:26117780

53. Majidzadeh H, Araj-Khodaei M, Ghaffari M, Torbati M, Dolatabadi JEN, Hamblin MR. Nano-based delivery systems for berberine: A modern anti-cancer herbal medicine. *Colloids Surfaces B: Biointerfaces*. 2020; 194: 111188. <https://doi.org/10.1016/j.colsurfb.2020.111188> PMid:32540763

54. Abdolahad M, Janmaleki M, Mohajerzadeh S, Akhavan O, Abbasi S. Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells. *Mater Sci Eng C*. 2013; 33: 1498-1505. <https://doi.org/10.1016/j.msec.2012.12.052> PMid:23827601

55. Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. *J Mater Chem*. 2012; 22: 13773-81. <https://doi.org/10.1039/c2jm31396k>

56. Mirza Z, Karim S. Nanoprticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. *Semin Cancer Biol*. 2021; 69: 226-37. <https://doi.org/10.1016/j.semcaner.2019.10.020> PMid:31704145

57. Aoi A, Watanabe Y, Mori S, Takahashi M, Vassaux G, Kodama T. Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/micro bubbles and ultrasound. *Ultrasound Med Biol*. 2008; 34(3):425-34. <https://doi.org/10.1016/j.ultrasmedbio.2007.09.004> PMid:18096302

58. Mahato M, Patra S, Gogoi M. Herbal nanocarriers for cancer therapy. In Book: Yata VK, Ranjan S, Dasgupta N, Lichtfouse E, Editors. "Nanopharmaceuticals: Principles and Applications Vol. 2, Environmental chemistry for a sustainable world 47". Springer Nature Switzerland AG. 2021, cp 2, pp 41-75. https://doi.org/10.1007/978-3-030-44921-6_2

59. Mandal AK. Mesoporous silica nanoparticles as delivery system against diseases. *Int J Recent Sci Res*. 2018; 9(9C):28817-25.

60. Tang M, Russell PJ, Khatri A. Magnetic nanoparticles: Prospects in cancer imaging and therapy. *Discov Med*. 2007; 7(38):68-74.

61. Raman S, Murugaiyah V, Parumalivam T. Andrographis paniculata dosage forms and advances in nanoparticulate delivery systems: An overview. *Molecules*. 2022; 27: 6164.

62. Akhavan O, Meidanchi A, Ghaderi E, Khoci S. Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer. *J Mater Chem B*. 2014; 2:3306-3314. <https://doi.org/10.1039/c3tb21834a> PMid:32261593

63. Akhavan O, Ghaderi E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy. *Small*. 2013; 9(21): 3593-3601. <https://doi.org/10.1002/smll.201203106> PMid:23625739

64. Kim SH, Lee JE, Sharker SM, Jeong JH, In I, Park SY. In vitro and in vivo tumor targeted photothermal cancer therapy using functionalized graphene nanoparticles. *Biomacromolecules*. 2015; 16: 3519-3529. <https://doi.org/10.1021/acs.biomac.5b00944> PMid:26451914

65. Akhavan O, Ghaderi E, Emamy H. Nontoxic concentrations of PEGylated graphene nanoribbons for selective cancer cell imaging and photothermal therapy. *J Mater Chem*. 2012; 22: 20626-33. <https://doi.org/10.1039/c2jm34330d>

66. Gu Z, Zhu S, Yan L, Zhao F, Zhao Y. Graphene-based smart platforms for combined cancer therapy. *Adv Mater*. 2019; 31: 1800662. <https://doi.org/10.1002/adma.201800662> PMid:30039878

67. Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. *Biomater*. 2014; 35(18):4969-85. <https://doi.org/10.1016/j.biomaterials.2014.03.001> PMid:24674460

68. Hu X, Tan H, Wang X, Chen P. Surface functionalization of hydrogel by thiol-yne click chemistry for drug delivery. *Colloids Surf A Physicochem Eng Asp*. 2016; 489:297-304. <https://doi.org/10.1016/j.colsurfa.2015.11.007>

69. Mahajan S, Pathakar A, Kuche K, Maheshwari R, Deb PK, Kalia K, et al. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. *Int J Pharm*. 2018; 548(1):540-58. <https://doi.org/10.1016/j.ijipharm.2018.07.027> PMid:29997043

70. Loh KP, Ho D, Chiu GNC, Leong DT, Pastorin G, Chow EKH. Clinical applications of carbon nanomaterials in diagnostics and therapy. *Adv Mater*. 2018; 30(47):e1802368. <https://doi.org/10.1002/adma.201802368> PMid:30133035

71. Taghavi S, Nia AH, Abnous K, Ramezani M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. *Int J Pharm*. 2017; 516:301-12. <https://doi.org/10.1016/j.ijipharm.2016.11.027> PMid:27840158

72. Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, et al. In vivo guiding nitrogen-doped carbon nanzyme for tumor catalytic therapy. *Nat Commun*. 2018; 9:1440. <https://doi.org/10.1038/s41467-018-03903-8> PMid:29650959 PMCID:PMC5897348

73. Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, et al. Magnetoferritin nanoparticles for targeting and visualizing tumor tissues. *Nat Nanotechnol*. 2012; 7(7):459-64. <https://doi.org/10.1038/nnano.2012.90> PMid:22706697

74. Alexander A, Agrawal M, Yadav P, Jeswani G, Verma VS, Siddique S, et al. Chapter-17-Targeted delivery through carbon nanomaterials: Applications in bioactive delivery systems. Edited by Singh MR, Singh D, Kanwar JR, Chauhan NSBT- A and A in the D of NC for B and BA. Academic Press. 2020, pp.509-24. <https://doi.org/10.1016/B978-0-12-819666-3.00017-1> PMid:32966106

75. Pei X, Zhu Z, Gan Z, Chen J, Zhang X, Cheng X, et al. PEGylated nanographene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. *Sci Rep*. 2020; 10:1-15. <https://doi.org/10.1038/s41598-020-59624-w> PMid:32066812 PMCID:PMC7026168

76. Qian R, Maiti D, Zhong J, Xiong S, Zhou H, Zhu R, et al. Multi functional nano-graphene based nano-composites for multimodal imaging guided combined radioisotope therapy and chemotherapy. *Carbon NY*. 2019; 149:55-62. <https://doi.org/10.1016/j.carbon.2019.04.046>

77. Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, et al. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. *J Hematol Oncol.* 2022; 15:132. <https://doi.org/10.1186/s13045-022-01320-5> PMid:36096856 PMCid:PMC9469622

78. Mandal AK. Mitochondrial targeting of potent nanoparticulated drugs in combating diseases. *J Biomater Appl.* 2022; 37(4):614-33. <https://doi.org/10.1177/0885328222111656> PMid:35790487

79. Mandal AK, Sarkar S. Aluminium nanomaterials as delivery system in combating diseases. *Int J Curr Res.* 2023; 15(01):23431-34.

80. Mandal AK. Carbon nanotubes as delivery system in combating diseases. *Int J Sci Res.* 2018; 7(8):1244-50.

81. Mandal AK. Iron oxide nanoparticles as delivery system against diseases. *Int J Curr Res.* 2018; 10(6):69957-65.

82. Mandal AK. Gold nanoparticles as delivery system against diseases. Book. Lativa, European Union: LAP LAMBERT Academic Publishing (SIA OmniScriptum Publishing). 2018; p.1-45.

83. Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z. Design of nanoparticle-based carriers for targeted drug delivery. *J Nanomater.* 2016; 2016:1087250. <https://doi.org/10.1155/2016/1087250> PMid:27398083 PMCid:PMC4936496

84. Biotin-Fact sheet for health professionals (<https://ods.od.nih.gov/factsheets/Biotin-Health Professionals/>). Office of dietary supplements, US National Institutes of Health. December 8, 2017. Retrieved February 25, 2018.

85. Institute of Medicine (1998). Biotin (http://www.nap.edu/openbook.php?record_id=6015 and page=374). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: The National Academies Press. pp. 374-389. Retrieved August 29, 2017.

86. Biotin (<http://lpi.oregonstate.edu/mic/vitamins/biotin>). Micronutrient information center, Linus Pauling Institute, Oregon State University, Corvallis, OR. October 21, 2015. Retrieved January 16, 2018.

87. Penberthy WT, Sadri M, Zempleni J. Biotin. In BP Marriott, DF Birst, VA Stallings, AA Yates (eds.). Present knowledge in nutrition, Eleventh edition. London, United Kingdom: Academic Press (Elsevier). 2020; pp. 289-304. <https://doi.org/10.1016/B978-0-323-66162-1.00017-2>

88. Fam KT, Callot M, Klymchenko AS. Probing biotin receptors in cancer cells with rationally designed fluorogenic squaraine dimmers. *Chem Sci.* 2020; 11:8240-48. <https://doi.org/10.1039/D0SC01973A> PMid:34094177 PMCid:PMC8163205

89. Yan C, Liang N, Li Q, Yan P, Sun S. Biotin and arginine modified hydroxypropyl- β -cyclodextrin nanoparticles as novel drug delivery systems for paclitaxel. *Carbohydr Polym.* 2019; 216:129-39. <https://doi.org/10.1016/j.carbpol.2019.04.024> PMid:31047049

90. Gupta GS. Gupta GS (ed.). Animal lectins: Form, functions and clinical applications. Wien: Springer-Verlag, 2012. Doi: 10.1007/978-3-7091-1065-2. <https://doi.org/10.1007/978-3-7091-1065-2>

91. ASGR1 cell lines. Human Protein Atlas.

92. Locksley RM, Killen N, Lenardo MJ. The TNF and TNF receptor superfamilies: Integrating mammalian biology. *Cell.* 2001; 104(4):487-501. [https://doi.org/10.1016/S0092-8674\(01\)00237-9](https://doi.org/10.1016/S0092-8674(01)00237-9) PMid:11239407

93. Hehlgans T, Pfeffer K. The intriguing biology of the tumor necrosis factor / tumor necrosis factor receptor superfamily: Players, rules and the games. *Immunol.* 2005; 115(1):1-20. <https://doi.org/10.1111/j.1365-2567.2005.02143.x> PMid:15819693 PMCid:PMC1782125

94. Gravestein LA, Borst J. Tumor necrosis factor receptor family members in the immune system. *Semin Immunol.* 1998; 10(6):423-34. <https://doi.org/10.1006/smim.1998.0144> PMid:9826575