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Abstract 
____________________________________________________________________________________________________________ 

Physalis minima (PM) belongs to the family Solanaceae. PM has been traditionally used to cure 
and prevent several disorders as documented in Vedic Texts. Nevertheless, scientific values of 
traditional claims haven't been explored yet. In the previous study, GCMS analysis of P. 
minima ethanolic leaf extracts (PMELE) indicated the presence of Cyclobutanol (C4H8O); D-
Alanine (C3H7O2N); 2-Heptanol, 6-Amino-2-Methyl (C8H19ON); 1-Pentanol, 4-Amino 
(C5H13NO); Benzeneethanamine, 3-Fluoro-Beta.,5-Dihydroxy-N-Methyl (C9H12FNO2) and L-
Alanine, N-(N-Acetylglycyl)-, Butyl Ester (C11H20N2O4). However, biological activities of these 
bioactive compounds are not known which hampers the exploitation of these compounds by 
pharma-industries on a commercial scale. This study on ADMET, Pharmacokinetics, Drug-
likeness and Medicinal Chemistry of Bioactive Compounds in PMELE aims to provide baseline 
information on PBNPs as a potential source of natural lead molecules for next generation 
drug design, development and therapeutics. 

Keywords: PM-PBNPs; ADMET; PMELE; Pharmacokinetics; Drug-likeness; Drug 
Development; Bioactive Compounds 

 

INTRODUCTION 

Secondary metabolite in plants collectively known as Plant 
Based Natural Products (PBNPs) plays a vital role in human 
existence and they are considered as foundation of Traditional 
Indigenous Systems of Medicine (TISM)1,2. Unlike the synthetic 
drugs that are used for the treatment of various infectious 
diseases, PBNPs are effective, safe, affordable and are of GRAS 
standard with fewer side effects3. Meanwhile, WHO has also 
recognized the importance of TISM and has laid strategies, 
guidelines and standards for the use of Plant-Based Medicine4. 
This boils down to the fact that medicinal plants are base-
resources of new drugs and many of the modern medicines 
are produced based on the natural chemistry of PBNPs. In 
recent times, there have been increased interests in research 
on PBNPs. This is attributed to unmet therapeutic needs, 

remarkable diversity structure and functionality of PBNPs, 
advancement in the field of computing technologies - AI and 
ML to hunt for PBNPs5, therefore, Pharmaceutical Giants are 
adopting data mining and AI&ML technologies to reduce time 
and cost required for R&D program6-12.  

Alternatively, development of novel and sensitive techniques 
to detect biologically active PBNPs, advanced techniques to 
isolate, purify and structurally characterize PBNPs, and 
advances to meet out demand-supply aspects of PBNPs have 
prompted interest in development and promotion of herbal 
drugs. In recent years, both combinatorial chemistry and high-
throughput screening platforms have significantly increased 
the number of compounds for which early data on absorption, 
distribution, metabolism, excretion (ADME) and toxicity (T) 
are not available, which has led to the development of a 
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variety of medium and high-throughput in vitro ADMET 
screens for drug development and design with deeper 
dimension with high degree of precision taking into account 
cost economics and time5-19.  

Immense medicinal properties of bioactive compounds from 
Physalis have generated interest in extracting and 
characterizing compounds that its different species possess 
and identifying the active withanolides responsible for their 
unique medicinal properties20-23. It has been pointed out that 
withanolides are intriguing principal compounds for 
inflammatory, neuro-inflammatory and cancer treatment due 
to unique steroidal structure and specific bioactivities23.  

MATERIALS AND METHODS 

In silico Drug-Likeliness and Bioactivity Prediction 

The drug likeliness and bioactivity of selected molecule was 
analyzed using the Molinspiration server 
(http://www.molinspiration.com). Molinspiration tool is 
cheminformatics software that provides molecular properties 
as well as bioactivity prediction of compounds24. In 
Molinspiration-based drug-likeness analysis, there are two 
important factors, including the lipophilicity level (log P) and 
polar surface area (PSA) directly associated with the 
pharmacokinetic properties (PK) of the compounds25. In 
Molinspiration-based bioactivity analysis, the calculation of 
the bioactivity score of compounds toward GPCR ligands, ion 
channel modulators, kinase inhibitors, nuclear receptor 
ligands, protease inhibitors, and other enzyme targets were 
analyzed by Bayesian statistics26,27. This was carried out for G 
protein-coupled receptors (GPCR), ion channels, kinases, 
nuclear hormone receptors, proteases, and other enzymes 
(RdRp), are the major drug targets of most of the drugs28. 

In silico ADMET Analysis 

SwissADME: is a Web tool that gives free access to a pool of 
fast yet robust predictive models for physicochemical 
properties, pharmacokinetics, druglikeness and medicinal 
chemistry friendliness, among which in-house proficient 
methods such as iLOGP (a physics-based model for 
lipophilicity) or the BOILED-Egg (an intuitive graphical 
classification model for gastrointestinal absorption and brain 
access). It is the first online tool that enables ADME-related 
calculation for multiple molecules, allowing chemical library 
analysis and efficient lead optimization29. PK properties, such 
as Absorption, Distribution, Metabolism, Excretion, and 
Toxicity (ADMET), of fatty acids were predicted using 
admerSAR v2.0 server 
(http://lmmd.ecust.edu.cn/admetsar2/) and The admerSAR 
server is an open-source computational tool for prediction of 
ADMET properties of compounds, which makes it a practical 
platform for drug discovery and other pharmacological 
research30.  

In ADMET analysis, absorption (A) of good drugs depends on 
factors such as membrane permeability31 [designated by colon 
cancer cell line (Caco-2)], human intestinal absorption (HIA)32, 
and status of either P-glycoprotein substrate or inhibitor33. 
Distribution (D) of drugs mainly depends on the ability to 
cross blood-brain barrier (BBB)34. The metabolism (M) of 
drugs is calculated by the CYP, MATE1, and OATP1B1-
OATP1B3 models35. Excretion (E) of drugs is estimated based 
on the renal OCT substrate. Toxicity (T) of drugs is predicted 
on Human Ether-A-Go-Go related gene inhibition, carcinogenic 
status, mutagenic status, and acute oral toxicity36. 

vNN model building and analysis 

vNN method was used to calculate the similarity distance 
between molecules in terms of their structure, and uses a 
distance threshold to define a domain of applicability to 

ensures that the predictions generated are reliable. vNN 
models can be built keeping quantitative structure–activity 
relationship (QSAR) models up-to-date to maintain their 
performance levels. Performance characteristics of the models 
are comparable, and often superior to those of other more 
elaborate model.38-49 One of the most widely used measures of 
similarity distance between two small molecules is Tanimoto 
distance, d, which is defined as: 

 

where n(P∩Q) is number of features common to molecules p 
and q, and n(P) and n(Q) are the total numbers of features for 
molecules p and q, respectively. The predicted biological 
activity y is given by a weighted across structurally similar 
neighbours: 

 

where di denotes Tanimoto distance between a query 
molecule for which a prediction is made and a molecule i of 
the training set; d0 is a Tanimoto-distance threshold, beyond 
which two molecules are no longer considered to be 
sufficiently similar to be included in the average; yi is the 
experimentally measured activity of molecule i; v denotes the 
total number of molecules in the training set that satisfies the 
condition di≤d0; and h is a smoothing factor, which dampens 
the distance penalty. Values of h and d0 are determined from 
cross-validation studies. To identify structurally similar 
compounds, Accelrys Extended-Connectivity FingerPrints with 
a diameter of four chemical bonds (ECFP4) were used38-40. 

Model Validation 

A 10-fold cross-validation (CV) procedure was used to validate 
new models and to determine the values of smoothing factor h 
and Tanimoto distance d0. In this procedure, data was 
randomly divided into 10 sets, and used 9 to develop the 
model and 10th to validate it, this process was repeated 10 
times, leaving each set of molecules out once. 

Performance Measures 

Following metrics were used to assess model performance. (1) 
sensitivity measures a model’s ability to correctly detect true 
positives, (2) specificity measures a model’s ability to detect 
true negatives, (3) accuracy measures a model’s ability to 
make correct predictions and (4) kappa compares the 
probability of correct predictions to the probability of correct 
predictions by chance (its value ranges from +1 (perfect 
agreement between model prediction and experiment) to –1 
(complete disagreement), with 0 indicating no agreement 
beyond that expected by chance). 
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where TP, TN, FP, and FN denote the numbers of true 
positives, true negatives, false positives, and false negatives, 
respectively. Kappa is a metric for assessing the quality of 
binary classifiers. Pr (e) is an estimate of the probability of a 
correct prediction by chance. It is calculated as: 

 

The coverage is the proportion of test molecules with at least 
one nearest neighbour that meets the similarity criterion. The 
coverage is a measure of how many test compounds are within 
the applicability domain of a prediction model37-40. OSIRIS 
Property Explorer an integral part of Actelion's in-house 
substance registration system was used to calculate on-the-fly 
various drug-relevant properties for drawn chemical 
structures, including some toxicity and druglikeness 
properties. 

RESULTS AND DISCUSSION 

GCMS analysis ethanolic leaf extracts of P. minima indicated 
the presence of (at RT in min) 2.528 - Cyclobutanol (C4H8O); 
2.598 - D-Alanine (C3H7O2N); 6.145 - 2-Heptanol, 6-Amino-2-
Methyl (C8H19ON); 7.821 - 1-Pentanol, 4-Amino (C5H13NO); 
8.401 - Benzeneethanamine, 3-Fluoro-Beta.,5-Dihydroxy-N-
Methyl (C9H12FNO2); 29.339 - L-Alanine, N-(N-Acetylglycyl)-, 
Butyl Ester (C11H20N2O4) were detected in the ethanolic leaf 
extracts of P. minima respectively (Table 1a, b; Fig. 1). 

Drug-likeness properties of PM-PBNPs  

The drug score value combines all other predictions into one 
grand total. Based on this logic the Score from cLogP: 0.581 
(cLogP = 4.672); Score from logS: 0.847 (logS = -3.286); Score 
from molecular weight: 0.968 (molecular weight 214.0); Score 
from drug-likeness: 0.0 (drug-likeness = 35.364); No Risk of 
Mutagenicity Score = 1.0; No Risk of Tumorigenicity Score = 
1.0; No Risk of Irritating Effects Score = 1.0; No Risk of 
Reproductive Effects Score = 1.0 respectively were predicted 
and the overall predicted drug score for compound 1 was 
calculated as 0.359. Score from cLogP: 0.680 (cLogP = 4.244); 
Score from logS: 0.863 (logS = -3.158); Score from molecular 
weight: 0.973 (molecular weight 200.0); Score from drug-
likeness: 0.0 (drug-likeness = 25.215); No Risk of Mutagenicity 
Score = 0.6; No Risk of Tumorigenicity Score = 0.6; No Risk of 
Irritating Effects Score = 0.6; No Risk of Reproductive Effects 
Score = 1.0 respectively were predicted and the overall 
predicted drug score for compound 2 was calculated as 0.083.  

Score from cLogP: 0.358 (cLogP = 5.581); Score from logS: 
0.763 (logS = -3.826); Score from molecular weight: 0.956 
(molecular weight 242.0); Score from drug-likeness: 0.0 (drug-
likeness = 35.364); No Risk of Mutagenicity Score = 1.0; No 
Risk of Tumorigenicity Score = 1.0; No Risk of Irritating Effects 
Score = 1.0; No Risk of Reproductive Effects Score = 1.0 
respectively were predicted and the overall predicted drug 
score for compound 3 was calculated as 0.293. Score from 
cLogP: 0.183 (cLogP = 6.49); Score from logS: 0653 (logS = -
4.366); Score from molecular weight: 0.94 (molecular weight 
270.0); Score from drug-likeness: 0.0 (drug-likeness = 
35.364); No Risk of Mutagenicity Score = 1.0; No Risk of 
Tumorigenicity Score = 1.0; No Risk of Irritating Effects Score 
= 1.0; No Risk of Reproductive Effects Score = 1.0 respectively 
were predicted and the overall predicted drug score for 
compound 4 was calculated as 0.237.  

Score from cLogP: 0.256 (cLogP = 6.062); Score from logS: 
0.681 (logS = -4.239); Score from molecular weight: 0.949 

(molecular weight 256.0); Score from drug-likeness: 0.0 (drug-
likeness = 25.215); No Risk of Mutagenicity Score = 1.0; No 
Risk of Tumorigenicity Score = 0.6; No Risk of Irritating Effects 
Score = 0.6; No Risk of Reproductive Effects Score = 1.0 
respectively were predicted and the overall predicted drug 
score for compound 5 was calculated as 0.092. Score from 
cLogP: 0.104 (cLogP = 7.147); Score from logS: 0.579 (logS = -
4.678); Score from molecular weight: 0.920 (molecular weight 
296.0); Score from drug-likeness: 0.0 (drug-likeness = -
30.917); No Risk of Mutagenicity Score = 1.0; No Risk of 
Tumorigenicity Score = 1.0; No Risk of Irritating Effects Score 
= 1.0; No Risk of Reproductive Effects Score = 1.0 respectively 
were predicted and the overall predicted drug score for 
compound 6 was calculated as 0.209.  

Score from cLogP: 0.083 (cLogP = 7.399); Score from logS: 
0.523 (logS = -4.906); Score from molecular weight: 0.918 
(molecular weight 298.0); Score from drug-likeness: 0.0 (drug-
likeness = 35.364); No Risk of Mutagenicity Score = 1.0; No 
Risk of Tumorigenicity Score = 1.0; No Risk of Irritating Effects 
Score = 1.0; No Risk of Reproductive Effects Score = 1.0 
respectively were predicted and the overall predicted drug 
score for compound 7 was calculated as 0.197. Score from 
cLogP: 0.384 (cLogP = 5.469); Score from logS: 0.647 (logS = -
4.428); Score from molecular weight: 0.882 (molecular weight 
= 332.0); Score from drug-likeness: 0.0 (drug-likeness = -
7525); No Risk of Mutagenicity Score = 1.0; No Risk of 
Tumorigenicity Score = 1.0; No Risk of Irritating Effects Score 
= 1.0; No Risk of Reproductive Effects Score = 1.0 respectively 
were predicted and the overall predicted drug score for 
compound 8 was calculated as 0.267.  

Bio-molecular properties of PM-PBNPs 

Calculated value for molecular properties of compound 1 were 
(values given in parenthesis) - miLogP (5.35); TPSA (26.30); 
Natoms (15); MW (214.35); nON (2); nOHNH (0); Nviolations 
(1); Nrotb (11); volume (214.74) respectively; and the 
calculated bioactivity scores for biological properties were - 
GPCR ligand (-0.41); Ion channel modulator (-0.13); Kinase 
inhibitor (-0.73); Nuclear receptor ligand (-0.43); Protease 
inhibitor (-0.46); Enzyme inhibitor (-0.11) respectively (Table 
2a). Calculated value for molecular properties of the 
compound 2 were - miLogP (5.04); TPSA (37.30); Natoms 
(14); MW (200.32); nON (2); nOHNH (1); Nviolations (1); 
Nrotb (10); volume (224.22) respectively; and the calculated 
bioactivity scores for biological properties were - GPCR ligand 
(-0.27); Ion channel modulator (-0.04); Kinase inhibitor (-
0.75); Nuclear receptor ligand (-0.24); Protease inhibitor (-
0.36); Enzyme inhibitor (0.04) respectively (Table 2b). 

Calculated value for molecular properties of the compound 3 
were - miLogP (6.36); TPSA (26.30); Natoms (17); MW 
(242.40); nON (2); nOHNH (0); Nviolations (1); Nrotb (13); 
volume (275.35) respectively; and the calculated bioactivity 
scores for biological properties were - GPCR ligand (-0.24); Ion 
channel modulator (-0.07); Kinase inhibitor (-0.51); Nuclear 
receptor ligand (-0.24); Protease inhibitor (-0.28); Enzyme 
inhibitor (-0.02) respectively (Table 2c). Calculated value for 
molecular properties of the compound 4 were - miLogP (7.37); 
TPSA (26.30); Natoms (19); MW (270.46); nON (2); nOHNH 
(0); Nviolations (1); Nrotb (15); volume (308.95) respectively; 
and the calculated bioactivity scores for biological properties 
were - GPCR ligand (-0.11); Ion channel modulator (-0.05); 
Kinase inhibitor (-0.34); Nuclear receptor ligand (-0.09); 
Protease inhibitor (-0.13); Enzyme inhibitor (-0.04) 
respectively (Table 2d).  

Calculated value for molecular properties of the compound 5 
were - miLogP (7.06); TPSA (37.30); Natoms (18); MW 
(256.43); nON (2); nOHNH (1); Nviolations (1); Nrotb (14); 
volume (291.42) respectively; and the calculated bioactivity 
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scores for biological properties were - GPCR ligand (0.02); Ion 
channel modulator (0.06); Kinase inhibitor (-0.33); Nuclear 
receptor ligand (0.08); Protease inhibitor (-0.04); Enzyme 
inhibitor (0.18) respectively (Table 2e). Calculated value for 
molecular properties of the compound 6 were - miLogP (7.89); 
TPSA (26.30); Natoms (21); MW (296.50); nON (2); nOHNH 
(0); Nviolations (1); Nrotb (16); volume (336.37) respectively; 
and the calculated bioactivity scores for biological properties 
were - GPCR ligand (0.03); Ion channel modulator (-0.03); 
Kinase inhibitor (-0.25); Nuclear receptor ligand (0.06); 
Protease inhibitor (-0.02); Enzyme inhibitor (0.12) 
respectively (Table 2f). 

Calculated value for molecular properties of the compound 7 
were - miLogP (8.32); TPSA (26.30); Natoms (21); MW 
(298.51); nON (2); nOHNH (0); Nviolations (1); Nrotb (17); 
volume (342.55) respectively; and the calculated bioactivity 
scores for biological properties were - GPCR ligand (-0.03); Ion 
channel modulator (-0.04); Kinase inhibitor (-0.23); Nuclear 
receptor ligand (0.00); Protease inhibitor (-0.03); Enzyme 
inhibitor (0.05) respectively (Table 2g). Calculated value for 
molecular properties of the compound 8 were - miLogP (4.32); 
TPSA (17.07); Natoms (24); MW (332.47); nON (1); nOHNH 
(0); Nviolations (0); Nrotb (5); volume (308.98) respectively; 
and the calculated bioactivity scores for biological properties 
were - GPCR ligand (0.15); Ion channel modulator (0.08); 
Kinase inhibitor (0.10); Nuclear receptor ligand (0.01); 
Protease inhibitor (0.27); Enzyme inhibitor (0.20) respectively 
(Table 2h). The pink area (Fig. 2) represents the optimal 
range for each property (lipophilicity: XLOGP3 between −0.7 
and +5.0, size: MW between 150 and 500 g/mol, polarity: 
TPSA between 20 and 130 Å2, solubility: log S not higher than 
6, saturation: fraction of carbons in the sp3 hybridization not 
less than 0.25, and flexibility: no more than 9 rotatable bonds). 
The overall Natural Product Likeness Score for PBNPs from P. 
minima is shown in Fig. 3 

ADMET and Pharmacokinetic properties of PM-PBNPs  

Absorption, Distribution, Metabolism, Excretion and Toxicity 
(ADMET) prediction models, including their performance 
measures as discussed in previous studies. 15 models cover a 
diverse set of ADMET endpoints. Some of the models have 
already been published, including those for Maximum 
Recommended Therapeutic Dose (MRTD), chemical 
mutagenicity, human liver microsomal (HLM), Pgp inhibitor/ 
substrates.42 

Liver Toxicity 

DILI: Drug-induced liver injury (DILI) has been one of the 
most commonly cited reason for drug withdrawals from the 
market. This application predicts whether a compound could 
cause DILI. The dataset of 1,431 compounds was obtained 
from four sources used by Xu et al.48 This dataset contains 
both pharmaceuticals and non-pharmaceuticals; classified as 
compound as causing DILI if it was associated with a high risk 
of DILI and not if there was no such risk Table 3. 

Cytotoxicity (HepG2): Cytotoxicity is the degree to which a 
chemical causes damage to cells. Cytotoxicity prediction model 
was developed, using in vitro data on toxicity against HepG250 
cells for 6,000 structurally diverse compounds, collected from 
ChEMBL for compounds with an IC50 ≤ 10 μM in the in vitro 
assay as cytotoxic Table 3. 

Metabolism 

HLM: Human Liver Microsomal (HLM)42 stability assay is 
commonly used to identify and exclude compounds that are 
too rapidly metabolized. For a drug to achieve effective 
therapeutic concentrations in the body, it cannot be 
metabolized too rapidly by the liver. Compounds with a half-

life of 30 min or longer in an HLM assay are considered as 
stable; otherwise they are considered unstable. HLM data was 
retrieved from the ChEMBL database, manually curated the 
data, and classified compounds as stable or unstable based on 
the reported half-life (T1/2 > 30 min was considered stable, 
and T1/2 < 30 min unstable. The final dataset contained 3,654 
compounds. Of these, 2,313 compounds were classified as 
stable and 1,341 and compounds were classified as unstable 
Table 3.42 

Cytochrome P450 enzyme (CYP) inhibition: CYPs constitute 
a superfamily of proteins that play an important role in the 
metabolism and detoxification of xenobiotics51. In-vitro data 
derived from five main drug-metabolizing CYPs—1A2, 3A4, 
2D6, 2C9, and 2C19 were used to develop CYP inhibition 
models. CYP inhibitors were retrieved from PubChem and 
classified a compound with an IC50 ≤ 10 μM for an enzyme as 
an inhibitor of the enzyme. Predictions for the following 
enzymes have been provided CYP1A2, CYP3A4, CYP2D6, 
CYP2C9, and CYP2C19 Table 3. 

Membrane Transporters 

BBB: Blood-Brain Barrier (BBB) is a highly selective barrier 
that separates the circulating blood from the central nervous 
system. vNN-based BBB model was developed, using 352 
compounds whose BBB permeability values (logBB) were 
obtained from the literature respectively.34,47 Classified 
compounds with logBB values of less than –0.3 and greater 
than +0.3 as BBB non-permeable and permeable Table 3, (Fig. 
4).  

Pgp Substrates and Inhibitors: P-glycoprotein (Pgp) is an 
essential cell membrane protein that extracts many foreign 
substances from the cell. Cancer cells often overexpress Pgp, 
which increases the efflux of chemotherapeutic agents from 
the cell and prevents treatment by reducing effective 
intracellular concentrations of such agents - a phenomenon 
known as MDR. For this reason, identifying compounds that 
can either be transported out of the cell by Pgp (substrates) or 
impair Pgp function (inhibitors) is of great interest. Models 
were developed to predict both Pgp substrates and Pgp 
inhibitors.46 The Pgp substrate dataset was collected by Hou 
and co-workers.43 The dataset consists of measurements of 
422 substrates and 400 non-substrates. To generate a large 
Pgp inhibitor dataset, we combined two datasets,44,45 and 
removed duplicates to form a combined dataset consisting of a 
training set of 1,319 inhibitors and 937 non-inhibitors Table 3. 

hERG (Cardiotoxicity): The human ether-à-go-go-related 
gene (hERG) codes for a potassium ion channel involved in the 
normal cardiac repolarization activity of the heart. Drug-
induced blockade of hERG function can cause long QT 
syndrome, which may result in arrhythmia and death. 282 
known hERG blockers were retrieved from the literature and 
classified compounds with an IC50 cut-off value of 10 μM or 
less as blockers.38 A set of 404 collected compounds with 
IC50 values greater than 10 μM from ChEMBL and classified 
them as non-blockers Table 3. 

MMP (Mitochondrial Toxicity): Given the fundamental role 
of mitochondria in cellular energetics and oxidative stress, 
mitochondrial dysfunction has been implicated in cancer, 
diabetes, neurodegenerative disorders, and cardiovascular 
diseases. Largest dataset of chemical-induced changes in 
mitochondrial membrane potential (MMP) were used based 
on the assumption that a compound that causes mitochondrial 
dysfunction is also likely to reduce the MMP40. vNN-based 
MMP prediction model was developed, using 6,261 
compounds collected from a previous study that screened a 
library of 10,000 compounds (~8,300 unique chemicals) at 15 
concentrations, each in triplicate, to measure changes in the 
MMP in HepG2 cells.10 Based on the data obtained, it is 
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concluded that 913 compounds decreased the MMP, whereas 
5,395 compounds had no effect Table 3. 

Mutagenicity (Ames test): Mutagens are chemicals that cause 
abnormal genetic mutations leading to cancer. A common way 
to assess a chemical’s mutagenicity is the Ames test. A 
prediction model was developed, using a literature dataset of 
6,512 compounds, of which 3,503 were Ames-positive Table 3. 

Maximum Recommended Therapeutic Dose (MRTD): 
Maximum Recommended Therapeutic Dose (MRTD) is an 
estimated upper daily dose that is safe. A prediction model 
was built based on a dataset of MRTD values publically 
disclosed by FDA, mostly of single-day oral doses for an 
average adult with a body weight of 60 kg, for 1,220 
compounds (most of which are small organic drugs). 
Organometallics, high-molecular weight polymers were 
excluded (>5,000 Da), nonorganic chemicals, mixtures of 
chemicals, and very small molecules (<100 Da). An external 
test set of 160 compounds that were collected were used for 
validation. The total dataset for our model contained 1,185 
compounds. The predicted MRTD value is reported in mg/day 
unit based upon an average adult weighing 60 kg. Overall 
performance measures of vNN models for PBNPs from PMELE 
is shown in Fig. 5 and the summary of ADMET properties of 
PBNPs (C1-C8) from PMELE is given in Table 4. 

CONCLUSION 

Exploring the nutritional, phytochemical and pharmacological 
potential and food usages drives the hunt for bioactive 
molecules from plant sources.52,53 In the present study eight 
bioactive compounds has been isolated from ethanolic leaf 
extracts of P. minima. The compounds were ADMET predicted 
for their potential activity, calculated values for molecular 
properties of all the molecules where within the functional 
range. Likewise, bioactivity score for all the selected 
compounds were within the permissible range. Predicted drug 
score for all the bioactive molecules were within the 
consumable range. Overall data depict that these compounds 
may be used as a potential source of natural lead molecules for 
next generation drug design development and therapies. 
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Figure 1: Range of Bioactive Compounds in PMELE 

Table 1a: GCMS analysis of Bioactive Compounds in PMELE 

S.No 
RT 

(min) 
COMPOUND  MF MW PA (%) 

1.  23.757 Dodecanoic acid, methyl ester C13H26O2 214.34 21.85 

2.  26.148 Dodecanoic acid C12H24O2 200.32 9.06 

3.  28.392 Methyl tetradecanoate C15H30O2 242.40 11.43 

4.  32.479 Hexadecanoic acid, methyl ester C17H34O2 270.50 7.85 

5.  34.028 n-Hexadecanoic acid C16H32O2 256.42 4.47 

6.  35.812 trans-13-Octadecenoic acid, methyl ester C19H36O2 296.50 7.45 

7.  36.27 Methyl stearate C19H38O2 298.50 3.11 

8.  41.908 (2,3-Diphenylcyclopropyl) methyl phenyl sulfoxide, Z, C22H20OS 332.50 10.64 

 

Table 1b: IUPAC, CID and SMILES of Bioactive Compounds in PMELE 

IUPAC Name of Compound CID Canonical SMILES 

Dodecanoic acid, methyl ester 8139 CCCCCCCCCCCC(=O)OC 

Dodecanoic acid 3893 CCCCCCCCCCCC(=O)O  

Methyl tetradecanoate 31284 CCCCCCCCCCCCCC(=O)OC 

Hexadecanoic acid, methyl ester 8181 CCCCCCCCCCCCCCCC(=O)OC 

n-Hexadecanoic acid 985 CCCCCCCCCCCCCCCC(=O)O 

trans-13-Octadecenoic acid, methyl ester 5364506 CCCC/C=C/CCCCCCCCCCCC(=O)OC  

Methyl stearate 8201 CCCCCCCCCCCCCCCCCC(=O)OC 

(2,3-Diphenylcyclopropyl) methyl phenyl sulfoxide, Z, 562543 C1=CC=C(C=C1)C2C(C2C3=CC=CC=C3)CS(=O)C4=CC=CC=C4 

 

Table 2a: Biomolecular properties attributes of Methyl dodecanoate 

originalSMILES CCCCCCCCCCCC(=O)OC 
miSMILES: CCCCCCCCCCCC(=O)OC 

 

 

Molecular Properties Calculated Values 

miLogP 5.35 

TPSA 26.30 

Natoms 15 

MW 214.35 

nON 2 

nOHNH 0 

Nviolations 1 

Nrotb 11 

volume 214.74 

Biological Properties Bioactivity Scores 

GPCR ligand -0.41 

Ion channel modulator -0.13 

Kinase inhibitor -0.73 

Nuclear receptor ligand -0.43 

Protease inhibitor -0.46 

Enzyme inhibitor -0.11 

 

https://www.molinspiration.com/services/logp.html
https://www.molinspiration.com/services/psa.html
https://www.molinspiration.com/services/volume.html
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Table 2b: Biomolecular properties attributes of Lauric acid 

originalSMILES CCCCCCCCCCCC(=O)O 
miSMILES: CCCCCCCCCCCC(=O)O 

 

Molecular Properties Calculated Values 

miLogP 5.04 

TPSA 37.30 

Natoms 14 

MW 200.32 

nON 2 

nOHNH 1 

Nviolations 1 

Nrotb 10 

volume 224.22 

Biological Properties Bioactivity Scores 

GPCR ligand -0.27 

Ion channel modulator -0.04 

Kinase inhibitor -0.75 

Nuclear receptor ligand -0.24 

Protease inhibitor -0.36 

Enzyme inhibitor 0.04 

 

Table 2c: Biomolecular properties attributes of Methyl tetradecanoate 

originalSMILES CCCCCCCCCCCCCC(=O)OC 
miSMILES: CCCCCCCCCCCCCC(=O)OC 

 

 

Molecular Properties Calculated Values 

miLogP 6.36 

TPSA 26.30 

Natoms 17 

MW 242.40 

nON 2 

nOHNH 0 

Nviolations 1 

Nrotb 13 

volume 275.35 

Biological Properties Bioactivity Scores 

GPCR ligand -0.24 

Ion channel modulator -0.07 

Kinase inhibitor -0.51 

Nuclear receptor ligand -0.24 

Protease inhibitor -0.28 

Enzyme inhibitor -0.02 

 

Table 2d: Biomolecular properties attributes of trans-13-Octadecenoic acid, methyl ester 

originalSMILES CCCCCCCCCCCCCCCC(=O)OC 
miSMILES: CCCCCCCCCCCCCCCC(=O)OC 

Methyl palmitate 
 

 

Molecular Properties Calculated Values 

miLogP 7.37 

TPSA 26.30 

Natoms 19 

MW 270.46 

nON 2 

nOHNH 0 

Nviolations 1 

Nrotb 15 

volume 308.95 

Biological Properties Bioactivity Scores 

GPCR ligand -0.11 

Ion channel modulator -0.05 

Kinase inhibitor -0.34 

Nuclear receptor ligand -0.09 

Protease inhibitor -0.13 

Enzyme inhibitor -0.04 

 

 

 

https://www.molinspiration.com/services/logp.html
https://www.molinspiration.com/services/psa.html
https://www.molinspiration.com/services/volume.html
https://www.molinspiration.com/services/logp.html
https://www.molinspiration.com/services/psa.html
https://www.molinspiration.com/services/volume.html
https://www.molinspiration.com/services/logp.html
https://www.molinspiration.com/services/psa.html
https://www.molinspiration.com/services/volume.html


Ramya et al                                                                                                                                 Journal of Drug Delivery & Therapeutics. 2022; 12(5):188-200 

ISSN: 2250-1177                                                                                            [196]                                                                                            CODEN (USA): JDDTAO 

Table 2e: Biomolecular properties attributes of Palmitic acid 

originalSMILES CCCCCCCCCCCCCCCC(=O)O 
miSMILES: CCCCCCCCCCCCCCCC(=O)O 

 

 
 
 

Molecular Properties Calculated Values 

miLogP 7.06 

TPSA 37.30 

Natoms 18 

MW 256.43 

nON 2 

nOHNH 1 

Nviolations 1 

Nrotb 14 

volume 291.42 

Biological Properties Bioactivity Scores 

GPCR ligand 0.02 

Ion channel modulator 0.06 

Kinase inhibitor -0.33 

Nuclear receptor ligand 0.08 

Protease inhibitor -0.04 

Enzyme inhibitor 0.18 

 

Table 2f: Biomolecular properties attributes of trans-13-Octadecenoic acid, methyl ester 

originalSMILES CCCC/C=C/CCCCCCCCCCCC(=O)OC 
miSMILES: CCCC/C=C/CCCCCCCCCCCC(=O)OC 

 

 

Molecular Properties Calculated Values 

miLogP 7.89 

TPSA 26.30 

Natoms 21 

MW 296.50 

nON 2 

nOHNH 0 

Nviolations 1 

Nrotb 16 

volume 336.37 

Biological Properties Bioactivity Scores 

GPCR ligand 0.03 

Ion channel modulator -0.03 

Kinase inhibitor -0.25 

Nuclear receptor ligand 0.06 

Protease inhibitor -0.02 

Enzyme inhibitor 0.12 

 

Table 2g: Biomolecular properties attributes of Methyl stearate 

originalSMILES CCCCCCCCCCCCCCCCCC(=O)OC 
miSMILES: CCCCCCCCCCCCCCCCCC(=O)OC 

 

 

Molecular Properties Calculated Values 

miLogP 8.32 

TPSA 26.30 

Natoms 21 

MW 298.51 

nON 2 

nOHNH 0 

Nviolations 1 

Nrotb 17 

volume 342.55 

Biological Properties Bioactivity Scores 

GPCR ligand -0.03 

Ion channel modulator -0.04 

Kinase inhibitor -0.23 

Nuclear receptor ligand 0.00 

Protease inhibitor -0.03 

Enzyme inhibitor 0.05 
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Table 2h: Biomolecular properties attributes of (2,3 Diphenylcyclopropyl)methyl phenyl sulfoxide 

originalSMILES 
C1=CC=C(C=C1)C2C(C2C3=CC=CC=C3)CS(=O)C4=CC=C

C=C4 
miSMILES: 

C1=CC=C(C=C1)C2C(C2C3=CC=CC=C3)CS(=O)C4=CC=C
C=C4 

 

Molecular Properties Calculated Values 

miLogP 4.32 

TPSA 17.07 

Natoms 24 

MW 332.47 

nON 1 

nOHNH 0 

Nviolations 0 

Nrotb 5 

volume 308.98 

Biological Properties Bioactivity Scores 

GPCR ligand 0.15 

Ion channel modulator 0.08 

Kinase inhibitor 0.10 

Nuclear receptor ligand 0.01 

Protease inhibitor 0.27 

Enzyme inhibitor 0.20 
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Figure 2: Swiss ADME bioavailability radar reports for P. minima PBNPs 
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Figure 3: NaPLeS - Natural Product Likeness Score for PBNPs from P. minima 

 

Figure 4: BOILED-Egg model for bioactive compounds from P. minima 

 

Figure 5: Performance measures of vNN models for PBNPs from PMELE 
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Table 3: Performance measures of vNN models in 10-fold cross validation using a restricted or unrestricted applicability 
domain for PBNPs from PMELE 

Model Dataa d0b hc Accuracy Sensitivity Specificity kappa Rd Coverage 
DILI 1427 0.60 0.50 0.71 0.70 0.73 0.42  0.66 

1.00 0.20 0.67 0.62 0.72 0.34  1.00 
Cytotox (hep2g) 6097 0.40 0.20 0.84 0.88 0.76 0.64  0.89 

1.00 0.20 0.84 0.73 0.89 0.62  1.00 
HLM 3219 0.40 0.20 0.81 0.72 0.87 0.59  0.91 

1.00 0.20 0.81 0.70 0.87 0.57  1.00 
CYP1A2 7558 0.50 0.20 0.90 0.70 0.95 0.66  0.75 

1.00 0.20 0.89 0.61 0.95 0.60  1.00 
CYP2C9 8072 0.50 0.20 0.91 0.55 0.96 0.54  0.76 

1.00 0.20 0.90 0.44 0.96 0.46  1.00 
CYP2C19 8155 0.55 0.20 0.87 0.64 0.93 0.58  0.76 

1.00 0.20 0.86 0.52 0.94 0.50  1.00 
CYP2D6 7805 0.50 0.20 0.89 0.61 0.94 0.57  0.75 

1.00 0.20 0.88 0.52 0.95 0.51  1.00 
CYP3A4 10373 0.50 0.20 0.88 0.76 0.92 0.68  0.78 

1.00 0.20 0.88 0.69 0.93 0.64  1.00 
BBB 353 0.60 0.20 0.90 0.94 0.86 0.80  0.61 

1.00 0.10 0.82 0.88 0.75 0.64  1.00 
Pgp Substrate 822 0.60 0.20 0.79 0.80 0.79 0.58  0.66 

1.00 0.20 0.73 0.73 0.74 0.47  1.00 
Pgp Inhibitor 2304 0.50 0.20 0.85 0.91 0.73 0.66  0.76 

1.00 0.10 0.81 0.86 0.74 0.61  1.00 
hERG 685 0.70 0.70 0.84 0.84 0.83 0.68  0.80 

1.00 0.20 0.82 0.82 0.83 0.64  1.00 
MMP 6261 0.50 0.40 0.89 0.64 0.94 0.61  0.69 

1.00 0.20 0.87 0.52 0.94 0.50  1.00 
AMES 6512 0.50 0.40 0.82 0.86 0.75 0.62  0.79 

1.00 0.20 0.79 0.82 0.75 0.57  1.00 
MRTDe 1184 0.60 0.20     0.79 0.69 

1.00 0.20     0.74 1.00 
aNumber of compounds in the dataset; bTanimoto-distance threshold value; cSmoothing factor; dPearson’s correlation coefficient ; eRegression model 

Table 4: Summary of ADMET properties of PBNPs (C1-C8) from PMELE 

PROPERTY MODEL NAME C1 C2 C3 C4 C5 C6 C7 C8 

Absorption Water solubility -5.096 -4.181 -6.109 -6.927 -5.562 -7.436 -7.51 -6.343 

Absorption Caco2 permeability 1.604 1.562 1.602 1.6 1.558 1.605 1.598 1.358 

Absorption Intestinal absorption (human) 93.709 93.379 93.022 92.335 92.004 92.154 91.648 96.826 

Absorption Skin Permeability -1.844 -2.693 -2.244 -2.595 -2.717 -2.758 -2.792 -2.698 

Absorption P-glycoprotein substrate No No No No No No No Yes 

Absorption P-glycoprotein I inhibitor No No No No No No No Yes 

Absorption P-glycoprotein II inhibitor No No No No No Yes Yes Yes 

Distribution VDss (human) 0.256 -0.631 0.311 0.334 -0.543 0.299 0.325 0.264 

Distribution Fraction unbound (human) 0.23 0.26 0.142 0.074 0.101 0.027 0.027 0.04 

Distribution BBB permeability 0.674 0.057 0.711 0.749 -0.111 0.777 0.787 0.898 

Distribution CNS permeability -1.897 -2.034 -1.788 -1.678 -1.816 -1.516 -1.569 -1.039 

Metabolism CYP2D6 substrate No No No No No No No No 

Metabolism CYP3A4 substrate No No Yes Yes Yes Yes Yes Yes 

Metabolism CYP1A2 inhibitior No No Yes Yes No Yes Yes Yes 

Metabolism CYP2C19 inhibitior No No No No No No No Yes 

Metabolism CYP2C9 inhibitior No No No No No No No Yes 

Metabolism CYP2D6 inhibitior No No No No No No No No 

Metabolism CYP3A4 inhibitior No No No No No No No No 

Excretion Total Clearance 1.724 1.623 1.793 1.861 1.763 1.978 1.929 0.24 

Excretion Renal OCT2 substrate No No No No No No No No 

Toxicity AMES toxicity No No No No No No No Yes 

Toxicity Max. tolerated dose (human) 0.351 -0.34 0.257 0.178 -0.708 0.04 0.099 0.454 

Toxicity hERG I inhibitor No No No No No No No No 

Toxicity hERG II inhibitor No No No No No No No Yes 

Toxicity Oral Rat Acute Toxicity (LD50) 1.661 1.511 1.636 1.635 1.44 1.637 1.656 3.143 

Toxicity Oral Rat Chronic Toxicity (LOAEL) 2.707 2.89 2.851 2.998 3.181 3.075 3.147 0.488 

Toxicity Hepatotoxicity No No No No No No No Yes 

Toxicity Skin Sensitisation Yes Yes Yes Yes Yes Yes Yes No 

Toxicity T.Pyriformis toxicity 2.047 0.954 2.208 1.935 0.84 1.529 1.448 0.38 

Toxicity Minnow toxicity -0.374 -0.084 -0.891 -1.373 -1.083 -1.727 -1.854 -0.561 

 


