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ABTRACT

Several in vivo techniques have been developed to study and measure the uptake of CNS compounds into the brain. With these
techniques various parameters can be determined after drug administration, including the blood to brain influx constant (Kj,),
the permeability-surface area (PS) product, and the brain uptake index (BUI). These techniques have been mostly used for
drugs that are expected to enter the brain via transmembrane diffusion or by carrier-mediated transcytosis. Drugs that have
limitations in entering the brain via such pathways have been encapsulated in nanoparticles (based on lipids or synthetic
polymers) to enhance brain uptake. Nanoparticles are different from CNS compounds in size, composition and uptake
mechanisms. This has led to different methods and approaches to study brain uptake in vivo. Here we discuss the techniques
generally used to measure nanoparticle uptake in addition to the techniques used for CNS compounds. Techniques include
visualization methods, behavioral tests, and quantitative methods.

INTRODUCTION

Essentially none of the large-molecule pharmaceutics (e.g.
peptides, proteins and nucleicacids) can enter the brain,
and over 98% of small molecule drugs cannot enter the
braineither’. In the past years, several methods to study
brain uptake of drugs have been developed. To enhance
brain uptake, nanoparticles have been used to target drugs
to thebrain. Nanoparticles are different from CNS
compounds in size, composition and uptake mechanisms.
This has led to different methods and approaches to study
brain uptake in vivo. Here we discuss the techniques
generally used to measure nanoparticle uptake in addition
to the techniques used for CNS compounds.

Drug transport at the blood-brain barrier

Transport from the blood to the brain is limited by the
blood-brain barrier (BBB). The BBBis formed by brain
endothelial cells that line the cerebral microvessels. It is
supported byother cell types surrounding the endothelium,
such as astrocytes and pericytes®. These surrounding cells
contribute to the induction of many barrier characteristics
of theendothelium, such as tight junctions, that closely join
the endothelial cells together. Next to being a “physical
barrier”, the BBB is also a “transport barrier”. This aspect
is formed byspecific transport proteins and transcytosis
mechanisms that mediate the uptake and efflux of
molecules. Thirdly, a “metabolic barrier” is formed by the
expression of metabolizing enzymes such as peptidases,
cytochrome P450 enzymes, and monoamine oxidases®®.
All of these barrier functions control and regulate both
inward and outward transfer of molecules between blood
and the brain.

ROUTES FOR THE TRANSPORT OF MOLECULES
ACROSS THE BBB

Paracellular hydrophilic diffusion:Paracellular transport
of hydrophilic molecules is highly restricted by the tight
junctions present between brain endothelial cells.

Transcellular  lipophilic  diffusion:  Lipid soluble
molecules with molecular weights below 400 Da are able
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to cross by transcellular lipophilic diffusion, provided that
they are not bound to plasma proteins to a high extent, or
form a substrate for a transport system at the BBB. Based
on physicochemical properties such as molecular weight
and hydrogenbonding,predictions can be made whether a
compound can cross the BBB via this route®’.

Receptor mediated endocytosis:For a variety of
molecules that are essential for brain function, such as
amino acids, glucose, peptides, and proteins, specific
endogenous BBB transporters exist. These are expressed at
both the luminal and the basolateral membranes of the
endothelium® These transporters can be either defined as
carriers or receptors.

Carrier mediated transcytosis:Carriers are membrane-
restricted systems. They are generally responsible for the
transport of small molecules with a fixed size and mass
smaller than 600 Da. Carrier-mediated transcytosisare used
for the delivery of nutrients such as glucose, amino acids,
and purine bases to the brain. It is substrate selective and
only drugs that closely mimic the endogenous carrier
substrates will be taken up®.

Adsorptive mediated endocytosis:Endocytosis at the
BBB is effectuated through adsorption or receptor binding.
Adsorptivemediated endocytosis is initiated by the binding
of polycationic substances to negative charges on the
plasma membrane®. Receptor-mediated endocytosis is
initiated by the binding of a receptor-specific ligand.
Following adsorption or binding, the substance is
internalized and transported via the early endosome to the
lysosome, or transcytosed to the plasma membrane. The
only way for larger molecules and particles such as
antibodies, lipoproteins, proteins and nanoparticles to be
transported into the brain is via receptor or adsorptive-
mediated endocytosis™®, which is different from small
molecular weight CNS drugs. When compared to the
peripheral endothelium, the cerebral endothelium has a
much lower endocytotic and transcytotic activity, making
BBB-passage of larger molecules difficult even when
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endocytosis is possible. In pathological conditions, the
transport mechanism at the BBB might be up or down
regulated”.

Efflux pump:Next to these influx systems, many efflux
mechanisms exist at the BBB as well. These include P-
glycoprotein, MDR-related protein, ABC transporters, and
several others *.They restrict entry of molecules into the
brain by promoting luminal release of compounds, and are
important in removing harmful substances from the brain,
thereby reducing toxic side effects of CNS drug
metabolites. Substrates for efflux transporters include
peptides,lipids, cholesterol, hormones, CNS drugs, and
metabolites™.

PATHWAYS
BARRIER

After in vivo administration, most CNS drugs will enter
the brain in their free form via transcellular diffusion.
However, many compounds with psychopharmacological
activity do not possess the right physicochemical
characteristics to be able to cross the BBB. One possible
way to mask these characteristics is to package these
compounds in nanoparticles. Nanoparticles are, of course,
much larger and are only able to enter the brain endothelial
cells via adsorptive or receptor-mediated endocytosis.
Subsequent transcytosis to the basal side of the brain
endothelial cells is required to enter into the brain
parenchyma’. After a drug or nanoparticle formulation has
been administered, the concentration that can be measured

in the brain depends on several factors. Theseinclude:>*®

ACROSS THE BLOOD-BRAIN

the plasma concentration-time curve

the extent of plasma protein binding

the permeability across the BBB

the efflux out of the brain by efflux transporters

the metabolic conversion by enzymes

the binding to membranes or intracellular sites in the

brain

e the continual secretion and drainage of cerebrospinal
fluid (CSF)

e brain interstitial fluid (ISF)

IN  VIVO TECHNIQUES TO MEASURE
COMPOUND PERMEATION INTO THE BRAIN

A number of in vivo techniques have been developed to
measure the uptake of CNS drugs into the brain.

Kin and PS product determination by intravenous
injection

The intravenous injection technique is regarded as the gold
standard for brain uptake studies, because it involves fully
physiological conditions'*". With this technique, a
(radiolabeled) compound is injected intravenously. Blood
is sampled at various time points. The main advantages of
the iv injection method are the ease of injection, the
possibility to simultaneously measure pharmacokinetics,
and the fully physiological conditions, enabling all
transporters, junction proteins, and enzymes to be present
at their physiological concentration.

Kin and PS product determination by in situ perfusion

The in situ perfusion method complements the iv injection
method. It has been originally developed for rats, but it has
been expanded for mice, guinea pigs, and rabbits'®*%. The
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main advantages of the in situ perfusion method are the
ability to tailor the perfusion fluid, the constant infusion
concentration, and the absence of compound metabolism
in other organs *"%,

Brain uptake index (BUI)

The brain uptake index (BUI), represents the relative
uptake of a drug compared to a reference substance®%.
The reference is freely diffusible across the BBB, such as
14C-butanol. The test compound is also radiolabeled, for
example with °®H. The main advantage of the BUI
technique is that it is fast while its main disadvantage is the
low sensitivity. Additionally, drugs that are taken up
slowly cannot be studied with this method™. Examples of
BUI values obtained in vivo are 1.4% for sucrose, and
90% for caffeine®.

Quantitative autoradiography

Quantitative autoradiography can be used to determine the
amount of radioactive test compound in specific regions of
the brain, such as stroke-affected areas® or brain tumors®,
following oral, intravenous or subcutaneous administration
to small animals. The strength of quantitative
autoradiography lies in the high spatial resolution in the
micrometer range ****.

Microdialysis

Intracerebralmicrodialysis involves the implantation of a
microdialysis probe in the brain. The probe, which consists
of a semipermeable membrane, is continuously perfused
with a physiological solution. The test drug is administered
to the animal by the desired route (e.g. oral, intravenous or
subcutaneous). Drugs that cross the BBB and enter the
brain interstitial fluid can traverse the semipermeable
membrane by diffusion into the physiological buffer. The
buffer is sampled from the probe, and drug concentration
is measured. The concentration in the sample reflects the
concentration of free drug in the brain. The main
advantage of microdialysis is that brain levels, as well as
blood levels of the drug can be determined at many time
points in one animal. From these data, pharmacokinetic
parameters can be obtained. Drawbacks include the
technical difficulties of the implantation, and the fact that
highly lipophilic compounds are generally difficult to
recover®?,

Brain/plasma ratio

Commonly used in the pharmaceutical industry is the
brain/plasma ratio®. The test drug is administered to the
animal by the desired route. At a predetermined time point,
the blood is sampled and the brain is taken out. The brain
is homogenized and the drug concentration is determined
in both brain and plasma. If multiple animals were used for
multiple time points, the AUC of both the brain and
plasma can be obtained. The brain concentration is then
divided by the plasma concentration. This can be the ratio
of one time point or the ratio of the AUCs*. The ratio
provides a measure of the extent of brain penetration, not
of the rate of brain penetration. Usually, the presence of
drug remaining in the brain vasculature is not taken into
account.

External detection methods
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The techniques described so far involve sampling from the
brain. Next to these invasive techniques, several non-
invasive external imaging techniques exist, including
positron emission tomograpy (PET), and single photon
emission computed tomograpy (SPECT). It has been
shown that PET can be used to quantitatively measure the
PS product®. However, PET and SPECT are in general
used for imaging of transporters, receptors, inflammation,
or tumors in the brain, and not for the uptake of
compounds®®.

CNS COMPOUNDS VERSUS NANOPARTICLES

As the vast majority of potential CNS compounds have
limited brain uptake, they may benefit from the use of
advanced delivery systems in order to cross the BBB.
Nanoparticles have been widely used as drug carriers to
increase uptake of such drugs into the brain. The drug is
encapsulated in, or associated to the particle, thereby
masking its physiochemical characteristics. Particles that
have been wused include liposomes, solid lipid
nanoparticles, nanogels, dendrimers, albumin
nanoparticles, and polymeric particles such as poly(lactic-
co-glycolic acid) (PLGA) and poly(butyl cyanoacrylate)
(PBCA) nanoparticles. In many cases, they are combined
with targeting ligands on the particle surface to enhance

uptake. Ligands can include peptides, proteins, and
antibodies.
IN  VIVO TECHNIQUES TO MEASURE

NANOPARTICLE UPTAKE INTO THE BRAIN

The design of brain uptake studies of free drugs is
generally different from the design of brain uptake studies
of nanoparticles, because the size, physicochemical
properties, and uptake mechanisms are different. This
results in different approaches. The methods that have
been used for brain targeting studies using nanoparticles in
the past decade are described here.

Visualization methods

Microscopy is the most widely used qualitative method to
study BBB uptake of nanoparticles in vivo.

Fluorescence microscopy

Fluorescence microscopy is often used for its sensitivity. It
requires loading of the nanoparticles with a fluorescent
dye®!, or covalent coupling of the particle building blocks
to a dye’. Commonly used fluorescent dyes include
rhodamine-123, fluorescein, and 6-coumarin. Particles are
usually injected iv, and aftersectioning the brain, they can
be localized using fluorescence microscopy. The brain
endothelium can be visualized by using an endothelium
staining marker such as lectin. If such a marker is included
in the staining procedure, a distinction can be made
between particles that are associated with the brain
endothelium, and particles that have crossed into the brain
parenchyma®. If gene delivery to the brain is of interest, a
plasmid expressing a fluorescent protein can be
incorporated intothe particle, and gene expression can be
assessed by visualizing protein fluorescence in the brain
sections®,

Electron microscopy
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Electron microscopy is commonly used. With this
technique,single particles can be visualized in specific
regions of the brain.

Behavioral tests

Some drugs that act on the CNS are unique compared to
drugs that act on any other organ, because of their ability
to interfere with brain signaling, and to induce specific
behavioral effects. This gives rise to the possibility of not
only detecting the level of compound that reaches the
brain, but also to determine whether the compound has a
pharmacodynamic effect. Drugs that normally do not enter
the brain can be encapsulated into nanoparticles, to be
transported over the BBB. The effect of the drug in the
brain can be read out by monitoring the behavior of the
animal, with specifically designed behavioral tests. These
tests do not register the whole particle inside the brain, but
only the free drug that has been released from the particle,
as only the free drug will be able to exert an effect. Drug
release from nanoparticles at the site of interest is crucial;
therefore behavioral tests are of great value.

Nociceptive tests

A common model drug that has been used in combination
with nanoparticles is the opiate antagonist loperamide.
Intracerebral administration of loperamide causes
antinociceptive effects. However, after iv injection of
loperamide, these effects are not seen. This is due to the
efflux membrane transporter P-glycoprotein®.
Loperamidemolecules that reach the endothelial cells of
the blood-brain barrier are rapidly transported back to the
blood circulation. Therefore, loperamide is not able to
enter into the brain parenchyma, making it a model drug
for nociceptive testing. It can be loaded inside
nanoparticles®, or simply be adsorbed onto the surface of
the particles*’.Loperamide-containing particles that are
successfully taken up by the brain, can release their drug
content in the brain, causing an analgesic effect of
loperamide after ivadministration®®. Similar to loperamide,
the hexapeptidedalargin has been used for this purpose .

Motor function and learning & memory tests

Other models that allow for behavioral testing often
include induction of disease states in animals, like MPTP-
induced Parkinson syndrome. Drugs that treat these
syndromes, but normally do not penetrate the BBB in their
free form, are candidates for nanoparticle formulation to
enhance brain uptake. An example is nerve growth factor
(NGF)*. NGF has been evaluated for the treatment of
neurological diseases such as Alzheimer’s disease and
Parkinson’s disease. However, NGF has a Ilow
permeability through the BBB following intravenous
administration®,

Quantitative methods

Quantitative methods to study BBB nanoparticle uptake in
vivo, involve determination of pharmacokinetic (PK)
parameters, and biodistribution studies. For both of these
studies either the particle itself or an entrapped compound
is labeled. Most commonly, radioisotopes like *H, **C or
25| are used. Alternatively, the entrapped compound is
quantified by HPLC.

Pharmacokinetic parameters
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In most brain targeting studies, the nanoparticles are
administered intravenously. The goal of a pharmacokinetic
study is to assess the fraction of the administered dose that
is distributed to the brain or is excreted from the body®.
Nanoparticle and/or drug concentrations are measured in
the blood (plasma) and in the brain at several time points
after administration. From these measurements, the area
under the concentration—time curve (AUC) can be obtained
for both blood and brain. Pharmacokinetic models quantify
the rate and extent of the distribution by mathematically
analyzing these data. In this way,a number of PK
parameters can be obtained. Commonly, several of these
parameters are determined for either blood “**’, brain or
both*#?, Other organs can also be included in the PK
study®’. In current brain targeting studies, the most widely
determined PK parameters in both blood and brain are:

- Chax: peak concentration
- Tmax: time to reach peak concentration

- AUC: area under the concentration-time curve, from the
time of injection (t=0) to a determined time point t
(AUC o_.y)) or extrapolated to infinity (AUC o).

- Half-life (t1/2): time it takes for 50% to be eliminated.

- Mean Residence Time (MRT): the average time a
compound remains in the blood or Brain

Biodistribution studies

For biodistribution studies, the nanoparticles are usually
administered intravenously. After administration, the
animals are sacrificed at a specific time point, or
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