




Open Access Full Text Article



Review Article

## Transdermal Drug Delivery Systems

Prakash Pasupuleti<sup>1</sup>, Kishore Bandarapalle<sup>1</sup>, Cherlopalli Sandhya<sup>\*2</sup>, Gundam Neeraja<sup>2</sup>, Chilakala Afzal<sup>2</sup>, Chithrala Venkataramana<sup>2</sup>, Golla VenkatSai<sup>2</sup>

1. Department Of Pharmaceutics, Sri Padmavathi School of Pharmacy Tiruchanoor, Tirupathi, 517503, Andhra Pradesh, India.

2. Sri Padmavathi School Of Pharmacy, Tiruchanoor, Tirupathi, 517503, Andhra Pradesh, India.

### Article Info:



#### Article History:

Received 03 Dec 2022

Reviewed 13 Jan 2023

Accepted 25 Jan 2023

Published 15 Feb 2023

#### Cite this article as:

Pasupuleti P, Bandarapalle K, Sandhya C, Neeraja G, Afzal C, Venkataramana C, VenkatSai G, Transdermal Drug Delivery Systems, Journal of Drug Delivery and Therapeutics. 2023; 13(2):101-109

DOI: <http://dx.doi.org/10.22270/jddt.v13i2.5735>

#### \*Address for Correspondence:

Cherlopalli Sandhya, Department of Pharmaceutics, Sri Padmavathi School Of Pharmacy, Tiruchanoor, Tirupathi, 517503, Andhra Pradesh, India.

### Abstract

A transdermal patch is a medicated adhesive patch that is applied to the skin that contains medication that is intended to be absorbed into the bloodstream. This frequently encourages the healing of a body part that has been hurt. Transdermal medication delivery allows for regulated drug release into the patient, resulting in less systemic side effects and, in certain cases, increased efficacy over other dose forms. This is an advantage of transdermal drug delivery over other types of medication delivery such as oral, topical, intravenous, intramuscular, etc. Transdermal medication delivery allows for a constant blood level profile, a regulated drug release into the patient, fewer systemic side effects, and other benefits.

**Keywords:** Transdermal patch, Blood stream, Systemic side effects.

## Introduction

Transdermal Drug Delivery System are the systems that use skin as a site for continuous drug delivery into systemic circulation are known as TDDS<sup>1</sup>.

- ✓ Drug is delivered by skin portal to systemic circulation.
- ✓ At predetermined rate.
- ✓ At Maintained clinically effective concentration.
- ✓ At prolonged period of time.
- The bulk of small molecule medications are typically administered orally since oral administration and parenteral administration are the two most popular drug delivery methods.
- The primary goal of a transdermal medication delivery system is to deliver pharmaceuticals into systemic circulation through the skin at a predefined rate with minimum inter- and intra-patient variation<sup>2</sup>.
- Pre-set dosages, mobility, and patient self-administration are benefits of the oral route. For these reasons, administering drugs orally is still the most practical method.
- However, due to fast stomach breakdown and size-restricted transport through the epithelium, the majority of therapeutic peptides or proteins are not administered orally<sup>3</sup>.

- Therefore, injections are the most common method of administering macromolecules. However, injections have some drawbacks, including the invasive nature of injections that cause pain and lower patient acceptance/compliance, in addition to the need for administration by a trained administrator.

## Advantages:

- ✓ Prevent first-pass gastrointestinal and hepatic metabolism.
- ✓ Make sure the control absorption remains constant.
- ✓ Lessens negative consequences.
- ✓ Limit exposure to harmful metabolites.
- ✓ Increased patient compliance because multiple dosage is no longer necessary.
- ✓ Increase the effectiveness of therapy.
- ✓ Simple to use and take away.
- ✓ Painless and minimally invasive
- ✓ Self-governance.
- ✓ Functions well for medications with brief biological half-lives and restricted treatment windows.
- ✓ Simple to stop dosing in the event of a bad reaction.
- ✓ Repeated sustain release<sup>4</sup>.

## Limitations:

- ✓ Drugs requiring high blood levels cannot be administered through it.
- ✓ A medicine or its formulation may irritate and sensitise the skin.
- ✓ The skin's ability to act as a barrier varies from one site to another on the same individual, from person to person, and with age.
- ✓ Not feasible if the medicine is heavily metabolised in the skin and if the molecular size is too large to allow the molecules to diffuse through the skin.
- ✓ Might lead to an allergic reaction.
- ✓ Consistency over time is challenging.

## Types of Transdermal Patches [Figure 1]:

### A. Single-Layer Drug-in-Adhesive<sup>5</sup>:

- The Single-layer Drug-in-Adhesive system is characterized by the inclusion of the drug directly within the skin-contacting adhesive.
- In this transdermal system design, the adhesive not only serves to affix the system to the skin, but also serves as the formulation foundation, containing the drug and all the excipients under a single backing film.
- The rate of release of drug from this type of system is dependent on the diffusion across the skin<sup>4,5</sup>
- The intrinsic rate of drug release from this type of drug delivery system is defined by The medication is housed in this system's sticky layer.
- The adhesive layer in this sort of patch not only helps to glue the numerous layers together and the overall system to the skin, but is also accountable for the drug's release. A temporary liner and a backing enclose the adhesive layer.

### B. The Multi-Layer Drug-In Adhesive<sup>6</sup>:

- Similar to the single-layer approach, the multi-layer drug-in adhesive patch likewise releases the drug via both sticky layers. For quick release of, one of the layers
- Drug and additional layer for controlled release of drug from reservoir. However, the multi-layer method differs in that it incorporates an additional layer of drug-in-adhesive, often separated by a membrane.
- Drug-in-Adhesive Multilayer (but not in all cases). A permanent backing and a brief liner layer are also present on this patch.

### C. Reservoir:

- The reservoir transdermal system contains a distinct drug layer in contrast to the single-layer and multi-layer Drug-in-adhesive systems.
- The drug layer is a compartment of liquid that houses a medication solution or the sticky layer separating the suspension. The backing layer also supports this patch. The rate of release in this kind of system is zero order.

### D. Matrix:

- A semisolid matrix that houses a drug solution or suspension is the drug layer of the Matrix system.
- The patch's layer of glue encircles and partially covers the drug layer. Likewise called a monolithic device.

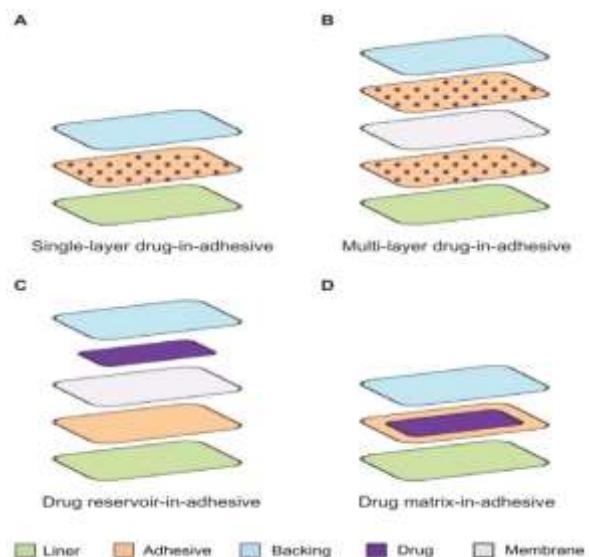
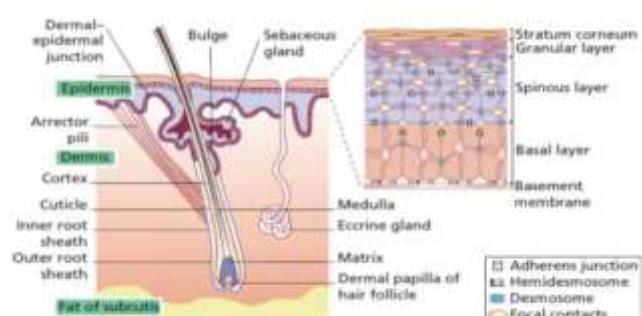
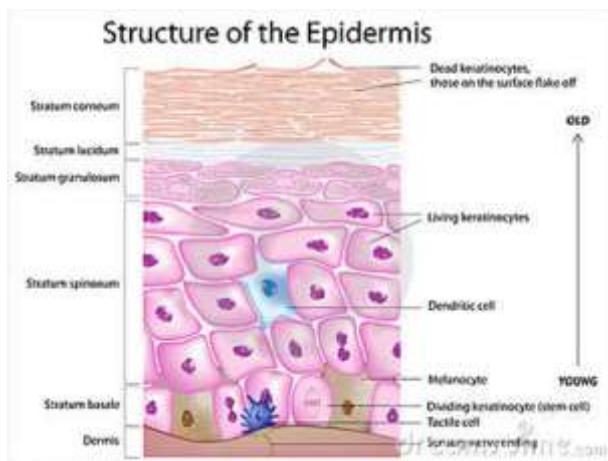



Figure 1: Different types of Patches

## Anatomy of the Skin:

- The skin is the biggest organ in the human body, making up roughly 16% of the body's weight. A healthy adult man has skin that is 1.5 to 2 Sq m long and weighs 6 to 10 kg. The major layers of the skin are the subcutaneous layer, the underlying dermis, and the cellular epidermis<sup>7</sup>.
- The epidermis' rete ridges extend downward to produce the dermis layer. In addition to serving as a partial barrier to the exchange of cells and big molecules, the dermal-epidermal interface mechanically supports the epidermis.
- The subcutaneous layer, a fatty layer of panniculus adiposus tissues, lies beneath the dermis [Figure 2].
- The two forms of human skin are glabrous and eccrine (i.e., non-hairy skin)



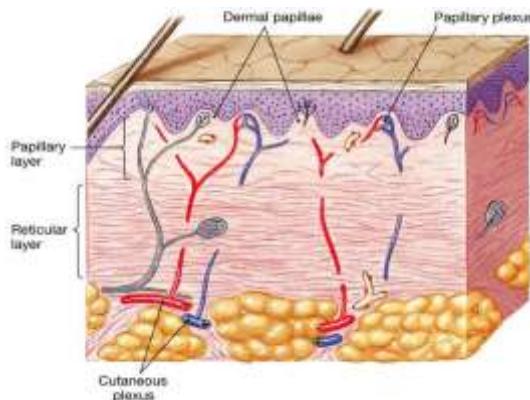


Figure 2: Structure of the Skin

## Skin Layers Include:

### 1. Epidermis:

- It is the skin's outermost layer and is characterized by the presence of Stratified Squamous Epithelial Tissues. principally keratinocytes that are diffusing through several stages of development. The cells that make up the epidermis are called keratinocytes. Because it lacks blood vessels<sup>8</sup>.
- The Epidermis depends on the dermis for nutrient absorption and waste removal via the basement membrane.

- The epidermis has four layers overall [Figure 3], however there are five layers on the region of the body with thick skin.
- The foundation membrane (basal lamina) and hemidesmosomes connect the stratum basale (stratum germinativum), the deepest layer, to the dermis. The cuboidal to columnar stem cells are mitotically active <sup>9</sup>.
- Spike-like, irregular polyhedral cells make up the stratum spinosum (prickle cell layer).
- The stratum granulosum is composed of cornified cells with clumps of keratin filaments and diamond-shaped cells that contain keratohyalin granules
- Stratum lucidum, if present, is a thin, transparent layer made of eleidin (a byproduct of keratohyalin); it is often only visible in people with thick skin.



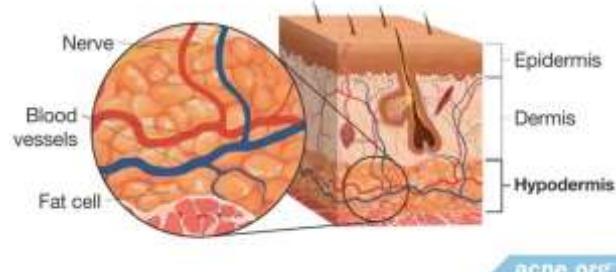

**Figure 3: Structure of Epidermis**

- The outermost layer, known as the stratum corneum, is composed of keratin and horny scales that were once live cells; dead cells, known as Squamous (Anucleate). This layer varies the greatest in thickness, being particularly thick in callused skin <sup>10</sup>.
- The epidermis also comprises a variety of cells, the majority of which are keratinocytes, which make up roughly 95% of the epidermal cell population.
- Melanocytes, Langerhans cells, and Merkel cells are some of the other cells. Keratinocytes, which make up the majority of the epidermis and originate in the basal layer.
- They produce keratin and help to form the epidermal water barrier.

## 2. Dermis:

- The dermis is a layer that lies underneath the epidermis [Figure 4] and is significantly thicker than the epidermal layer (1-5mm thick). In order to maintain and support the epidermis, the dermis is essential <sup>11</sup>.
- Collagen and elastin fibers make up the majority of the connective tissues in the dermis. It is home to a variety of specialized cells, including mast cells and fibroblasts, as well as organs and tissues, including blood arteries, lymphatics, sweat glands, and nerves.




**Figure 4: Structure of Dermis**

- The connective tissues of the dermal layer are divided into two primary layers.
- Papillary layer: This thin layer, which is exposed to the outside, is made up of loose connective tissues.
- Reticular layer: This layer is less cellular, considerably thicker, and deeper, and it is made up of dense connective tissue and collagen fibre bundles.

## 3. The Hypodermis:

- The Panniculus layer or subcutaneous layer/fat are other names for Epidermis.
- The layer that lies underneath the dermis is what joins the skin to the muscles and bones' underlying connective tissue, or fascia [Figure 5].

## The Hypodermis



**Figure 5: Structure of Hypodermis**

- A shock absorber, the hypodermis is made up of adipose tissues and well-vascularized, loose, areolar connective tissues that operate as an energy reserve, insulate the body to stop heat loss, and serve as a cushion to shield beneath structures from damage.
- It is the primary location for fat storage in the body and is covered in blood vessels and nerves.

## Functions of the Skin:

- Defense: The skin serves as the body's main physical defence against the outside world. Skin shields the body against microbes, poisons, dehydration, UV radiation, and mechanical harm <sup>12</sup>.
- Sensation: for discomfort, heat, touch, and intense pressure.
- Mobility: enabling the body to move with ease.
- Endocrine activity: Vitamin D, which is crucial for calcium absorption and a healthy bone metabolism, is produced by the skin's biological reactions.

- ✓ Exocrine activity: via urea, ammonia, and water release. Sebum, perspiration, pheromones, and other chemicals are secreted by the skin, which also performs crucial immunologic activities by secreting bioactive compounds like cytokines.
- ✓ Immunity: creation of defences against infections.
- ✓ Temperature Control: Skin contributes to thermal control by storing or releasing heat and aids in maintaining body temperature.

## Basic Components of TDDS:

### A. Polymer Matrix [Table 1]:

- Polymer is a crucial and indispensable part of the transdermal drug delivery system. Rate-controlled medication delivery has been accomplished using a variety of polymeric material types<sup>13</sup>.
- The physicochemical characteristics of the drug and polymer used in the device's construction determine the drug release mechanism.
- For a polymer to be employed in a transdermal system, it must meet the following requirements.
  1. The polymer's chemical functionality, glass transition temperature, and molecular weight must permit the diffusion and release of the particular medication.
  2. The polymer should make it possible to include a significant quantity of drug.
  3. Neither physically nor chemically should the polymer and the medication interact.
  4. The polymer should be price and simple to build into the required product.
  5. In the presence of the medicine and any other excipients used in the formulation, at high humidity levels, or at body temperature, the polymer must be stable and must not disintegrate.
  6. Non-toxic polymers and their breakdown products are required.

Table 1: Polymer Matrix

| NATURAL POLYMER | SYNTHETIC ELASTOMER | SYNTHETIC POLYMER |
|-----------------|---------------------|-------------------|
| Gelatin         | Neoprene            | Polyethylene      |
| Gum Arabic      | Silicon Rubber      | Polystyrene       |
| Starch          | Butyl Rubber        | PVC               |
| Shellac         | Chloroprene         | PVP               |
| Zein            | Polysiloxane        | Polyester         |

- B. **Drug Substance:** Choosing the right drug substance is crucial to the creation of a successful transdermal product<sup>14</sup>. Important pharmacological characteristics that influence how well it diffuses through the apparatus and through the skin include:

- Physical and chemical attributes
- The drug's molecular weight should be below 600 Daltons.
- The log P should fall between 1 and 7.
- The melting point must be below 200°C.
- The minimum number of hydrogen bonding groups is two.

- It must have an advantageous oil:water partition coefficient.
- Transdermal administration is not appropriate for medications that are strongly acidic or alkaline in solution.
- Solubility should be more than 1 mg/ml in both mineral oil and water.
- Less than 20 mg should be used as the daily systemic dosage.
- The medicine should have a brief half-life.
- The medication shouldn't irritate the skin
- Drugs that break down in the GI tract or are inactivated by hepatic first pass effect are ideal for transdermal distribution.
- The drug shouldn't trigger an immunological reaction in the skin.

### C. Penetration Enhancers:

→They are regarded as an essential component of the majority of transdermal formulations and increase skin penetration.

→They can alter the skin's resistance to penetration by reacting with the skin's surface or the applied substance.

The following qualities should be present in an ideal penetration enhancer<sup>15</sup>:

- (I) Pharmacological inertness, affordability, and Cosmetically Acceptable
- (ii) Nontoxic
- (iii) Nonirritating
- (iii) Nonallergenic
- (iv) Quick onset; predictable and appropriate duration of action for the medicine used, Chemical penetration enhancers' reversible impact on the stratum corneum's barrier properties.
- (v) Compatible with the delivery system both chemically and physically
- (vi) Easily fitted into the delivery system

- Two Types Of Principles Have Been Employed To Increase Drug Permeation Through Skin

#### 1. Physical Enhancers

#### 2. Chemical Enhancers

### 1. Physical Enhancers:

When chemical enhancement's limitations were reached, physical enhancement technologies became popular.

#### Methodologies:

#### I. Electrically Based Techniques: Electroporation

Ultrasound

Iontophoresis

#### II. Structure Based Technique: Microneedles

#### III. Velocity Based Technique: Jet-propulsion

### I. Electrically Based Techniques:

#### a) Iontophoresis [Figure 6]:

- It works by creating a repulsion between the charged electrode and the solute.

- Current applied  $0.5\text{mA/cm}^2$

Ex: Lidocaine, Vincristine

### Iontophoresis

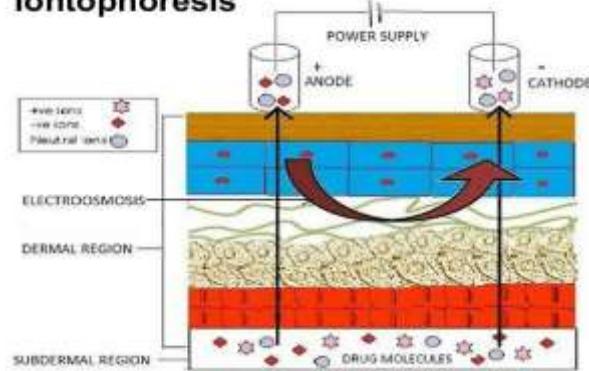



Figure 6: Iontophoresis

### b). Electroporation [Figure 7]:

- Application procedure using high transdermal voltages generated by electrical pulses.
- Controllable by modifying the electrical pulse.

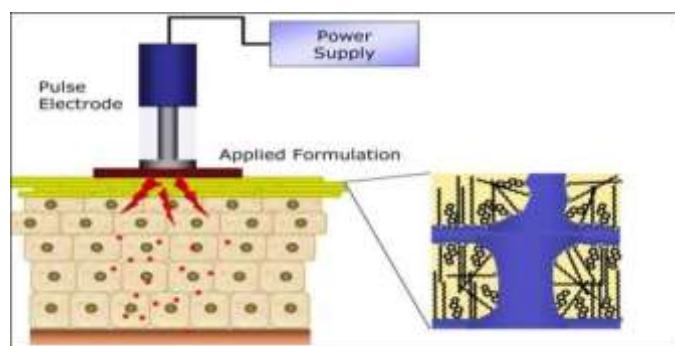



Figure 7: Electroporation

### c) Ultrasound:

- It produces physical air pressure above topical skin.
- Medication delivery with low frequency range [Figure 8]

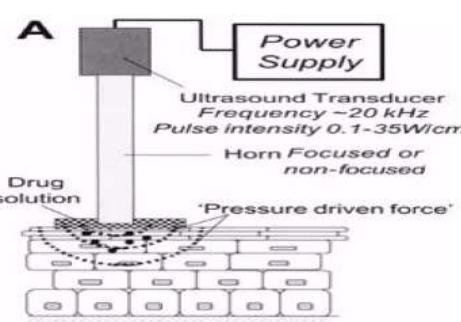



Figure 8: Ultrasound

## II. Structure Based Technique:

### a) Microneedles:

- Microneedle [Figure 9] is micro size needles which are used in set of arrays.
- To boost skin permeability, they produce a silicon-based physical tunnel through the top epidermis.

- These Needles Easily Pierced in Epidermal Layer Of The Skin.

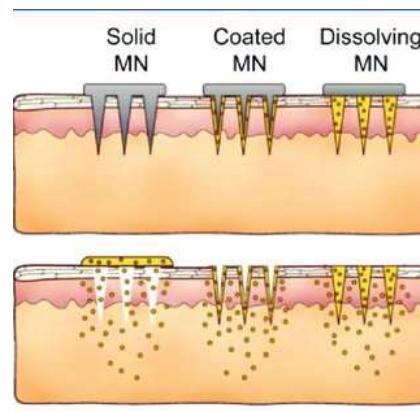



Figure 9: Microneedles

## III. Velocity Based Technique:

### a) Jet-Propulsion [Figure 10]:

- It Splits the Drug into Skin
- High velocity jet(100m/s) of compressed gas(Helium) (20-22)

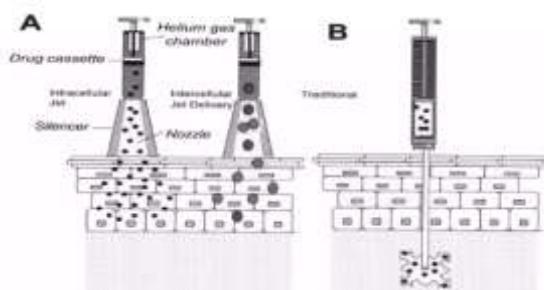



Figure 10: Jet Propulsion

## 2. Chemical Enhancers:

Chemical Boosters Mechanism for Increasing Chemical Penetration There are three major methods through which penetration enhancers can function.

- The stratum corneum lipid's highly organised structure is disturbed.
- Compatibility with intercellular proteins.
- A more effective medication partition and enhancer and solvent into stratum corneum.

### Classification of Chemical Enhancers:

- Sulphoxides- DMSO, DMF.
- Azones- 1-dodecylazacycloheptan-2-one
- Pyrrolidones- N-methyl-2-pyro
- Essential oils, terpenes, terpenoids, L-Menthol
- Oxazolidinones- 4-decyloxazolidin-2-one
- Fatty acids- lauric acid, myristic acid and capric acid
- Glycol- diethylene glycol and tetraethylene glycol
- Non Ionic surfactant- polyoxyethylene-2-oleyl ether, polyoxyethylene-2-stearly ether.

### Types of Permeation Enhancers <sup>16</sup>:

#### (a) Sulfoxides Dimethylsulfoxide (DMSO):

- It is an efficient penetration enhancer that enhances permeation by lowering skin resistance to drug molecules or promoting drug partitioning from the dose form.
- It has been proposed that DMSO either denatures the intercellular structural proteins of the SC or enhances lipid fluidity by disrupting the ordered structure of the lipid chains.
- DMSO may also change the physical structure of the skin via elution of lipid, lipoprotein, and nucleoprotein components from the SC.

#### (b) Alcohols:

- Alcohols can alter transdermal penetration through a variety of methods. The alkanols' alkyl chain length is a key characteristic in the promotion of permeability enhancement.

#### (c) Polyols:

- Propylene glycol action is hypothesised to come from keratin solvation inside the SC; the occupancy of proteinaceous hydrogen bonding sites lowering drug-tissue binding and hence enhancing penetration.

#### (d) Alkanes:

- Long chain alkanes (C7-C16) have been demonstrated to improve skin permeability via non-destructively altering the SC barriers

#### (e) Fatty acids:

- The principal way of boosting fatty acid activity appears to be selective disturbance of the intercellular lipid bilayers in the SC.

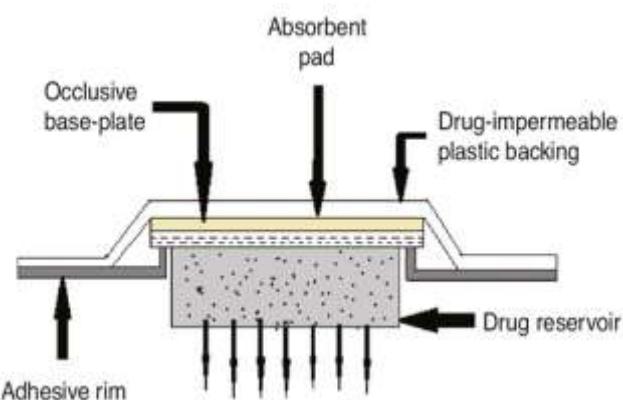
#### (f) Esters: Esters are moderately polar, hydrogen bonding chemicals that may improve penetration in a similar way as sulphoxides and formamides by permeating the SC and boosting lipid fluidity through disruption of liquid packing.

### D. Additional Excipients:

**Adhesives:** All transdermal devices must be adhered to the skin with a pressure sensitive adhesive that can be applied to the face or the rear of the device.

Both adhesive layers must meet the following requirements:

- When in touch with the skin, it should not produce irritation, sensitization, or an imbalance in the natural skin flora.
- Should actively adhere to the skin.
- Be readily removed without leaving an unwashable residue.


The face adhesive system should also meet the following requirements:

- Should not interfere with medication penetration.
- Should facilitate the administration of simple absorption enhancers.
- Should not degrade adhesive characteristics as the drug enhancer and excipients penetrate into the adhesive.

The three primary types of polymers evaluated for potential medical applications TDDS [Figure 11] Includes:

- Pressure sensitive adhesives of the polyisobutylene type
- Pressure sensitive acrylic adhesives

- ✓ Pressure sensitive silicone adhesives



**Figure 11: Transdermal Drug Delivery System Device**

### Factors Affecting Permeation <sup>17-19</sup>:

#### Biological Factors:

##### 1. Skin conditions:

- The intact skin functions as a barrier, but many substances, such as acids and alkalis, break through the barrier cells of the skin and open the intricate, thick structure of the horny layer.
- Lipid fraction is removed by solvents like methanol and chloroform, creating artificial shunts that make it easy for drug molecules to flow through.

##### 2. Skin age:

- It is evident that adults and children have more permeable skin than elderly people do, but there is no strikingly different. Children have harmful effects due to their larger surface area relative to their body weight. Strong steroids, boric acid, and hexachlorophene have therefore resulted in undesirable side effects.

##### 3. Blood Flow:

- Transdermal absorption may be impacted by changes in peripheral circulation.

##### 4. Localized skin site:

- Site-specific differences exist in appendage density, stratum corneum type, and skin thickness. These elements have a big impact on penetration.

#### Physical-chemical Factors:

##### 1. Skin moisture:

- The permeability of skin rises dramatically when it comes into touch with water.
- The most crucial aspect in promoting skin permeability is hydration. So humectant usage occurs during transdermal administration.

##### 2. pH and temperature:

- With temperature change, drug permeability multiplies 10 times. As temperature drops, the diffusion coefficient lowers. (29)
- Depending on the pH and pKa or pKb values, weak acids and bases separate. The drug concentration in skin is based on the percentage of unionised drug.
- Consequently, major parameters impacting medication penetration include temperature and pH.

**3. Diffusion coefficient:**

- The drug's diffusion coefficient affects how well it penetrates the body.
- Keeping the temperature constant, the drug diffusion coefficient is influenced by the characteristics of the drug, the diffusion medium, and their interactions.

**4. Partition coefficient:**

- For effective action, the ideal partition coefficient (K) is needed. High K drugs are not yet ready to leave the lipid layer of skin. Additionally, medications with low K levels won't infiltrate.

**5. Size and form of molecules:**

- The relationship between molecular weight and drug absorption is inverse. Larger molecules cannot penetrate as deeply as smaller ones.
- Small molecules penetrate more quickly than ones of greater mass.

**6. Molecular weight:**

- The molecular weight of medications that lie within the narrow range of 100 to 500 Dalton are particularly effective for designation as candidates for transdermal administration.

**7. Solubility and melting point:**

- Lipophilic substances penetrate the skin more quickly than more hydrophilic ones. At normal pressure and temperature, drugs with high melting points have fairly low aqueous solubility.

**8. Ionization:**

- Only the unionised form of the medication, according to pH-partition theory, may pass through the lipid barriers.

**9. Drug concentration:**

- The flow is inversely correlated with the gradient of concentration across the barrier, and the gradient will be bigger if the drug concentration is higher across the barrier.

**Environmental Factors <sup>20</sup>:****1. Sunlight:**

- As a result of sunlight, blood vessel walls change colour, becoming thinner, causing slight damage and bruising in sun-exposed places.
- Moreover, pigmentation Freckles or solar lentigo are the most obvious pigment change brought on by the sun.

**2. Cold Season:**

- Dry, itchy skin is a common effect of the cold season. As a reaction to the drying impacts of the weather, skin produces more oil.
- A decent moisturiser will aid in reducing the effects of dry skin. Additionally, consuming a lot of water may keep your skin moisturised and beautiful.

**3. Air pollution:**

- Dust can block pores and raise germs on the skin's surface, which can result in patches.

**Applications:**

- ✓ Pain Management
- ✓ Hormone Replacement Therapy
- ✓ Contraception
- ✓ Antiemetics
- ✓ Urinary Incontinence Treatment
- ✓ Cardiovascular System
- ✓ Central Nervous System

**Evaluation of Transdermal Patches:**

- Physicochemical evaluation
- In vitro evaluation
- In vivo evaluation

**A. Physicochemical Evaluation:**

Transdermal patches were examined visually for:

**Thickness**

- The thickness of the patches was measured using a micrometre at five separate locations on three patches, and the average was computed.

**Folding stamina**

- The folding durability of the created patches was measured manually. It is measured by the number of times the film is folded at the same location, either to break it or to generate visible fissures. This is necessary to test the sample's capacity to withstand folding.
- Brittleness is also indicated by this.
- Folding endurance of the film was measured repeatedly by folding a tiny strip of film at a specified location of 2 cm x 2 cm (4 cm<sup>2</sup>) for many times till a crack was noticed and subsequently broke.

**Weight Uniformity:**

- Weight differences between the manufactured patches can result in differences in drug content and in-vitro behaviour, a research was conducted in which 5 patches were weighed in an electronic scale. All of the patches were chosen at random and should be of the same size (1 cm x 1 cm).
- The following calculations were used to compute a patch's average weight and standard deviation.

Average patch weight = total patch weight/5

$(x - \bar{x})^2 / (n - 1)$  is the standard deviation.

Where, x is the weight of the particular patch and  $\bar{x}$  is the average weight.

$n$  denotes the number of patches.

**Tensile Strength:**

- The equipment, which was created in our lab, was used to measure tensile strength. Tensile strength was calculated using the average weight of three patches.
- On a glass plate, a tiny film strip (4 x 1 cm) was cut with a sharp blade. When inserted in the film holder, one end of the attached between adhesive tapes to provide support for the film.

- Another end of the film was sandwiched between the adhesive tapes with a tiny pin to maintain the strip straight while stretching.
- A tiny hole in the adhesive tape was formed near the pin, and a hook was inserted. A thread was hooked to the hook, which was then passed over the pulley with the little pan attached to it.
- The film was pulled using a pulley system to assess its tensile strength. Weights are gradually added to the pan in order to enhance the pulling power until the film breaks.
- The elongation was calculated by recording the distance travelled by the pointer before the film broke on graph paper. Break force was defined as the weight required to break the film.
- The following formula was used to compute tensile strength:

Tensile strength = Tensile load at break/a.b. (1+ L/L),

Where,

a, b and L represent the width, thickness, and length of the strip, respectively

L represents the elongation at break.

Break force is the amount of weight required to break

IB-IO/IO x 100 = Elongation the film (kg)

Where ,

IO denotes the original duration of the film.

IB = the length of film breaks

#### Probe Tack Test:

- Force required to pull a probe away from an adhesive at a fixed rate is recorded as tack.

#### Rolling Ball Test:

- This test involves measurement of the distance that stainless steel ball travels along an upward facing adhesive. The less tacky the adhesive, the further the ball will travel.

#### B. IN VITRO Release Studies:

- Transdermal patches can be examined in vitro in terms of Franz diffusion cell, which the cell is comprised of, according to in vitro release investigations the donor and receptor compartments.
- The receptor compartment has an effective surface area of 1–5 cm<sup>2</sup> and a capacity of 5–12 ml. A magnetic bar continually stirs the diffusion buffer at 600 rpm.
- A water jacket that envelops the receptor compartment is circulated with thermostated water to maintain the temperature in the majority of the solution.
- A proper technique is used to assess the drug content, and maintaining the state of the sink is crucial.

#### C. IN VIVO Release Studies:

- Transdermal patches can be assessed in vivo for the most accurate representation of a drug's performance is found in in vivo tests.
- The factors which cannot be accounted for in in vitro research can be thoroughly investigated in in vivo investigations.

- Animal models and human volunteers can be used to evaluate TDDS in vivo. (29)

## Conclusion

Transdermal drug delivery system is employed in medication therapy for a less absorption, more uniform plasma levels, increased bioavailability, less adverse effects, effectiveness, and product quality. A patch is made up of a few basic components that play an important role in medication release via the skin. The future of TDDS would be centered on regulated therapeutic usage. There are many different varieties of transdermal patches, including matrix, reservoir, membrane matrix hybrid, micro reservoir type, and medication in adhesive type. These patches are made into transdermal patches utilizing the fundamental TDDS components.

## Acknowledgement

The corresponding author desires to explicit utmost gratitude to the Management and Prof. Dr. D. Ranganayakulu, M. Pharm., Ph.D., Principal, Sri padmavathi school of pharmacy, Tiruchanoor, Andhra Pradesh, India for presenting all the necessary laboratory demands of the research and constant support.

## Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

## Funding

None.

## References:

- 1) Kumar A, Pullankandam N, Prabhu SL, Gopal V, Transdermal drug delivery system: an overview, International Journal of Pharmaceutical Sciences Review and Research, 2010; 3(2):49-54.
- 2) Divya A, Rao MK, Gnanprakash K, Sowjanya A, Vidyasagar N, Gobinath M, A review on current scenario of transdermal drug delivery system, International Journal of Pharmaceutical Sciences, 2012; 3(4):494-502.
- 3) Dudekula, A, Challa, M. and Mutcherla, P. K. Formulation and Evaluation of Itraconazole Nanocapsules, Himalayan Journal of Health Sciences, 2022; 7(4):33-41. doi: <https://doi.org/10.22270/hjhs.v7i4.158>.
- 4) Sadab S, Sahu S, Patel S, Khan R, Khare B, Thakur BS, Jain A, Jain PK, A Comprehensive Review: Transdermal Drug Delivery System: A Tool For Novel Drug Delivery System. Asian Journal of Dental and Health Sciences 2022; 2(4):40-47. <https://doi.org/10.22270/ajdhs.v2i4.24>
- 5) Ramesh, Yerikala, and Vadhireddy Sireesha. 2017. Transdermal Patch Of Ramipril Loaded Chitosan Nanoparticles Dispersed In Carbopol Gel, Journal of Drug Delivery and Therapeutics, 2017; 7 (6):56-65. <https://doi.org/10.22270/jddt.v7i6.1523>.
- 6) Arava Vidyadhari, Guduru Rajeswari, Dodda Chinni Krishna Reddy, Gangala Sudarsana, Gundala Mamatha, Kuramutla Sisindri, Podili Swarna Latha, Ramakkagari Sandhya Rani, Shaik Shajiya Taslim. Formulation and Evaluation of Transdermal Film of Nitroglycerin, Future Journal of Pharmaceuticals and Health Sciences, 2021; 1(1):37-42. <https://doi.org/10.26452/fjphs.v1i1.56>
- 7) Dhiman S, Thakur GS, Rehni AK. Transdermal patches: a recent approach to new drug delivery system. International Journal of Pharmacy and Pharmaceutical Sciences. 2011; 3(5):26-34.
- 8) Hettiaratchy S, Dziewulski P. ABC of burns: Pathophysiology and Types of Burns. British Medical Journal, 2004; 328:1427-1429, <https://doi.org/10.1136/bmj.328.7453.1427>

9) Jatav VS, Sagg JS, Jat RK, Sharma AK, Singh RP, Recent advances in development of transdermal patches, *Pharmacophore An International Research Journal*, 2011; 2(6):287-297.

10) Ayesha T, Kishore Bandarapalle, Rajasekhar K K, Tholla Bhagyamma, Mohit Ragavendra M R, Pathakota Bhuvan Kumar Reddy, Sindhu P, Transdermal Drug Delivery System – A Review, *Future Journal of Pharmaceuticals and Health Sciences*, 2023; 3(1):52-64. <https://doi.org/10.26452/fjphs.v3i1.340>

11) Ramesh Y, Anjana A, Karunasree M, Manjula Devi B, Sankeerthana K, Sri Lakshmi P, Vasanthi A. Formulation and evaluation of Atenolol transdermal patches, *creative journal of pharmaceutical research*, 2015; 1(2):55-65.

12) Cleek RL and Bunge A.L, A new method for estimating dermal absorption from chemical exposure General approach, *Pharmaceutical Research*, 1993; 10(10): 497-50. <https://doi.org/10.1023/a:1018981515480>

13) Heather AE. Transdermal drug delivery: Penetration Enhancement Techniques, *Current drug delivery*, 2005; 2(2):23-33. <https://doi.org/10.2174/1567201052772915>

14) Prausnitz MR, A practical assessment of transdermal drug delivery by skin electroporation, *Advanced Drug Delivery Reviews*, 1999; 35:61-76. [https://doi.org/10.1016/s0169-409x\(98\)00063-5](https://doi.org/10.1016/s0169-409x(98)00063-5)

15) Kumar D, Sharma N, Rana AC, Agarwal G, Bhat ZA, A review: transdermal drug delivery system: a tools for novel drug delivery system, *Int. J Drug Dev. Res.*, 2011; 3(3):70- 84.

16) Singh MC, Naik AS, Sawant SD, Transdermal drug delivery system with major emphasis on transdermal patches: a review, *J Pharm Res*, 2010; 3(10):2537-2543.

17) Saoji SD, Atram SC, Dhore PW, Deole PS, Raut NA, Dave VS, Influence of the Component Excipients on the Quality and Functionality of a Transdermal Film Formulation. *AAPS Pharm SciTech*, 2015; 16(6):1344-1356. <https://doi.org/10.1208/s12249-015-0322-0>

18) Gupta IK, Chokshi MM, Transdermal drug delivery system: an overview, *Asian J Pharm Sci. Clinical Res*, 2011; 1(1):25-43. <https://doi.org/10.22377/ajp.v6i3.51>

19) Venkata Durga Seshu Priya P, Ramesh Babu K, Bhanu Prasad Reddy B, Suresh K, Greeshma N, Madhav, Venkatesh P. Formulation Development and Characterization of Glipizide Transdermal Gels by Using Permeation Enhancers, *Future Journal of Pharmaceuticals and Health Sciences*, 2021; 1(4):155-164. <https://doi.org/10.26452/fjphs.v1i4.172>

20) Thejaswi C, Rao KM, Gobinath M, Radharani J, Hemafait V, Venugopalaiah P. A review on design and characterization of proniosomes as a drug carrier. *Int. J Advances Pharm Nanotechnology*, 2011; 1(1):16-19. <https://doi.org/10.4103/0976-0105.113609>