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Physalis minima (PM) belongs to the family Solanaceae. PM has been traditionally used to cure
and prevent several disorders as documented in Vedic Texts. Nevertheless, scientific values of
traditional claims haven't been explored yet. In the previous study, GCMS analysis of P.
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minima ethanolic leaf extracts (PMELE) indicated the presence of Cyclobutanol (C4HsO); D-
Alanine (C3H70:N); 2-Heptanol, 6-Amino-2-Methyl (CsH190ON); 1-Pentanol, 4-Amino
(CsH13NO); Benzeneethanamine, 3-Fluoro-Beta.,5-Dihydroxy-N-Methyl (CoH12FNO:) and L-
Alanine, N-(N-Acetylglycyl)-, Butyl Ester (C11H20N204). However, biological activities of these
bioactive compounds are not known which hampers the exploitation of these compounds by
pharma-industries on a commercial scale. This study on ADMET, Pharmacokinetics, Drug-
likeness and Medicinal Chemistry of Bioactive Compounds in PMELE aims to provide baseline
information on PBNPs as a potential source of natural lead molecules for next generation
drug design, development and therapeutics.
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INTRODUCTION

Secondary metabolite in plants collectively known as Plant
Based Natural Products (PBNPs) plays a vital role in human
existence and they are considered as foundation of Traditional
Indigenous Systems of Medicine (TISM)12. Unlike the synthetic
drugs that are used for the treatment of various infectious
diseases, PBNPs are effective, safe, affordable and are of GRAS
standard with fewer side effects3. Meanwhile, WHO has also
recognized the importance of TISM and has laid strategies,
guidelines and standards for the use of Plant-Based Medicine*.
This boils down to the fact that medicinal plants are base-
resources of new drugs and many of the modern medicines
are produced based on the natural chemistry of PBNPs. In
recent times, there have been increased interests in research
on PBNPs. This is attributed to unmet therapeutic needs,
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remarkable diversity structure and functionality of PBNPs,
advancement in the field of computing technologies - Al and
ML to hunt for PBNPs5, therefore, Pharmaceutical Giants are
adopting data mining and AI&ML technologies to reduce time
and cost required for R&D programé-12,

Alternatively, development of novel and sensitive techniques
to detect biologically active PBNPs, advanced techniques to
isolate, purify and structurally characterize PBNPs, and
advances to meet out demand-supply aspects of PBNPs have
prompted interest in development and promotion of herbal
drugs. In recent years, both combinatorial chemistry and high-
throughput screening platforms have significantly increased
the number of compounds for which early data on absorption,
distribution, metabolism, excretion (ADME) and toxicity (T)
are not available, which has led to the development of a
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variety of medium and high-throughput in vitro ADMET
screens for drug development and design with deeper
dimension with high degree of precision taking into account
cost economics and time5-19,

Immense medicinal properties of bioactive compounds from
Physalis have generated interest in extracting and
characterizing compounds that its different species possess
and identifying the active withanolides responsible for their
unique medicinal properties20-23, It has been pointed out that
withanolides are intriguing principal compounds for
inflammatory, neuro-inflammatory and cancer treatment due
to unique steroidal structure and specific bioactivities?3.

MATERIALS AND METHODS
In silico Drug-Likeliness and Bioactivity Prediction

The drug likeliness and bioactivity of selected molecule was
analyzed using the Molinspiration server
(http://www.molinspiration.com). Molinspiration tool is
cheminformatics software that provides molecular properties
as well as bioactivity prediction of compounds?4. In
Molinspiration-based drug-likeness analysis, there are two
important factors, including the lipophilicity level (log P) and
polar surface area (PSA) directly associated with the
pharmacokinetic properties (PK) of the compounds2s. In
Molinspiration-based bioactivity analysis, the calculation of
the bioactivity score of compounds toward GPCR ligands, ion
channel modulators, kinase inhibitors, nuclear receptor
ligands, protease inhibitors, and other enzyme targets were
analyzed by Bayesian statistics26.27. This was carried out for G
protein-coupled receptors (GPCR), ion channels, kinases,
nuclear hormone receptors, proteases, and other enzymes
(RdRp), are the major drug targets of most of the drugs2s.

In silico ADMET Analysis

SwissADME: is a Web tool that gives free access to a pool of
fast yet robust predictive models for physicochemical
properties, pharmacokinetics, druglikeness and medicinal
chemistry friendliness, among which in-house proficient
methods such as iLOGP (a physics-based model for
lipophilicity) or the BOILED-Egg (an intuitive graphical
classification model for gastrointestinal absorption and brain
access). It is the first online tool that enables ADME-related
calculation for multiple molecules, allowing chemical library
analysis and efficient lead optimization29. PK properties, such
as Absorption, Distribution, Metabolism, Excretion, and
Toxicity (ADMET), of fatty acids were predicted using
admerSAR v2.0 server
(http://Immd.ecust.edu.cn/admetsar2/) and The admerSAR
server is an open-source computational tool for prediction of
ADMET properties of compounds, which makes it a practical
platform for drug discovery and other pharmacological
researchs30,

In ADMET analysis, absorption (A) of good drugs depends on
factors such as membrane permeability3! [designated by colon
cancer cell line (Caco-2)], human intestinal absorption (HIA)32,
and status of either P-glycoprotein substrate or inhibitor33.
Distribution (D) of drugs mainly depends on the ability to
cross blood-brain barrier (BBB)34. The metabolism (M) of
drugs is calculated by the CYP, MATE1l, and OATP1B1-
OATP1B3 models3s. Excretion (E) of drugs is estimated based
on the renal OCT substrate. Toxicity (T) of drugs is predicted
on Human Ether-A-Go-Go related gene inhibition, carcinogenic
status, mutagenic status, and acute oral toxicitys3e.

vNN model building and analysis

vNN method was used to calculate the similarity distance
between molecules in terms of their structure, and uses a
distance threshold to define a domain of applicability to
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ensures that the predictions generated are reliable. vNN
models can be built keeping quantitative structure-activity
relationship (QSAR) models up-to-date to maintain their
performance levels. Performance characteristics of the models
are comparable, and often superior to those of other more
elaborate model.38-49 One of the most widely used measures of
similarity distance between two small molecules is Tanimoto
distance, d, which is defined as:

n(PnNnQ)
“nP)+n(Q) - (PNQ)

where n(PNQ) is number of features common to molecules p
and g, and n(P) and n(Q) are the total numbers of features for
molecules p and q, respectively. The predicted biological
activity y is given by a weighted across structurally similar
neighbours:

d=1

1!'}=1y1'e _(di/h)z i<
1o —(di/R)?

i=1le

d0

where di denotes Tanimoto distance between a query
molecule for which a prediction is made and a molecule i of
the training set; do is a Tanimoto-distance threshold, beyond
which two molecules are no longer considered to be
sufficiently similar to be included in the average; yi is the
experimentally measured activity of molecule i; v denotes the
total number of molecules in the training set that satisfies the
condition disdo; and h is a smoothing factor, which dampens
the distance penalty. Values of h and do are determined from
cross-validation studies. To identify structurally similar
compounds, Accelrys Extended-Connectivity FingerPrints with
a diameter of four chemical bonds (ECFP4) were used38-40.

Model Validation

A 10-fold cross-validation (CV) procedure was used to validate
new models and to determine the values of smoothing factor h
and Tanimoto distance do. In this procedure, data was
randomly divided into 10 sets, and used 9 to develop the
model and 10t to validate it, this process was repeated 10
times, leaving each set of molecules out once.

Performance Measures

Following metrics were used to assess model performance. (1)
sensitivity measures a model’s ability to correctly detect true
positives, (2) specificity measures a model’s ability to detect
true negatives, (3) accuracy measures a model’s ability to
make correct predictions and (4) kappa compares the
probability of correct predictions to the probability of correct
predictions by chance (its value ranges from +1 (perfect
agreement between model prediction and experiment) to -1
(complete disagreement), with 0 indicating no agreement
beyond that expected by chance).

o TP
sensitivity = TP+ FN
L TN
specificity = FP L TN
TP +TN
accuracy =

TP + TN + FP + FN
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accuracy — Pr(e)
1 —Pr(e)

where TP, TN, FP, and FN denote the numbers of true
positives, true negatives, false positives, and false negatives,
respectively. Kappa is a metric for assessing the quality of
binary classifiers. Pr (e) is an estimate of the probability of a
correct prediction by chance. It is calculated as:

kappa =

(TP + FN)(TP + FP) + (TP + FN)(TP + FP)

p —
r(e) (TP + FN + FP + TN)?

The coverage is the proportion of test molecules with at least
one nearest neighbour that meets the similarity criterion. The
coverage is a measure of how many test compounds are within
the applicability domain of a prediction model37-40. OSIRIS
Property Explorer an integral part of Actelion's in-house
substance registration system was used to calculate on-the-fly
various drug-relevant properties for drawn chemical
structures, including some toxicity and druglikeness
properties.

RESULTS AND DISCUSSION

GCMS analysis ethanolic leaf extracts of P. minima indicated
the presence of (at RT in min) 2.528 - Cyclobutanol (C4HsO);
2.598 - D-Alanine (C3H702N); 6.145 - 2-Heptanol, 6-Amino-2-
Methyl (CsH19ON); 7.821 - 1-Pentanol, 4-Amino (CsH13NO);
8.401 - Benzeneethanamine, 3-Fluoro-Beta.5-Dihydroxy-N-
Methyl (CoH12FNO2); 29.339 - L-Alanine, N-(N-Acetylglycyl)-,
Butyl Ester (C11H20N204) were detected in the ethanolic leaf
extracts of P. minima respectively (Table 1a, b; Fig. 1).

Drug-likeness properties of PM-PBNPs

The drug score value combines all other predictions into one
grand total. Based on this logic the Score from cLogP: 0.581
(cLogP = 4.672); Score from logS: 0.847 (logS = -3.286); Score
from molecular weight: 0.968 (molecular weight 214.0); Score
from drug-likeness: 0.0 (drug-likeness = 35.364); No Risk of
Mutagenicity Score = 1.0; No Risk of Tumorigenicity Score =
1.0; No Risk of Irritating Effects Score = 1.0; No Risk of
Reproductive Effects Score = 1.0 respectively were predicted
and the overall predicted drug score for compound 1 was
calculated as 0.359. Score from cLogP: 0.680 (cLogP = 4.244);
Score from logS: 0.863 (logS = -3.158); Score from molecular
weight: 0.973 (molecular weight 200.0); Score from drug-
likeness: 0.0 (drug-likeness = 25.215); No Risk of Mutagenicity
Score = 0.6; No Risk of Tumorigenicity Score = 0.6; No Risk of
Irritating Effects Score = 0.6; No Risk of Reproductive Effects
Score = 1.0 respectively were predicted and the overall
predicted drug score for compound 2 was calculated as 0.083.

Score from cLogP: 0.358 (cLogP = 5.581); Score from logS:
0.763 (logS = -3.826); Score from molecular weight: 0.956
(molecular weight 242.0); Score from drug-likeness: 0.0 (drug-
likeness = 35.364); No Risk of Mutagenicity Score = 1.0; No
Risk of Tumorigenicity Score = 1.0; No Risk of Irritating Effects
Score = 1.0; No Risk of Reproductive Effects Score = 1.0
respectively were predicted and the overall predicted drug
score for compound 3 was calculated as 0.293. Score from
cLogP: 0.183 (cLogP = 6.49); Score from logS: 0653 (logS = -
4.366); Score from molecular weight: 0.94 (molecular weight
270.0); Score from drug-likeness: 0.0 (drug-likeness =
35.364); No Risk of Mutagenicity Score = 1.0; No Risk of
Tumorigenicity Score = 1.0; No Risk of Irritating Effects Score
= 1.0; No Risk of Reproductive Effects Score = 1.0 respectively
were predicted and the overall predicted drug score for
compound 4 was calculated as 0.237.

Score from cLogP: 0.256 (cLogP = 6.062); Score from logS:
0.681 (logS = -4.239); Score from molecular weight: 0.949
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(molecular weight 256.0); Score from drug-likeness: 0.0 (drug-
likeness = 25.215); No Risk of Mutagenicity Score = 1.0; No
Risk of Tumorigenicity Score = 0.6; No Risk of Irritating Effects
Score = 0.6; No Risk of Reproductive Effects Score = 1.0
respectively were predicted and the overall predicted drug
score for compound 5 was calculated as 0.092. Score from
cLogP: 0.104 (cLogP = 7.147); Score from logS: 0.579 (logS = -
4.678); Score from molecular weight: 0.920 (molecular weight
296.0); Score from drug-likeness: 0.0 (drug-likeness = -
30.917); No Risk of Mutagenicity Score = 1.0; No Risk of
Tumorigenicity Score = 1.0; No Risk of Irritating Effects Score
= 1.0; No Risk of Reproductive Effects Score = 1.0 respectively
were predicted and the overall predicted drug score for
compound 6 was calculated as 0.209.

Score from cLogP: 0.083 (cLogP = 7.399); Score from logS:
0.523 (logS = -4.906); Score from molecular weight: 0.918
(molecular weight 298.0); Score from drug-likeness: 0.0 (drug-
likeness = 35.364); No Risk of Mutagenicity Score = 1.0; No
Risk of Tumorigenicity Score = 1.0; No Risk of Irritating Effects
Score = 1.0; No Risk of Reproductive Effects Score = 1.0
respectively were predicted and the overall predicted drug
score for compound 7 was calculated as 0.197. Score from
cLogP: 0.384 (cLogP = 5.469); Score from logS: 0.647 (logS = -
4.428); Score from molecular weight: 0.882 (molecular weight
= 332.0); Score from drug-likeness: 0.0 (drug-likeness = -
7525); No Risk of Mutagenicity Score = 1.0; No Risk of
Tumorigenicity Score = 1.0; No Risk of Irritating Effects Score
= 1.0; No Risk of Reproductive Effects Score = 1.0 respectively
were predicted and the overall predicted drug score for
compound 8 was calculated as 0.267.

Bio-molecular properties of PM-PBNPs

Calculated value for molecular properties of compound 1 were
(values given in parenthesis) - miLogP (5.35); TPSA (26.30);
Natoms (15); MW (214.35); nON (2); nOHNH (0); Nviolations
(1); Nrotb (11); volume (214.74) respectively; and the
calculated bioactivity scores for biological properties were -
GPCR ligand (-0.41); Ion channel modulator (-0.13); Kinase
inhibitor (-0.73); Nuclear receptor ligand (-0.43); Protease
inhibitor (-0.46); Enzyme inhibitor (-0.11) respectively (Table
2a). Calculated value for molecular properties of the
compound 2 were - miLogP (5.04); TPSA (37.30); Natoms
(14); MW (200.32); nON (2); nOHNH (1); Nviolations (1);
Nrotb (10); volume (224.22) respectively; and the calculated
bioactivity scores for biological properties were - GPCR ligand
(-0.27); Ion channel modulator (-0.04); Kinase inhibitor (-
0.75); Nuclear receptor ligand (-0.24); Protease inhibitor (-
0.36); Enzyme inhibitor (0.04) respectively (Table 2b).

Calculated value for molecular properties of the compound 3
were - miLogP (6.36); TPSA (26.30); Natoms (17); MW
(242.40); nON (2); nOHNH (0); Nviolations (1); Nrotb (13);
volume (275.35) respectively; and the calculated bioactivity
scores for biological properties were - GPCR ligand (-0.24); Ion
channel modulator (-0.07); Kinase inhibitor (-0.51); Nuclear
receptor ligand (-0.24); Protease inhibitor (-0.28); Enzyme
inhibitor (-0.02) respectively (Table 2c). Calculated value for
molecular properties of the compound 4 were - miLogP (7.37);
TPSA (26.30); Natoms (19); MW (270.46); nON (2); nOHNH
(0); Nviolations (1); Nrotb (15); volume (308.95) respectively;
and the calculated bioactivity scores for biological properties
were - GPCR ligand (-0.11); Ion channel modulator (-0.05);
Kinase inhibitor (-0.34); Nuclear receptor ligand (-0.09);
Protease inhibitor (-0.13); Enzyme inhibitor (-0.04)
respectively (Table 2d).

Calculated value for molecular properties of the compound 5
were - miLogP (7.06); TPSA (37.30); Natoms (18); MW
(256.43); nON (2); nOHNH (1); Nviolations (1); Nrotb (14);
volume (291.42) respectively; and the calculated bioactivity

CODEN (USA): JDDTAO



Ramya et al

scores for biological properties were - GPCR ligand (0.02); lon
channel modulator (0.06); Kinase inhibitor (-0.33); Nuclear
receptor ligand (0.08); Protease inhibitor (-0.04); Enzyme
inhibitor (0.18) respectively (Table 2e). Calculated value for
molecular properties of the compound 6 were - miLogP (7.89);
TPSA (26.30); Natoms (21); MW (296.50); nON (2); nOHNH
(0); Nviolations (1); Nrotb (16); volume (336.37) respectively;
and the calculated bioactivity scores for biological properties
were - GPCR ligand (0.03); Ion channel modulator (-0.03);
Kinase inhibitor (-0.25); Nuclear receptor ligand (0.06);
Protease inhibitor (-0.02); Enzyme inhibitor (0.12)
respectively (Table 2f).

Calculated value for molecular properties of the compound 7
were - miLogP (8.32); TPSA (26.30); Natoms (21); MW
(298.51); nON (2); nOHNH (0); Nviolations (1); Nrotb (17);
volume (342.55) respectively; and the calculated bioactivity
scores for biological properties were - GPCR ligand (-0.03); Ion
channel modulator (-0.04); Kinase inhibitor (-0.23); Nuclear
receptor ligand (0.00); Protease inhibitor (-0.03); Enzyme
inhibitor (0.05) respectively (Table 2g). Calculated value for
molecular properties of the compound 8 were - miLogP (4.32);
TPSA (17.07); Natoms (24); MW (332.47); nON (1); nOHNH
(0); Nviolations (0); Nrotb (5); volume (308.98) respectively;
and the calculated bioactivity scores for biological properties
were - GPCR ligand (0.15); Ion channel modulator (0.08);
Kinase inhibitor (0.10); Nuclear receptor ligand (0.01);
Protease inhibitor (0.27); Enzyme inhibitor (0.20) respectively
(Table 2h). The pink area (Fig. 2) represents the optimal
range for each property (lipophilicity: XLOGP3 between -0.7
and +5.0, size: MW between 150 and 500 g/mol, polarity:
TPSA between 20 and 130 A2, solubility: log S not higher than
6, saturation: fraction of carbons in the sp3 hybridization not
less than 0.25, and flexibility: no more than 9 rotatable bonds).
The overall Natural Product Likeness Score for PBNPs from P.
minima is shown in Fig. 3

ADMET and Pharmacokinetic properties of PM-PBNPs

Absorption, Distribution, Metabolism, Excretion and Toxicity
(ADMET) prediction models, including their performance
measures as discussed in previous studies. 15 models cover a
diverse set of ADMET endpoints. Some of the models have
already been published, including those for Maximum
Recommended  Therapeutic Dose (MRTD), chemical
mutagenicity, human liver microsomal (HLM), Pgp inhibitor/
substrates.*2

Liver Toxicity

DILI: Drug-induced liver injury (DILI) has been one of the
most commonly cited reason for drug withdrawals from the
market. This application predicts whether a compound could
cause DILL The dataset of 1,431 compounds was obtained
from four sources used by Xu et al.#8 This dataset contains
both pharmaceuticals and non-pharmaceuticals; classified as
compound as causing DILI if it was associated with a high risk
of DILI and not if there was no such risk Table 3.

Cytotoxicity (HepG2): Cytotoxicity is the degree to which a
chemical causes damage to cells. Cytotoxicity prediction model
was developed, using in vitro data on toxicity against HepG250
cells for 6,000 structurally diverse compounds, collected from
ChEMBL for compounds with an ICso < 10 pM in the in vitro
assay as cytotoxic Table 3.

Metabolism

HLM: Human Liver Microsomal (HLM)4Z stability assay is
commonly used to identify and exclude compounds that are
too rapidly metabolized. For a drug to achieve effective
therapeutic concentrations in the body, it cannot be
metabolized too rapidly by the liver. Compounds with a half-
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life of 30 min or longer in an HLM assay are considered as
stable; otherwise they are considered unstable. HLM data was
retrieved from the ChEMBL database, manually curated the
data, and classified compounds as stable or unstable based on
the reported half-life (T1/2 > 30 min was considered stable,
and T1/2 < 30 min unstable. The final dataset contained 3,654
compounds. Of these, 2,313 compounds were classified as
stable and 1,341 and compounds were classified as unstable
Table 3.42

Cytochrome P450 enzyme (CYP) inhibition: CYPs constitute
a superfamily of proteins that play an important role in the
metabolism and detoxification of xenobiotics5!. In-vitro data
derived from five main drug-metabolizing CYPs—1A2, 3A4,
2D6, 2C9, and 2C19 were used to develop CYP inhibition
models. CYP inhibitors were retrieved from PubChem and
classified a compound with an ICso < 10 uM for an enzyme as
an inhibitor of the enzyme. Predictions for the following
enzymes have been provided CYP1A2, CYP3A4, CYP2D6,
CYP2C9, and CYP2C19 Table 3.

Membrane Transporters

BBB: Blood-Brain Barrier (BBB) is a highly selective barrier
that separates the circulating blood from the central nervous
system. vNN-based BBB model was developed, using 352
compounds whose BBB permeability values (logBB) were
obtained from the literature respectively.3447 Classified
compounds with logBB values of less than -0.3 and greater
than +0.3 as BBB non-permeable and permeable Table 3, (Fig.
4).

Pgp Substrates and Inhibitors: P-glycoprotein (Pgp) is an
essential cell membrane protein that extracts many foreign
substances from the cell. Cancer cells often overexpress Pgp,
which increases the efflux of chemotherapeutic agents from
the cell and prevents treatment by reducing effective
intracellular concentrations of such agents - a phenomenon
known as MDR. For this reason, identifying compounds that
can either be transported out of the cell by Pgp (substrates) or
impair Pgp function (inhibitors) is of great interest. Models
were developed to predict both Pgp substrates and Pgp
inhibitors.#¢ The Pgp substrate dataset was collected by Hou
and co-workers.#3 The dataset consists of measurements of
4272 substrates and 400 non-substrates. To generate a large
Pgp inhibitor dataset, we combined two datasets,*+4>and
removed duplicates to form a combined dataset consisting of a
training set of 1,319 inhibitors and 937 non-inhibitors Table 3.

hERG (Cardiotoxicity): The human ether-a-go-go-related
gene (hERG) codes for a potassium ion channel involved in the
normal cardiac repolarization activity of the heart. Drug-
induced blockade of hERG function can cause long QT
syndrome, which may result in arrhythmia and death. 282
known hERG blockers were retrieved from the literature and
classified compounds with an ICso cut-off value of 10 pM or
less as blockers.38 A set of 404 collected compounds with
ICso values greater than 10 uM from ChEMBL and classified
them as non-blockers Table 3.

MMP (Mitochondrial Toxicity): Given the fundamental role
of mitochondria in cellular energetics and oxidative stress,
mitochondrial dysfunction has been implicated in cancer,
diabetes, neurodegenerative disorders, and cardiovascular
diseases. Largest dataset of chemical-induced changes in
mitochondrial membrane potential (MMP) were used based
on the assumption that a compound that causes mitochondrial
dysfunction is also likely to reduce the MMP40. vNN-based
MMP prediction model was developed, using 6,261
compounds collected from a previous study that screened a
library of 10,000 compounds (~8,300 unique chemicals) at 15
concentrations, each in triplicate, to measure changes in the
MMP in HepG2 cells.10 Based on the data obtained, it is
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concluded that 913 compounds decreased the MMP, whereas
5,395 compounds had no effect Table 3.

Mutagenicity (Ames test): Mutagens are chemicals that cause
abnormal genetic mutations leading to cancer. A common way
to assess a chemical’s mutagenicity is the Ames test. A
prediction model was developed, using a literature dataset of
6,512 compounds, of which 3,503 were Ames-positive Table 3.

Maximum Recommended Therapeutic Dose (MRTD):
Maximum Recommended Therapeutic Dose (MRTD) is an
estimated upper daily dose that is safe. A prediction model
was built based on a dataset of MRTD values publically
disclosed by FDA, mostly of single-day oral doses for an
average adult with a body weight of 60 kg, for 1,220
compounds (most of which are small organic drugs).
Organometallics, high-molecular weight polymers were
excluded (>5,000 Da), nonorganic chemicals, mixtures of
chemicals, and very small molecules (<100 Da). An external
test set of 160 compounds that were collected were used for
validation. The total dataset for our model contained 1,185
compounds. The predicted MRTD value is reported in mg/day
unit based upon an average adult weighing 60 kg. Overall
performance measures of VNN models for PBNPs from PMELE
is shown in Fig. 5 and the summary of ADMET properties of
PBNPs (C1-C8) from PMELE is given in Table 4.

CONCLUSION

Exploring the nutritional, phytochemical and pharmacological
potential and food usages drives the hunt for bioactive
molecules from plant sources.5253 In the present study eight
bioactive compounds has been isolated from ethanolic leaf
extracts of P. minima. The compounds were ADMET predicted
for their potential activity, calculated values for molecular
properties of all the molecules where within the functional
range. Likewise, bioactivity score for all the selected
compounds were within the permissible range. Predicted drug
score for all the bioactive molecules were within the
consumable range. Overall data depict that these compounds
may be used as a potential source of natural lead molecules for
next generation drug design development and therapies.
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Figure 1: Range of Bioactive Compounds in PMELE

Table 1a: GCMS analysis of Bioactive Compounds in PMELE

S.No RT COMPOUND MF MW PA (%)
(min)

1. 23.757 Dodecanoic acid, methyl ester C13H2602 214.34 21.85
2. 26.148 Dodecanoic acid C12H2402 200.32 9.06
38 28.392 Methyl tetradecanoate C15H3002 242.40 11.43
4, 32.479 Hexadecanoic acid, methyl ester C17H3402 270.50 7.85
5. 34.028 n-Hexadecanoic acid C16H3202 256.42 4.47
6. 35.812 trans-13-Octadecenoic acid, methyl ester C19H3602 296.50 7.45
7. 36.27 Methyl stearate C19H3802 298.50 3.11
8. 41.908 (2,3-Diphenylcyclopropyl) methyl phenyl sulfoxide, Z, C22H200S 332.50 10.64

Table 1b: IUPAC, CID and SMILES of Bioactive Compounds in PMELE

IUPAC Name of Compound CID Canonical SMILES

Dodecanoic acid, methyl ester 8139 CCCCCCCeeeec(=0)oc

Dodecanoic acid 3893 CCCCCceceeecc(=0)o

Methyl tetradecanoate 31284 CCCCccceeeceeccc(=0)oc

Hexadecanoic acid, methyl ester 8181 CCCCCcceceececccccc(=0)oc

n-Hexadecanoic acid 985 CCcccceceecceccccce(=0)o

trans-13-Octadecenoic acid, methyl ester 5364506 CCCC/C=C/Cccceeeeececce(=0)oc

Methyl stearate 8201 CCccececceeccceccccec(=0)oc

(2,3-Diphenylcyclopropyl) methyl phenyl sulfoxide, Z, 562543 C1=CC=C(C=C1)C2C(C2C3=CC=CC=C3)CS(=0)C4=CC=CC=C4

Table 2a: Biomolecular properties attributes of Methyl dodecanoate

originalSMILES CCCCCCCCCCCC(=0)0C
miSMILES: CCCCCCCCCCCC(=0)0C

Molecular Properties

Calculated Values

miLogP 5.35
TPSA 26.30
Natoms 15
MW 214.35
nON 2
nOHNH 0
Nviolations 1
Nrotb 11
volume 214.74
Biological Properties Bioactivity Scores
GPCR ligand -0.41
Ion channel modulator -0.13
Kinase inhibitor -0.73
Nuclear receptor ligand -0.43
Protease inhibitor -0.46
Enzyme inhibitor -0.11
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Table 2b: Biomolecular properties attributes of Lauric acid

originalSMILES CCCCCCCCCCCC(=0)0
miSMILES: CCCCCCCCCCCC(=0)0

Molecular Properties

Calculated Values

miLogP 5.04
TPSA 37.30
Natoms 14
MW 200.32
nON 2
nOHNH 1
Nviolations 1
Nrotb 10
volume 224.22
Biological Properties Bioactivity Scores
GPCR ligand -0.27
Ion channel modulator -0.04
Kinase inhibitor -0.75
Nuclear receptor ligand -0.24
Protease inhibitor -0.36
Enzyme inhibitor 0.04

Table 2c: Biomolecular properties attributes of Methyl tetradecanoate

original SMILES CCCCCCCCCCCCCC(=0)0C
miSMILES: CCCCCCCCCCCCCC(=0)0C

Molecular Properties

Calculated Values

miLogP 6.36
TPSA 26.30
Natoms 17
MW 242.40
nON 2
nOHNH 0
Nviolations 1
Nrotb 13
volume 275.35
Biological Properties Bioactivity Scores
GPCR ligand -0.24
Ion channel modulator -0.07
Kinase inhibitor -0.51
Nuclear receptor ligand -0.24
Protease inhibitor -0.28
Enzyme inhibitor -0.02

Table 2d: Biomolecular properties attributes of trans-13-Octadecenoic acid, methyl ester

originalSMILES CCCCCCCCCCCCCCCC(=0)0cC
miSMILES: CCCCCCCCCCCeccec(=0)oc
Methyl palmitate

Molecular Properties

Calculated Values

miLogP 7.37
TPSA 26.30
Natoms 19
MW 270.46
nON 2
nOHNH 0
Nviolations 1
Nrotb 15
volume 308.95
Biological Properties Bioactivity Scores
GPCR ligand -0.11
Ion channel modulator -0.05
Kinase inhibitor -0.34
Nuclear receptor ligand -0.09
Protease inhibitor -0.13
Enzyme inhibitor -0.04
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Molecular Properties

Calculated Values

miLogP 7.06
TPSA 37.30
Natoms 18
originalSMILES CCCCCCCCCCCCCCCC(=0)0 MW 256.43
miSMILES: CCCCCCCCCCCCCCCC(=0)0 nON 2
nOHNH 1
Nviolations 1
Nrotb 14
volume 291.42
Biological Properties Bioactivity Scores
GPCR ligand 0.02
Ion channel modulator 0.06
Kinase inhibitor -0.33
Nuclear receptor ligand 0.08
Protease inhibitor -0.04
Enzyme inhibitor 0.18

Table 2f: Biomolecular properties attributes of trans-13-Octadecenoic acid, methyl ester

Molecular Properties

Calculated Values

miLogP 7.89
TPSA 26.30
Natoms 21
MW 296.50
originalSMILES CCCC/C=C/CCCCCCCCCCCC(=0)0C nON 2
miSMILES: CCCC/C=C/CCCccceeececcec(=0)oc nOHNH 0
Nviolations 1
Nrotb 16
volume 336.37
Biological Properties Bioactivity Scores
GPCR ligand 0.03
Ion channel modulator -0.03
Kinase inhibitor -0.25
Nuclear receptor ligand 0.06
Protease inhibitor -0.02
Enzyme inhibitor 0.12

Table 2g: Biomolecular properties attributes of Methyl stearate

Molecular Properties

Calculated Values

miLogP 8.32
TPSA 26.30
Natoms 21
MW 298.51
original SMILES CCCCCCCCCCCCCCeeCc(=0)ocC nON 2
miSMILES: CCCCCCCCCCCCCeeecc(=0)oc nOHNH 0
Nviolations 1
- Nrotb 17
{ volume 342.55
Biological Properties Bioactivity Scores
GPCR ligand -0.03
Ion channel modulator -0.04
Kinase inhibitor -0.23
Nuclear receptor ligand 0.00
Protease inhibitor -0.03
Enzyme inhibitor 0.05
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Table 2h: Biomolecular properties attributes of (2,3 Diphenylcyclopropyl)methyl phenyl sulfoxide

originalSMILES Molecula-r Properties Calculated Values
C1=CC=C(C=C1)C2C(C2C3=CC=CC=C3)CS(=0)C4=CC=C miLogP 4.32
C=C4 TPSA 17.07
miSMILES: Natoms 24
C1=CC=C(C=C1)C2C(C2C3=CC=CC=C3)CS(=0)C4=CC=C MW 332.47
C=C4 nON 1
nOHNH 0
Nviolations 0
¢ Nrotb 5
€ / volume 308.98
Biological Properties Bioactivity Scores
¢ GPCR ligand 0.15
Ion channel modulator 0.08
Kinase inhibitor 0.10
Nuclear receptor ligand 0.01
. Protease inhibitor 0.27
Enzyme inhibitor 0.20
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Figure 2: Swiss ADME bioavailability radar reports for P. minima PBNPs
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Figure 3: NaPLeS - Natural Product Likeness Score for PBNPs from P. minima
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Figure 4: BOILED-Egg model for bioactive compounds from P. minima
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Figure 5: Performance measures of vNN models for PBNPs from PMELE

ISSN: 2250-1177 [199] CODEN (USA): JDDTAO



Ramya et al

Journal of Drug Delivery & Therapeutics. 2022; 12(5):188-200

Table 3: Performance measures of vNN models in 10-fold cross validation using a restricted or unrestricted applicability
domain for PBNPs from PMELE

Model Data2 do? he Accuracy Sensitivity Specificity kappa Rd Coverage
DILI 1427 0.60 0.50 0.71 0.70 0.73 0.42 0.66
1.00 0.20 0.67 0.62 0.72 0.34 1.00
Cytotox (hep2g) 6097 0.40 0.20 0.84 0.88 0.76 0.64 0.89
1.00 0.20 0.84 0.73 0.89 0.62 1.00
HLM 3219 0.40 0.20 0.81 0.72 0.87 0.59 091
1.00 0.20 0.81 0.70 0.87 0.57 1.00
CYP1A2 7558 0.50 0.20 0.90 0.70 0.95 0.66 0.75
1.00 0.20 0.89 0.61 0.95 0.60 1.00
CYP2C9 8072 0.50 0.20 091 0.55 0.96 0.54 0.76
1.00 0.20 0.90 0.44 0.96 0.46 1.00
CYP2C19 8155 0.55 0.20 0.87 0.64 0.93 0.58 0.76
1.00 0.20 0.86 0.52 0.94 0.50 1.00
CYP2D6 7805 0.50 0.20 0.89 0.61 0.94 0.57 0.75
1.00 0.20 0.88 0.52 0.95 0.51 1.00
CYP3A4 10373 0.50 0.20 0.88 0.76 0.92 0.68 0.78
1.00 0.20 0.88 0.69 0.93 0.64 1.00
BBB 353 0.60 0.20 0.90 0.94 0.86 0.80 0.61
1.00 0.10 0.82 0.88 0.75 0.64 1.00
Pgp Substrate 822 0.60 0.20 0.79 0.80 0.79 0.58 0.66
1.00 0.20 0.73 0.73 0.74 0.47 1.00
Pgp Inhibitor 2304 0.50 0.20 0.85 091 0.73 0.66 0.76
1.00 0.10 0.81 0.86 0.74 0.61 1.00
hERG 685 0.70 0.70 0.84 0.84 0.83 0.68 0.80
1.00 0.20 0.82 0.82 0.83 0.64 1.00
MMP 6261 0.50 0.40 0.89 0.64 0.94 0.61 0.69
1.00 0.20 0.87 0.52 0.94 0.50 1.00
AMES 6512 0.50 0.40 0.82 0.86 0.75 0.62 0.79
1.00 0.20 0.79 0.82 0.75 0.57 1.00
MRTDe 1184 0.60 0.20 0.79 0.69
1.00 0.20 0.74 1.00

aNumber of compounds in the dataset; "Tanimoto-distance threshold value; <Smoothing factor; “Pearson’s correlation coefficient ; ¢Regression model

Table 4: Summary of ADMET properties of PBNPs (C1-C8) from PMELE

PROPERTY MODEL NAME c1 c2 c3 c4 c5 cé6 c7 c8
| FTYTSeY | Water solubility -5.096 | -4.181 | -6.109 | -6.927 | -5562 | -7.436 | -7.51 | -6.343
Caco2 permeability 1.604 | 1562 | 1.602 1.6 1558 | 1.605 | 1.598 | 1.358
| TS ey | Intestinal absorption (human) 93.709 | 93.379 | 93.022 | 92335 | 92.004 | 92.154 | 91.648 | 96.826
Skin Permeability -1.844 | -2.693 | -2.244 | -2595 | -2.717 | -2.758 | -2.792 | -2.698
P-glycoprotein substrate No No No No No No No Yes
m P-glycoprotein I inhibitor No No No No No No No Yes
P-glycoprotein II inhibitor No No No No No Yes Yes Yes
VDss (human) 0.256 | -0.631 | 0311 | 0334 | -0.543 | 0.299 0.325 | 0.264
Fraction unbound (human) 0.23 0.26 0.142 | 0.074 | 0.101 | 0.027 | 0.027 0.04
BBB permeability 0674 | 0057 | 0711 | 0749 | -0.111 | 0.777 | 0.787 | 0.898
CNS permeability -1.897 | -2.034 | -1.788 | -1.678 | -1.816 | -1.516 | -1.569 | -1.039
CYP2D6 substrate No No No No No No No No
CYP3A4 substrate No No Yes Yes Yes Yes Yes Yes
CYP1A2 inhibitior No No Yes Yes No Yes Yes Yes
CYP2C19 inhibitior No No No No No No No Yes
CYP2C9 inhibitior No No No No No No No Yes
CYP2D6 inhibitior No No No No No No No No
CYP3A4 inhibitior No No No No No No No No
Total Clearance 1.724 1.623 1.793 1.861 1.763 1.978 1.929 0.24
Renal OCT2 substrate No No No No No No No No
Toxicity] AMES toxicity No No No No No No No Yes
Max. tolerated dose (human) 0351 | -034 | 0257 | 0.178 | -0.708 | 0.04 0.099 | 0.454
hERG I inhibitor No No No No No No No No
Toxicity| hERG II inhibitor No No No No No No No Yes
Oral Rat Acute Toxicity (LD50) 1661 | 1511 | 1.636 | 1.635 1.44 1637 | 1.656 | 3.143
Oral Rat Chronic Toxicity (LOAEL) 2.707 2.89 2851 | 2998 | 3.181 | 3.075 | 3.147 | 0.488
Toxicity| Hepatotoxicity No No No No No No No Yes
Skin Sensitisation Yes Yes Yes Yes Yes Yes Yes No
T.Pyriformis toxicity 2.047 | 0954 | 2208 | 1.935 0.84 1529 | 1.448 0.38
[ioetata, | Minnow toxicity -0.374 | -0.084 | -0.891 | -1.373 | -1.083 | -1.727 | -1.854 | -0.561
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