

Available online on 15.05.2023 at http://jddtonline.info

## Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

Copyright © 2023 The Author(s): This is an open-access article distributed under the terms of the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited









Review Article

# Approaches to Improve Oral Bioavailability of Antihypertensive Drugs: A Mini-Review

Radhika Dole<sup>1</sup>, Daniel Kothapally<sup>2</sup>, Sampoorna Chukkala<sup>3</sup>, Ravi Chander Thatipelli<sup>1</sup>

- <sup>1</sup> Vaagdevi Pharmacy College, Bollikunta, Warangal, Telangana, 506005
- <sup>2</sup> Chaitanya Deemed to be University, Hanamkonda, Warangal, Telangana, 506001
- <sup>3</sup> Talla Padmavathi Pharmacy College, Orus, Kareemabad, Warangal, Telangana, 506002

#### Article Info:

#### Article History:

Received 09 March 2023 Reviewed 16 April 2023 Accepted 03 May 2023 Published 15 May 2023

#### Cite this article as:

Dole R, Kothapally D, Chukkala S, Thatipelli RC, Approaches to Improve Oral Bioavailability of Antihypertensive Drugs: A Mini-Review, Journal of Drug Delivery and Therapeutics. 2023; 13(5):73-77

DOI: http://dx.doi.org/10.22270/jddt.v13i5.5814

#### \*Address for Correspondence:

Ravi Chander Thatipelli-Associate Professor, HOD, Department of Pharmacology, Vaagdevi Pharmacy College, Bollikunta, Warangal, Telangana, 506005, India.

#### **Abstract**

Hypertension elevates the risk of heart disease and stroke which are one of the most frequent causes of death. Fortunately, hypertension is manageable with the use of anti-hypertensives and a healthy lifestyle. However, patient non-adherence to the prescribed dosing regimen is the primary reason for uncontrolled blood pressure levels. Daily multiple doses of medication are one of the major reasons for patient non-compliance to the dosing regimen. Multiple doses of medication are a result of low solubility and high first-pass metabolism of anti-hypertensives. There are several approaches to enhance solubility, avoiding first-pass metabolism through alternate routes of drug delivery and others. The objective of this review is to discuss different approaches to enhance the oral bioavailability of anti-hypertensive drugs.

**Keywords:** Solubility enhancements, solid lipid nanoparticles, hot melt extrusion, drug delivery, pharmacokinetics, poorly soluble, oral bioavailability.

#### Introduction

Hypertension is a cardiovascular disease (CVD) resulting in increased blood pressure. As per the Centers for Disease Control and Prevention, there were 670,000 hypertension-associated deaths in the United States in 2020. WHO estimates that there are 1.28 billion adults who are suffering from hypertension. Hypertension is prevalent in countries with low and middle income compared to high-income countries. As per WHO (Geneva) report in 2008, hypertension caused about 45% of deaths due to ischemic coronary illness and 51% of death as a result of stroke. In 1980, 600 million individuals were experiencing hypertension, while in 2008 this figure increased to 1 billion raising a major concern for its management (WHO, 2013)1-7.

The risk of hypertension increases drastically after 45 years. For a forty-five-year-old without hypertension, the risk of developing hypertension in the next 40 years is 93% for African Americans, 92% for Hispanics, 86% for whites, and 84% for Chinese adults. Hypertension was the prominent reason for death and adjusted life due to disability in 2010. Hypertension had more impact on women compared to men and African Americans in comparison to whites. The risk of cardiovascular diseases increases in a log-linear fashion with an increase in systolic blood pressure (SBP) levels from 115-

180 mm of Hg and an increase in diastolic blood pressure (DBP) from 75-105 mm of Hg. A 20 mm Hg increase in SBP and a 10 mm Hg increase in DBP are associated with a doubling in the risk of death due to stroke, heart disease, or other vascular disease. In persons higher than 30 years of age, higher SBP and DBP are linked with increased risk for CVD, angina, myocardial infarction (MI), heart failure (HF), stroke, peripheral arterial disease, and abdominal aortic aneurysm<sup>8-9</sup>.

The anti-hypertensive drugs that are now on the market may be divided into each of the following groups:

- A. Diuretics
- a) Thiazides
- b) High ceiling
- c) Potasium sparing
- B. Renin angiotensin system inhibitors
- a) ACE inhibitors
- b) Angiotensin (AT1) receptor blockers
- c) Direct renin inhibitors
- C. sympathetic inhibitors

ISSN: 2250-1177 [73] CODEN (USA): JDDTAO

- a) β-Adrenergic blocker
- b) α-Adrenergic blocker and β-Adrenergic blocker
- c) α-Adrenergic blocker
- d) Central sympatholytics
- D. Calcium channel blocker
- a) Phenyl alkyl amines
- b) Benzothiazepine
- c) Dihydropyridines
- E. Vasodilator
- a) Arteriolar dilator
- b) Arteriolar and veno dilator

The vast majority of these drugs have a few substantial limitations, including limited permeability, low bioavailability, a very shorter half-life, and unfavorable side effects. Novel drug delivery methods provide formulation scientists with a chance to address these kinds of problems with antihypertensive medication treatment by offering the following qualities. Increased selectivity, reduced adverse effects, low dosage frequency and improved bioavailability are all desirable characteristics<sup>10-11</sup>.

of Despite the availability several conventional antihypertensive dosage forms, they predominantly suffer from poor aqueous solubility resulting in poor bioavailability (BA)<sup>12-13</sup>. Some anti-hypertensive drugs also face the challenge of significant first-pass metabolism causing low bioavailability. The other issues related to anti-hypertensives are short halflives and frequent dosing. Alternate routes of drug delivery through buccal or transdermal routes can overcome challenges due to high first-pass metabolism. Solubility enhancement can also resolve the issue of low bioavailability for low-soluble drugs<sup>14-16</sup>.

#### **Micronization**

Micronization increases the dissolution rate and solubility of drugs by increasing the surface area of the drugs<sup>17</sup>. Nifedipine is a calcium channel blocker indicated for hypertension along with vasospastic angina, and chronic stable angina. Supercritical fluid process technology was used to prepare microparticles of Nifedipine. The microparticles resulting from this technology led to particles of 15-30µm size and were able to release the drug twice faster compared to tablets containing milled nifedipine. Felodipine belongs to a class of dihydropyridine derivatives indicated for hypertension with a similar mechanism of action as Nifedipine. Supercritical fluid technology was also used to micronize felodipine through particles from gas-saturated solutions<sup>18</sup>.

#### **Hot Melt Extrusion**

Hot Melt Extrusion utilizes thermal energy and shear forces for the preparation of amorphous solid dispersions. The drug is solubilized or dispersed at a molecular state in a hydrophilic polymer to improve the soluble characteristics of waterinsoluble drugs  $^{19\text{-}20}$ . The solubility of Telmisartan was improved by preparing an amorphous solid dispersion in Surplus and a pH modifier (sodium carbonate). Different formulations were prepared by altering the ratios of the drug, polymer, and pH modifier. The solid-state characteristics were studied using DSC and p-XRD. The favorable formulation was subjected to pharmacokinetic evaluation in rats. The results indicate that the amorphous solid dispersion prepared through hot melt extrusion was able to improve the  $C_{\rm max}$  and AUC by 6.61 and 5.37 times of powder telmisartan  $^{21}$ .

In another study, the solubility of Olemesartan medoxomil was improved by hot melt extrusion. Kollidon VA-64 was used as a hydrophilic carrier. Different formulations were prepared using the design of experiments. Characterization techniques like scanning electron microscopy, atomic force microscopy, DSC, and TGA were used to investigate the solid-state characteristics of the formulations. In-vivo, studies were performed on Sprague-Dawley rats to study the pharmacokinetics. The results indicate the bioavailability doubled through the amorphization of Olemesartan medoxomil<sup>22</sup>.

Amorphous solid dispersion of Nisoldipine was prepared using HME technology using Kollidon VA64 as polymer. The selected formulation had drug to polymer ratio of 1:10. The amorphous nature of the drug in the ASD was confirmed by XRD, DSC, and FTIR techniques. The in-vitro release characteristics and in-vivo performance of the final formulation were compared with Nierxin, a commercial tablet formulation. The results indicate that the developed ASD performed on par with the commercially available formulation<sup>23</sup>.

#### **Buccal Drug Delivery**

Buccal drug delivery could be the most viable option for drugs that undergo extensive first-pass metabolism or drugs which show erratic gastric absorption. Buccal drug delivery of antihypertensives which undergo extensive first-pass metabolism can help in improving the bioavailability<sup>24</sup>. El-Sayed Khafagy et al., prepared a mucoadhesive buccal nano-sponge of carvedilol to counter the high first-pass metabolism. Nano-sponge was prepared using thin-film hydration followed by a sonication technique. A 3²-factorial design was used for the optimization of bilosomes. The bilosomes were incorporated in carboxymethylcellulose/hydroxypropyl cellulose films for buccal drug delivery. In-vivo assessment on rats showed that buccal delivery of carvedilol helped in improving bioavailability<sup>25</sup>.

A study by Sumedha Bansal et al., was performed on buccal adhesive patches of losartan potassium. Buccal films were prepared with polyvinyl alcohol and chitosan using a solvent casting technique. Propylene glycol was used as the plasticizer. The patches were characterized for thickness, weight uniformity, folding endurance, drug content, swelling index, surface pH, in-vitro release, and ex-vivo permeation. The results indicate that the optimized formulation was successful in delivering losartan in 8h<sup>26-27</sup>.

#### Transdermal drug delivery

Transdermal drug delivery like buccal drug delivery can be particularly useful for drugs that undergo systemic metabolism and can also deliver the drug in a controlled fashion<sup>28-30</sup>. Mohd et al., prepared transdermal patches of pinacidil monohydrate for drug delivery through a percutaneous route. These patches were tested on hypertension-induced rats through prednisolone acetate. The blood pressure of rats was monitored through the cuff tail technique. The results indicated that the transdermal patch is successful in lowering blood pressure for 48 hours<sup>31</sup>.

A transdermal patch of losartan was developed using polymers ethyl cellulose, polyvinyl alcohol, Eudragit RL100, and Eudragit RS100. In-vitro release studies were performed to study the drug release characteristics. The results indicate that the drug release of losartan was improved by the use of hydrophobic polymers compared to hydrophilic polymers<sup>32</sup>.

Nadia et al., prepared a pro-transfersomal system of timolol maleate which was delivered through a transdermal route. Timolol has a poor oral bioavailability of 50% due to high

first-pass metabolism. It also has a short half-life of 4h. The formulation was optimized by preparing different formulations using a 2³-factorial design. The variables studied were phosphatidylcholine: surfactant molar ratio, carrier: mixture, and SAA type. The output parameters were particle size, drug entrapment efficiency, and drug release rate. The final optimized formulation was studied on hairless rats and compared with the aqueous administration of Timolol. The results indicate that optimized formulation performed six times better in bioavailability compared to oral administration<sup>33</sup>.

### **Solid Lipid Nanoparticles**

Delivering drugs that have low aqueous solubility and/or permeability (BCS class II & IV) is a complicated task due to poor bioavailability caused by pH variation in the gastrointestinal tract (GIT)<sup>34-43</sup>. The pH difference can impact the pharmacological activity of a drug by any of the chemical degradation pathways like oxidation, deamidation, or hydrolysis of both small molecules and large molecules<sup>44</sup>. The oral bioavailability of drugs like candesartan cilexetil is affected as they undergo chemical degradation at acidic pH. Enzymes like liver esterase and cytochrome P450 cause significant degradation of antihypertensives. Protease degrades 94–98% of orally administered protein formulations<sup>45</sup>.

The primary methods of preparation of solid lipid nanoparticles include hot homogenization followed by ultrasonication, microemulsion method, solvent emulsification/evaporation, solvent injection method, supercritical liquid extraction of emulsions and, high-pressure homogenization. In the case of the high-pressure homogenization technique, it can be further sub-classified as hot and cold techniques<sup>46-52</sup>. Lipids also pose a concern to microbial stability as they are prone to microbial contamination<sup>53-54</sup>.

Narendar and Kishan, 2015 formulated SLNs loaded with nisoldipine for enhancing oral bioavailability, through a systematic design of experiments approach. Nisoldipine is a calcium channel blocker and thereby is used in the treatment of hypertension. However, nisoldipine has poor oral BA (5%) because of its poor aqueous solubility and high first-pass metabolism. Studies indicate that nisoldipine-loaded SLNs could enhance the oral BA by 2.45-fold compared to the control suspension formulation. The half-life and mean residence time of SLNs increased significantly compared to the control formulation. This is achieved due to the sustained release of the nisoldipine from the SLNs. Studies were also performed to compare the performance of nisoldipine nanostructured lipid carriers with SLNs. The results indicated that both nanocarrier systems improved bioavailability by enhancing solubility55.

#### **Conclusion**

Antihypertensives play a very important role in managing cardiovascular diseases which is one of the primary reasons for death. As per recent information from FDA and WHO, the number of patients suffering from hypertension seems to increase day by day. Researchers are actively looking for new targets and new molecules which are more efficient than the existing molecules. It was also important to find ways to utilize the existing molecules to the maximum potential. These new technologies will help to revive the usage of drugs that have been subsided because of low aqueous solubility or high first-pass metabolism.

#### References

- https://www.cdc.gov/bloodpressure/facts.htm [last accessed 07 March 2023].
- https://www.who.int/news-room/fact-sheets/detail/hypertension [last accessed 07 March 2023]
- 3. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nature Reviews Nephrology. 2020 Apr; 16(4):223-37. https://doi.org/10.1038/s41581-019-0244-2
- https://www.who.int/publications/i/item/a-global-brief-onhypertension-silent-killer-global-public-health-crisis-worldhealth-day-2013 [last accessed 07 March 2023]
- Devi P, Rao M, Sigamani A, Faruqui A, Jose M, Gupta R, Kerkar P, Jain RK, Joshi R, Chidambaram N, Rao DS. Prevalence, risk factors and awareness of hypertension in India: a systematic review. Journal of human hypertension. 2013 May; 27(5):281-7. https://doi.org/10.1038/jhh.2012.33
- Gupta R. Trends in hypertension epidemiology in India. Journal of human hypertension. 2004 Feb; 18(2):73-8. https://doi.org/10.1038/sj.jhh.1001633
- 7. Prabhakaran D, Jeemon P, Roy A. Cardiovascular diseases in India: current epidemiology and future directions. Circulation. 2016 Apr 19; 133(16):1605-20. https://doi.org/10.1161/CIRCULATIONAHA.114.008729
- 8. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ. 2017

  ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology. 2018 May 15; 71(19):e127-248. https://doi.org/10.1016/j.jacc.2017.11.006
- Houston MC, Bell L. Controlling High Blood Pressure Through Nutrition, Supplements, Lifestyle and Drugs, CRC Press, 2021. https://doi.org/10.1201/9781003129196
- Samanthula KS, Kumar CB M, Bairi AG, Satla SR. Development, invitro and ex-vivo evaluation of muco-adhesive buccal tablets of hydralazine hydrochloride. Brazilian Journal of Pharmaceutical Sciences. 2022 Apr 22; 58. https://doi.org/10.1590/s2175-97902020000318635
- 11. Baishya BI, Rahman SS, Rynjah DA, Barman KA, Bordoloi SS, Islam JA, Hasan N. Enhancing of oral bioavailability of poorly watersoluble antihypertensive drugs. Int J Curr Pharm Res. 2021; 13(4):42-7. https://doi.org/10.22159/ijcpr.2021v13i4.42741
- 12. Prisant LM, Bottini B, DiPiro JT, Carr AA. Novel drug-delivery systems for hypertension. Am J Med. 1992 Aug 31; 93(2A):45S-55S. https://doi.org/10.1016/0002-9343(92)90294-L
- 13. Samanthula KS, Bairi AG, Kumar M. Development, in-vitro and invivo Evaluation of Bio-Adhesive Buccal Patches of Hydralazine Hydrochloride for Improving the Oral Bioavailability. International Journal of Pharmacy and Biological Sciences, 2021; 11(2):138-148.
- 14. Alam T, Khan S, Gaba B, Haider MF, Baboota S, Ali J. Nanocarriers as treatment modalities for hypertension. Drug delivery. 2017 Jan 1; 24(1):358-69. https://doi.org/10.1080/10717544.2016.1255999
- Muddineti OS, Kumari P, Ajjarapu S, Lakhani PM, Bahl R, Ghosh B, Biswas S. Xanthan gum stabilized PEGylated gold nanoparticles for improved delivery of curcumin in cancer. Nanotechnology. 2016 Jun 27; 27(32):325101. https://doi.org/10.1088/0957-4484/27/32/325101
- 16. Chaudhari S, Nikam SA, Khatri N, Wakde S, Co-crystals: a review, Journal of Drug Delivery and Therapeutics. 2018; 8(6-s):350-358 https://doi.org/10.22270/jddt.v8i6-s.2194
- 17. Ajjarapu S, Banda S, Basim P, Dudhipala N. Melt Fusion Techniques for Solubility Enhancement: A Comparison of Hot Melt Extrusion

- and KinetiSol® Technologies. Scientia Pharmaceutica. 2022 Aug 24; 90(3):51. https://doi.org/10.3390/scipharm90030051
- 18. Perrut M, Jung J, Leboeuf F. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes: Part I: Micronization of neat particles. International journal of pharmaceutics. 2005 Jan 6; 288(1):3-10.

#### https://doi.org/10.1016/j.ijpharm.2004.09.007

- Butreddy A, Sarabu S, Almutairi M, Ajjarapu S, Kolimi P, Bandari S, Repka MA. Hot-melt extruded hydroxypropyl methylcellulose acetate succinate based amorphous solid dispersions: Impact of polymeric combinations on supersaturation kinetics and dissolution performance. International Journal of Pharmaceutics. 2022 Mar 5; 615:121471. https://doi.org/10.1016/j.ijpharm.2022.121471
- Ajjarapu S, Rangappa S, Shankar VK, Shettar A, Kumar HS, Kulkarni VI, Repka MA, Murthy SN. A rapid tool to optimize process variables for continuous manufacturing of metronidazole ointment using melt extrusion technique. AAPS PharmSciTech. 2020 Oct; 21:1-7. https://doi.org/10.1208/s12249-020-01808-8
- 21. Giri BR, Kwon J, Vo AQ, Bhagurkar AM, Bandari S, Kim DW. Hot-melt extruded amorphous solid dispersion for solubility, stability, and bioavailability enhancement of telmisartan. Pharmaceuticals. 2021 Jan 18; 14(1):73. https://doi.org/10.3390/ph14010073
- 22. Jadhav P, Gokarna V, Deshpande V, Vavia P. bioavailability enhancement of olmesartan medoxomil using hot-melt extrusion: In-silico, in-vitro, and in-vivo evaluation. AAPS PharmSciTech. 2020 Oct; 21:1-7. https://doi.org/10.1208/s12249-020-01780-3
- 23. Fu Q, Fang M, Hou Y, Yang W, Shao J, Guo M, Li M, Li J, Wang Y, He Z, Sun J. A physically stabilized amorphous solid dispersion of nisoldipine obtained by hot melt extrusion. Powder Technology. 2016 Nov 1; 301:342-8. https://doi.org/10.1016/j.powtec.2016.06.032
- 24. Jaipal A, Pandey MM, Charde SY, Sadhu N, Srinivas A, Prasad RG. Controlled release effervescent buccal discs of buspirone hydrochloride: in vitro and in vivo evaluation studies. Drug delivery. 2016 Feb 12; 23(2):452-8. https://doi.org/10.3109/10717544.2014.917388
- 25. Khafagy ES, Abu Lila AS, Sallam NM, Sanad RA, Ahmed MM, Ghorab MM, Alotaibi HF, Alalaiwe A, Aldawsari MF, Alshahrani SM, Alshetaili A. Preparation and Characterization of a Novel Mucoadhesive Carvedilol Nanosponge: A Promising Platform for Buccal Anti-Hypertensive Delivery. Gels. 2022 Apr 11; 8(4):235. https://doi.org/10.3390/gels8040235
- Bansal S, Bansal M, Garg G. Preparation and evaluation of buccoadhesive patches of an antihypertensive drug. Am. J. Phytomed. Clin. Ther. 2013; 1(2):240-55.
- Samanthula KS, Satla SR, Bairi AG. Development, In-Vitro and Ex-Vivo Evaluation of Muco-adhesive Buccal patches of Candesartan cilexetil. Research Journal of Pharmacy and Technology. 2019; 12(6):3038-44.

#### https://doi.org/10.5958/0974-360X.2019.00514.6

- Maurya A, Rangappa S, Bae J, Dhawan T, Ajjarapu SS, Murthy SN. Evaluation of soluble fentanyl microneedles for loco-regional antinociceptive activity. International journal of pharmaceutics. 2019 Jun 10; 564:485-91. https://doi.org/10.1016/j.ijpharm.2019.04.066
- 29. Dhadwal A, Sharma DR, Pandit V, Ashawat MS, Kumar P, Cubosomes: A novel carrier for transdermal drug delivery, Journal of drug delivery and therapeutics. 2010; 10(1):123-130. https://doi.org/10.22270/jddt.v10i1.3814
- 30. Shettar A, Shankar VK, Ajjarapu S, Kulkarni VI, Repka MA, Murthy SN. Development and characterization of Novel topical oil/PEG creams of voriconazole for the treatment of fungal infections. Journal of Drug Delivery Science and Technology. 2021 Dec 1; 66:102928. https://doi.org/10.1016/j.jddst.2021.102928
- 31. Aqil M, Ali A, Sultana Y, Dubey K, Najmi AK, Pillai KK. In vivo characterization of monolithic matrix type transdermal drug delivery systems of pinacidil monohydrate: A technical note. AAPS

- PharmSciTech. 2006 Mar; 7:E38-42. https://doi.org/10.1208/pt070106
- 32. Baviskar DT, Parik VB, Gupta HN, Maniyar AH, Jain DK. Design and evaluation of patches for transdermal delivery of losartan potassium. PDA Journal of Pharmaceutical Science and Technology. 2012 Mar 1; 66(2):126-35. https://doi.org/10.5731/pdajpst.2012.00854
- Morsi NM, Aboelwafa AA, Dawoud MH. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: formulation and in vivo study. Journal of Liposome Research. 2018 Apr 3; 28(2):137-48. https://doi.org/10.1080/08982104.2017.1295989
- 34. Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle technologies for oral drug delivery. Clinical Gastroenterology and Hepatology. 2014 Oct 1; 12(10):1605-10. https://doi.org/10.1016/j.cgh.2014.06.018
- 35. Dudhipala N. A comprehensive review on solid lipid nanoparticles as delivery vehicle for enhanced pharmacokinetic and pharmacodynamic activity of poorly soluble drugs. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN). 2019 Mar 31; 12(2):4421-40. https://doi.org/10.37285/ijpsn.2019.12.2.1
- 36. Dudhipala N. Influence of solid lipid nanoparticles on pharmacodynamic activity of poorly oral bioavailable drugs. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN). 2020 Jul 11; 13(4):4979-83. https://doi.org/10.37285/ijpsn.2019.13.4.2
- 37. Thirupathi G, Swamy SK, Ramesh A. Solid lipid nanocarriers as alternative drug delivery system for improved oral delivery of drugs. Journal of Drug Delivery and Therapeutics. 2020 Dec 15; 10(6-s):168-72. https://doi.org/10.22270/jddt.v10i6-s.4410
- Kishan V, Sandeep V, Narendar D, Arjun N. Lacidipine loaded solid lipid nanoparticles for oral delivery: preparation, characterization and in vivo evaluation. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN). 2016 Nov 30; 9(6):3524-30. https://doi.org/10.37285/ijpsn.2016.9.6.2
- 39. Samanthula KS, Alli R, Gorre T. Preparation, In Vitro characterization and stability studies of ropinirole lipid nanoparticles enriched hydrogel for treatment of neurodegeneration diseases. Journal of Drug Delivery and Therapeutics. 2021 Apr 15; 11(2-S):66-75. https://doi.org/10.22270/jddt.v11i2-S.4648
- 40. Mallesh K, Pasula N, Kumar Ranjith CP. Piroxicam proliposomal gel: a novel approach for tropical delivery. Journal of Pharmacy Research. 2012; 5(3):1755-63.
- 41. Basim P, Gorityala S, Kurakula M. Advances in functionalized hybrid biopolymer augmented lipid-based systems: A spotlight on their role in design of gastro retentive delivery systems. Archives of Gastroenterology Research. 2021 Mar 2; 2(1):35-47. https://doi.org/10.33696/Gastroenterology.2.025
- 42. Shah HG, Rathod V, Basim P, Gajera B, Dave RH. Understanding the Impact of Multi-factorial Composition on Efficient Loading of the Stable Ketoprofen Nanoparticles on Orodispersible Films Using Box-Behnken Design. Journal of Pharmaceutical Sciences. 2022 May 1; 111(5):1451-62. https://doi.org/10.1016/j.xphs.2021.10.016
- 43. Dudhipala N, Veerabrahma K. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug delivery. 2016 Feb 12; 23(2):395-404. https://doi.org/10.3109/10717544.2014.914986
- Kurakula M, Patel DB, Patel B, Gorityala S, Basim P. Functionalized Nanocarriers for Drug delivery: Amalgam of Biopolymers and Lipids. J Nanomed. 2021; 4(1):1037.
- 45. Samanthula KS, Bairi AG, Kumar CM. Muco-adhesive buccal tablets of candesartan cilexetil for oral delivery: preparation, in-vitro and ex-vivo evaluation. Journal of Drug Delivery and Therapeutics. 2021 Feb 15; 11(1-s):35-42. https://doi.org/10.22270/jddt.v11i1-s.4547

- 46. Butreddy A, Janga KY, Ajjarapu S, Sarabu S, Dudhipala N. Instability of therapeutic proteins-An overview of stresses, stabilization mechanisms and analytical techniques involved in Lyophilized proteins. International journal of biological macromolecules. 2021 Jan 15; 167:309-25. https://doi.org/10.1016/j.ijbiomac.2020.11.188
- Narendar D, Kishan V. Candesartan cilexetil nanoparticles for improved oral bioavailability. Ther deli. 2017; 8(2):79-88. https://doi.org/10.4155/tde-2016-0063
- 48. Thirupathi G, Swetha E, Narendar D. Role of isradipine loaded solid lipid nanoparticles on the pharmacodynamic effect in rats. Drug research. 2017 Mar; 67(03):163-9. https://doi.org/10.1055/s-0042-119947
- 49. Kishan V, Suram D, Yeleshwarapu S, Dudhipala N. Development, Characterization and Comparative Phar-macokinetic Evaluation of Ritonavir Nanosuspension, with a Model Nanoemulsion and Coarse Suspension for Improved Oral Delivery. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN). 2021 May 6; 14(3):5462-71. https://doi.org/10.37285/ijpsn.2021.14.3.3
- Siekmann B, Westesen K. Submicron-sized parenteral carrier systems based on solid lipids. Pharm. Pharmacol. Lett. 1992; 1(3):123-6.

- 51. Nagaraj B, Tirumalesh C, Dinesh S, Narendar D. Zotepine loaded lipid nanoparticles for oral delivery: development, characterization, and in vivo pharmacokinetic studies. Future Journal of Pharmaceutical Sciences. 2020 Dec; 6:1-1. https://doi.org/10.1186/s43094-020-00051-z
- Mistry SN, Patel PK, Bharadia PD, Pandya VM, Modi DA. Novel drug delivery system for lipophilic agents: solid lipid nanoparticles. J Pharm Cosmetol. 2011;1:76-89.
- 53. Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. Journal of controlled release. 1999 Jun 2; 59(3):299-307. https://doi.org/10.1016/S0168-3659(99)00007-3
- 54. Wang, Taoran, Qiaobin Hu, Ji-Young Lee, and Yangchao Luo. "Solid lipid-polymer hybrid nanoparticles by in situ conjugation for oral delivery of astaxanthin." Journal of agricultural and food chemistry 2018; 66(36):9473-9480. https://doi.org/10.1021/acs.jafc.8b02827
- 55. Dudhipala N, Veerabrahma K. Pharmacokinetic and pharmacodynamic studies of nisoldipine-loaded solid lipid nanoparticles developed by central composite design. Drug development and industrial pharmacy. 2015 Dec 2; 41(12):1968-77. https://doi.org/10.3109/03639045.2015.1024685

ISSN: 2250-1177 [77] CODEN (USA): JDDTAO