

Table 1: Scientific classification of galanthamine	
Kingdom	Organic compounds
Super class	Alkaloids and derivatives
Class	Amaryllidaceae alkaloids
Sub class	Galanthamine-Type Amaryllidaceae alkaloids
Direct parent	Galanthamine-Type Amaryllidaceae alkaloids

Synthesis of galanthamine: Galanthamine synthesis based on two approaches as follows:

1. Biomimetic approach: Using phenolic oxidative coupling

- Using norbelladine derivative:** Galantamine may be generated from a common precursor norbelladine by intramolecular oxidative phenol coupling, as discovered by Barton et al. in the 1960s ¹⁶. Using R-14C-labeled norbelladine derivatives as precursor materials, it was hypothesised that norbelladine is the biogenetic precursor for galantamine production ^{17,18}. After oxidative phenol coupling, a dienone was thought to be the main step that created narwedine, and it was dubbed the precursor to galantamine ^{15,19}.
- Using 4-O-methylnorbelladine:** For galantamine production, another strategy utilises oxidative phenol coupling of 4-O-methylnorbelladine to a dienone. Dienone undergoes intramolecular ring closure of the ether bridge, resulting in the formation of N-demethylnarwedine. Galantamine is obtained through stereo selective reduction and N-methylation ¹⁵.

2. The stereo-selective approach: Intramolecular heck reaction

In 2000, Fels ²⁰ and Parsons ²¹ described a stereo selective method for synthesizing galantamine based on the intramolecular Heck reaction ²². From α , γ -unsaturated ester 1 and benzaldehyde 2, Fels created the cyclohexenyl, aryl ether 3. Then, in the presence of potassium carbonate, compound 3 was exposed to a reaction with tetrakis (triphenylphosphine) palladium (0), yielding compound 4 in 66%. Using α , γ -unsaturated amide 5 and benzaldehyde 6, Parsons produced an iodide 7. Iodide 7 was refluxed with $Pd(OAc)_2$ and silver carbonate in DMF to create benzofuran 8 in a 75 percent yield. Both compounds 3 and 8 were transformed to the identical derivative 9 in the end ¹⁵.

Pharmacokinetics of galanthamine

The medication has a bioavailability of roughly 90% and pharmacokinetics that are dosage dependant. The distribution volume is high, while protein binding is minimal (28.3-33.8 percent). The cytochrome P450 system, especially the CYP2D6 and CYP3A4 isoenzymes, is involved in metabolism. In urine, it seems to be 20-25 percent unaltered ^{1,23}.

Pharmacodynamics of galanthamine

- Effect on Acetylcholine-esterase activity:** Cholinergic (AChE) is a neurotransmitter that is generated in the presynaptic neuron and released into the synaptic cleft where it binds reversibly to distinct types of acetylcholine receptors ²⁴. These receptors are known as nicotinic and muscarinic. Galantamine acts as a selective and competitive inhibitor of AChE, which is thought to be responsible for ACh hydrolysis at the neuromuscular junction. This junction can be found in peripheral and central cholinergic synapses, as well as in parasympathetic target organs. As galantamine binds to AChE, acetyl choline

degradation is slowed, resulting in higher acetylcholine levels in the synaptic cleft. According to X-ray crystallographic data, galantamine binds to the active site of AChE reversibly ^{15,25}. Because the medication attaches at the base of the active site gorge, it interacts with two binding sites through hydrogen bonding. The choline binding site [amino acid 84 (tryptamine)] and the acyl-binding pocket are two of these sites (amino acids 288 and 290; both phenylalanine) ²⁶.

Ex vivo investigation on human brain postmortem and fresh cortical biopsy samples revealed that the IC50 values for the frontal cortex and hippocampus areas of the brain were 3.2 and 2.8 mmol/L, respectively ²⁷. Galantamine was shown to be less effective in inhibiting AChE than tacrine or physostigmine, and it was 10 times less effective at inhibiting brain AChE than erythrocyte AChE ²⁷. Galantamine has a 53-fold selectivity for AChE ^{15,28} over butyryl cholinesterase ²⁹.

- Effects on nicotinic acetylcholine receptors:** When compared to other similar agonists (acetylcholine, nicotine, and other nicotinic agonists) that share routes with other inotropic neuroreceptors, activation of nAChRs appears to be favorably controlled by a secondary unique mechanism ¹⁵. Galantamine is classified as an allosterically potentiating ligand because it increases the effect of acetylcholine on nAChRs by binding at an allosteric location ³⁰. Galantamine seems to bind allosterically to the α -subunit of nAChRs at a location distinct from that of ACh, as determined by affinity labelling and immunohistochemistry ¹⁵, causing conformational changes in the receptor. The action of galantamine at these receptors was also inhibited by a monoclonal antibody FK1 ³¹, which is a selective inhibitor of the α -subunit of the receptor ¹⁵.

- Effects on Animal Models' Behavior and Memory:** ³² To assess memory impairment, a surgical mouse model was used. After previous training, mice were placed on working memory and reference activities for 24 hours ^{33,34}. Galantamine was injected intraperitoneally into it. As a result of galantamine action, mice with impaired memory exhibited improved working memory, as evidenced by a decrease in work duration. Other rat experiments were performed in the same way as before ³⁵. Galantamine, physostigmine, and tacrine were given in increasing amounts in mice. Mice were asked to sit in a wooden area surrounded by an electrical grid to complete the task of avoiding them. All three of the drugs used increase the amount of time spent avoiding certain actions. Galantamine has provided significant improvements in much lower doses and shorter doses compared to physostigmine or tacrine ¹⁵.

- Effect on brain (Neuroprotective action):** Agonists nAChRs have been shown to protect neuronal cells ³⁶ against glutamate ³⁷, tropic-factor depletion ³⁸, hypoxia ³⁹, and alpha-beta amyloid toxicity ⁴⁰. In mice and non-human mice, they improve memory and reading ability. Humans have also become increasingly attentive and digesting information quickly ⁴¹. In their study, Nakamizo et al. (2005) ⁴² found that nicotine use reduced mortality of glutamate-induced motor neuron in basic rat spinal cord cultures. Dihydro- β -erythroidin (DH β E) or α -bungarotoxin (α BT) was shown to inhibit nicotine-induced neuroprotection. It has recommended the removal of both α 4 β 2 and α 7 nAChRs. In this framework, the hypothesis was developed that galantamine could mediate neuronal protection against several neurotoxic agents by elevating the effects of ACh on nicotinic receptors ^{15,43}.

Figure: 1 Neuroprotective action¹⁵

5. Inflammation-Reducing Effect (Anti-inflammatory activity): Altering the anti-inflammatory actions of galantamine has resulted in a reduction in brain inflammation. Modification of NF-κB, TNF-α, visfatin and adiponectin has been shown to cause these effects. Galantamine activates the cholinergic anti-inflammatory system, which is one of the most important anti-inflammatory mechanisms in human biology. This pathway is activated by α7 nicotinic acetylcholine receptors and protects the body from chronic systemic inflammation⁴⁴. (α7 nAChR). Galantamine activates the anti-inflammatory effect of cholinergic, which reduces the production of pro-inflammatory cytokine by 50-75 percent. Galantamine reduces systemic inflammation by inhibiting the enzyme acetylcholinesterase, which reduces the degradation of acetylcholine^{8,15}.

6. Anti-diabetic action: Galantamine, on the other hand, has shown a significant decrease in AChE activity in all tissues at its lowest dose, even lower AChE activity in the brain than normal. The n5-STZ model is a well-known model for type 2 diabetes research, with high fructosamine, decreased insulin of the pancreas, and subsequent decrease in basal insulin sources. Low insulin levels for STZ and / or CNS insulinopenia caused by peripheral Interventional radiography can both be suspected of increased weight gain in diabetic rats. Metabolic changes reduce insulin absorption in the BBB, which is triggered by hyperglycemia, which leads to the formation of an unhealthy diet. The effect of insulin on the brain is a basic way to control your diet^{45,46}. In another study, rats with low brain insulin and erroneous insulin receptors had dementia⁴⁷. Galantamine, on the other hand, has been found to have a dose-dependent effect on the diet of

diabetic rats. Insulin levels are elevated, which activates vagal tone and reduces appetite to^{47,48}. Significance of moderate cholinergic transmission in food balance was demonstrated by galantamine stimulation of the presynaptic alpha7 nicotinic acetylcholine receptor (7nAChR). Vildagliptin, on the other hand, had no effect on diet or weight gain. Galantamine activates the presynaptic alpha7 nicotinic acetylcholine receptor (7nAChR), which has a profound effect on central cholinergic signaling and diet regulation^{9,49,50}. Galantamine, which has been shown to have central effects, has the ability to reverse glucose homeostasis-related metrics. Obesity and diabetes mellitus cause vagal tone suppression and route disruption. As a result, galantamine's anti-diabetic actions are attributed to its stimulation of the cholinergic pathway (inhibition of AChE as well as an agonist of the 7nAChR and activation of the efferent vagus nerve)¹. It acts as a neural bridge between the liver, pancreatic cells, and adipose tissue. Insulin secretion, pancreatic -cell mass, energy expenditure modulation, glucose metabolism, hepatic glucose/glycogen synthesis, systemic insulin sensitivity, and fat distribution between liver and peripheral tissues are all influenced⁴⁹. An increase in the phosphorylation of insulin receptors was observed, followed by the activation / phosphorylation of Protein Kinase B (also known as Akt protein) and elevated GLUT2 and GLUT4 (sugar carriers) responsible for increased insulin sensitivity. In another experiment, galantamine was found to lower elevated TGs (triglycerides). Modification of the observed lipid panel^{51,52}. It is explained by an increase in insulin imbalance, which is opposed to galantamine. Galantamine can be used as an adjunct to antidiabetic in the treatment of T2DM, according to the results (type 2 diabetes)¹.

7. Anti-oxidant action: Galantamine is a natural antioxidant alkaloid. It is a scavenger of active oxygen species that protects neurons by preventing oxidative damage. The antioxidant effects of Galantamine Hydrobromide were investigated using an in-vitro luminol-based chemiluminescence method. The ability of galantamine and galantamine Hydrobromide to remove active oxygen species such as $\bullet\text{O}_2^-$, $\bullet\text{OH}$, and HOCl depends on the enol group in the molecule. The amount of compound resulting from the extinction of active oxygen species should be affected by any chemical modification of the enol group; the intensity of the extraction action is reduced by system $\text{O}_2 \rightarrow \text{HOCl} \rightarrow \bullet\text{OH}$ ¹. When galantamine is converted to

galantamine Hydrobromide, the effect of excessive detoxification increases dramatically⁵³. The radical scavenging activity is not affected by quaternary coordinated positive nitrogen, although it is responsible for enhancing the disposal effect. The antioxidant activity of galantamine is enhanced by the presence of the enol group and quaternary nitrogen⁵⁴. These findings support and demonstrate the antioxidant properties of galantamine.

Galantamine studies

The table below shows the results of several galantamine research projects Table 2;

Table 2: Studies on Galanthamine¹

S.No.	Studies on the brain	Findings
1.	Influence on dopamine-regulated behavior and cholinergic networks in rats.	The subcutaneous dose of apomorphine 1 mg / kg has caused behavioral changes such as increased licking and odor. GAL injections significantly inhibited these changes.
2.	Model nucleusbasalis magno cellularis lesions	Significant decrease in choline acetyltransferase activity, as well as local memory deficiency ⁵⁵
3.	A swim-maze test paradigm was developed to test local memory ability in mice with NBM lesions	GAL is delivered with improved performance intraperitoneally in a timely manner. A U-swim-maze test, containing 2 mg / kg GAL that provides the best dose response ⁵⁵
4.	Testing in mice with NMB lesions.	Improved performance ⁵⁶
5.	Scopolamine-induced passive avoidance test	GAL injection greatly lowers scopolamine-induced learning and memory impairments and inhibits scopolamine-induced passive avoidance ⁵⁷
6.	GAL's allosterically altering ability to nAChR in young and old rabbits has been investigated	Essential control of the nicotinic environment; evidence of GAL tolerance and attenuation receptor up regulation ⁵⁸

Tolerance and safety

Galantamine is generally considered to be a well-tolerated and safe drug. Only 14 percent of study participants withdrew due to adverse events, according to a meta-analysis of large placebo-controlled clinical studies⁵⁹. The most common side effects include symptoms such as nausea (24%), vomiting (14%), diarrhea (8%), abdominal discomfort, dyspepsia, anorexia, and weight loss (10%), all caused by cholinergic-dependent activity. These side effects are most common during the initial phase of treatment with increasing doses, and usually go away over time. Dizziness (10%), confusion, dizziness, insomnia, and headache are all documented, as are urinary tract infections and - in rare cases - severe Bradycardia^{3,59}. Galantamine can prolong QT time and produce arrhythmia⁶⁰, so people with pre-existing heart symptoms should use it with caution. Hypertension, transient ischemia episodes, tinnitus, depression, fever, and asthenia have all been reported more frequently under galantamine than under placebo, according to product reviews of Reminyl⁶¹. Bullous pemphigoid case developed after galantamine treatment has recently been reported⁶². Galantamine in the formation of extended secretion appears to reduce the duration of abdominal symptoms but not the frequency of all⁶³.

Significant negative side effects

Galantamine has a long list of serious side effects, according to the FDA. Allergic reactions are called (rash, rash or itching), trouble with breathing or swallowing, feeling of tightness in the chest, mouth, face, lips, or swelling of the tongue. Bloody, dark, or drunk stools, numbness, burning, or itching, confusion, chest tightness, difficult or painful urination, fever, fainting, hallucinations, mood swings or mood swings, new or

worsening symptoms, and other side effects should be avoided. Be sure to talk to your doctor about any side effects.

Dosage

Galantamine is used in Europe for those with moderate to severe dementia Alzheimer's disease. The medicine should be taken twice a day, preferably for breakfast and dinner 8 mg / day for 4 weeks the recommended first dose. At least 4 weeks, the initial dose is 16 mg / day⁶⁴. After this time, an increase in the recommended dose adjustment of 24 mg / day may be evaluated, varying from person to person depending on clinical benefit and tolerability⁶⁵. Galantamine is used to treat severe liver disease (Child Pugh Score > 9) and kidney (creatinine clearance 0.54 L / h) disorders. In patients with severe liver failure, treatment should begin with a dose of 4 mg per day, which is given accordingly at breakfast. The dose can be increased to 4 mg twice daily after 4 weeks of previous treatment for at least 4 weeks. The dose can be increased to 8 mg twice daily. There is no need to change the dose in people with mild liver failure or those with a creatine clearance of 0.54 L / h².

Drug interactions

Galantamine suppresses AChE, so interactions with drugs that affect the cholinergic system are possible. As a result, the drug inhibits the activities of anticholinergic drugs (no further details are available). Pharmacodynamic interactions are considered when digoxin and blockers are combined. However, galantamine 12mg twice daily did not show any effect on the pharmacokinetics of digoxin or warfarin. Galantamine is expected to enhance the effect of succinylcholine on muscle relaxation during anesthesia. Galantamine is made up of CYP2D6 and CYP3A4, so strong

inhibitors of these isoenzymes can enhance the cholinergic effects of the drug, including adverse events (e.g., nausea and vomiting). When galantamine is combined with paroxetine (CYP2D6 inhibitor), ketoconazole, or erythromycin (both CYP3A4 inhibitors), its bioavailability increases by 40%, 30%, and 12%, respectively⁶⁴.

Conclusion

Galantamine is an acetylcholinesterase inhibitor with a long history of use to reverse the effects of neuromuscular blockade. Galantamine is not only an alternative medicine for Alzheimer's disease, but it also has many other benefits such as antidiabetic, anti-inflammatory, and antioxidant effects. Biological research on galantamine has shown various beneficial, therapeutic, and protective effects on organ systems. Therefore, galantamine is a phytochemical with a variety of pharmacological properties that need to be re-investigated in order to establish an effective safety profile in humans and to obtain therapeutic benefits.

Acknowledgement:

This paper is authorized by Jaspreet Kaur, Research Scholar, and M. Pharm student in St. Soldier Institute of Pharmacy, Lidhron Campus, Behind NIT (R.E.C.), Jalandhar-Amritsar by pass NH-1 Jalandhar-144011, Punjab, India. I sincerely give gratitude to my teachers who encouraging me to do my work with hard work and dedication. I owe a huge debt to my mentor Indu Melkani (Assistant Professor), Ajeet Pal Singh (Associate Professor), Amar Pal Singh (Principal), Kiran Bala (Research Scholar) in St. Soldier Institute of Pharmacy, Jalandhar who trusted and mentored me to complete my paper.

References

- Upadhyay SD, Ahmad Y, Kohli S. A Review on Pharmacological Potential of Galantamine. *Pharmacogn Commun*. 2020; 10(2):63-6. <https://doi.org/10.5530/pc.2020.2.13>
- Zarotsky V, Sramek JJ, Cutler NR. Galantamine hydrobromide: An agent for Alzheimer's disease. *Am J Heal Pharm*. 2003; 60(5):446-52. <https://doi.org/10.1093/ajhp/60.5.446>
- Loy C, Schneider L. Galantamine for Alzheimer's disease (Review). *Cochrane Libr*. 2005; (4):345-54. <https://doi.org/10.1002/14651858.CD001747.pub2>
- Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, et al. APP mouse models for Alzheimer's disease preclinical studies. *EMBO J*. 2017; 36(17):2473-87. <https://doi.org/10.1525/embj.201797397>
- Sperling R, Mormino E, Johnson K. Perspective The Evolution of Preclinical Alzheimer's Disease : Implications for Prevention Trials. *Neuron* [Internet]. 2014; 84(3):608-22. <https://doi.org/10.1016/j.neuron.2014.10.038>
- Tariot P. Current status and new developments with galantamine in the treatment of Alzheimer's disease. *Expert Opin Pharmacother*. 2001; 2(12):2027-49. <https://doi.org/10.1517/14656566.2.12.2027>
- Geerts H. Indicators of neuroprotection with galantamine. *Brain Res Bull*. 2005; 64(6):519-24. <https://doi.org/10.1016/j.brainresbull.2004.11.002>
- Satapathy SK, Ochani M, Dancho M, Hudson LK, Rosas-Ballina M, Valdes-Ferrer SI, et al. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. *Mol Med*. 2011; 17(7-8):599-606. <https://doi.org/10.2119/molmed.2011.00083>
- Ali MA, El-Abhar HS, Kamel MA, Attia AS. Antidiabetic effect of galantamine: Novel effect for a known centrally acting drug. *PLoS One*. 2015; 10(8):1-28. <https://doi.org/10.1371/journal.pone.0134648>
- Melo JB, Sousa C, Garcão P, Oliveira CR, Agostinho P. Galantamine protects against oxidative stress induced by amyloid-beta peptide in cortical neurons. *Eur J Neurosci*. 2009; 29(3):455-64. <https://doi.org/10.1111/j.1460-9568.2009.06612.x>
- Halpin CM, Reilly C, Walsh JJ. Nature's anti-Alzheimer's drug: Isolation and structure elucidation of galantamine from *Leucojum aestivum*. *J Chem Educ*. 2010; 87(11):1242-3. <https://doi.org/10.1021/ed100388x>
- Inden M, Takata K, Yanagisawa D, Ashihara E, Tooyama I, Shimohama S, et al. A4 Nicotinic Acetylcholine Receptor Modulated By Galantamine on Nigrostriatal Terminals Regulates Dopamine Receptor-Mediated Rotational Behavior. *Neurochem Int* [Internet]. 2016; 94:74-81. <https://doi.org/10.1016/j.neuint.2016.02.008>
- Moriguchi S, Marszalec W, Zhao X, Yeh JZ, Narahashi T. Mechanism of action of galantamine on N-methyl-D-aspartate receptors in rat cortical neurons. *J Pharmacol Exp Ther*. 2004; 310(3):933-42. <https://doi.org/10.1124/jpet.104.067603>
- Marco-Contelles J, Rodríguez C, García AG. Chemical synthesis of galantamine, an acetylcholinesterase inhibitor for treatment of Alzheimer's disease. *Expert Opin Ther Pat*. 2005; 15(5):575-87. <https://doi.org/10.1517/13543776.15.5.575>
- Kausar S, Mustafa HG, Altaf AA, Mustafa G, Samia Kausar, Huda Ghulam Mustafa, Ataf Ali Altaf, and Ghulam Mustafa, Department of Chemistry, University of Gujrat, Gujrat, Pakistan Amin Badshah, Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan © 2019. 2019; (October):1-12.
- Bastida J, Berkov S, Torras Clavería L, Pigni NB, Andradre JP De, Martínez V, et al. Chemical and biological aspects of Amaryllidaceae alkaloids [Internet]. Vol. 661, Recent Advances in Pharmaceutical Sciences. 2011. 65-100 p. Available from: <http://deposit.ub.edu/dspace/handle/2445/21374>
- Barton DHR, Kirby GW. 153. Phenol oxidation and biosynthesis. Part V. The synthesis of galanthamine. *J Chem Soc*. 1962; VI:806-17. <https://doi.org/10.1039/r9620000806>
- Barton DHR, O'Brien RE, Sternhell S. Barton, O'Brien, and Sternhell A New Reaction of hydrazone. *J Chem Soc*. 1962; (470):470-6. <https://doi.org/10.1039/r9620000470>
- Oliver* DW, Dekker TG, Snyckers FO. Synthesis and pharmacology. *Eur J Med Chem*. 1991; 26:375-9. [https://doi.org/10.1016/0223-5234\(91\)90097-7](https://doi.org/10.1016/0223-5234(91)90097-7)
- Pilger C, Westermann B, Florke U, Fels G. A new stereoselective approach towards the galanthamine ring system via an intramolecular Heck reaction. *Synlett*. 2000; 8:1163-5. <https://doi.org/10.1055/s-2000-6735>
- Parsons PJ, Charles MD, Harvey DM, Sumoreeah LR, Shell A, Spoores G, et al. A general approach to the galanthamine ring system. *Tetrahedron Lett*. 2001; 42(11):2209-11. [https://doi.org/10.1016/S0040-4039\(01\)00111-3](https://doi.org/10.1016/S0040-4039(01)00111-3)
- Gibson (née Thomas) SE, Middleton RJ. The intramolecular Heck reaction. *Contemp Org Synth*. 1996; 3(6):447-71. <https://doi.org/10.1039/C09960300447>
- A. S, P. S, N. M, E. B, M. M, F. O, et al. Effects of donepezil, galantamine and rivastigmine in 938 Italian patients with alzheimers disease: A prospective, observational study. *CNS Drugs* [Internet]. 2010; 24(2):163-76. Available from: <http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed9&NEWS=N&AN=2010061357> <https://doi.org/10.2165/11310960-000000000-00000>
- Geldmacher DS, Whitehouse PJ. Differential diagnosis of Alzheimer's disease. *Neurology*. 1997; 48(5 SUPPL. 6). https://doi.org/10.1212/WNL.48.5_Suppl_6.2S
- Greenblatt HM, Kryger G, Lewis T, Silman I, Sussman JL. Structure of acetylcholinesterase complexed with (-)-galanthamine at 2.3 Å resolution. *FEBS Lett*. 1999; 463(3):321-6. [https://doi.org/10.1016/S0014-5793\(99\)01637-3](https://doi.org/10.1016/S0014-5793(99)01637-3)

26. Farlow MR. Clinical Pharmacokinetics of Galantamine. *Clin Pharmacokinet*. 2003; 42(15):1383-92. <https://doi.org/10.2165/00003088-200342150-00005>

27. Gusztónyi G, Cervos-Navarro J, Bickel U, Kewitz H. Inhibition of Acetylcholinesterase Activity in Human Brain Tissue and Erythrocytes by Galanthamine, Physostigmine and Tacrine. *Clin Chem Lab Med*. 1991; 29(8):487-92. <https://doi.org/10.1515/cclm.1991.29.8.487>

28. Thomsen T, Bickel U, Fischer JP, Kewitz H. Stereoselectivity of cholinesterase inhibition by galanthamine and tolerance in humans. *Eur J Clin Pharmacol*. 1990; 39(6):603-5. <https://doi.org/10.1007/BF00316106>

29. Thomsen T, Zendeh B, Fischer JP, Kewitz H. In vitro effects of various cholinesterase inhibitors on acetyl- and butyrylcholinesterase of healthy volunteers. *Biochem Pharmacol*. 1991; 41(1):139-41. [https://doi.org/10.1016/0006-2952\(91\)90022-W](https://doi.org/10.1016/0006-2952(91)90022-W)

30. Storch A, Schrattenholz A, Cooper JC, Ghani EMA, Gutbrod O, Weber KH, et al. Physostigmine, galanthamine and codeine act as "noncompetitive nicotinic receptor agonists" on clonal rat pheochromocytoma cells. *Eur J Pharmacol Mol Pharmacol*. 1995; 290(3):207-19. [https://doi.org/10.1016/0922-4106\(95\)00080-1](https://doi.org/10.1016/0922-4106(95)00080-1)

31. Schröder B, Reinhardt-Maelicke S, Schrattenholz A, McLane KE, Kretschmer A, Conti-Tronconi BM, et al. Monoclonal antibodies FK1 and WF6 define two neighboring ligand binding sites on Torpedo acetylcholine receptor α -polypeptide. *J Biol Chem*. 1994; 269(14):10407-16. [https://doi.org/10.1016/S0021-9258\(17\)34075-9](https://doi.org/10.1016/S0021-9258(17)34075-9)

32. Sweeney JE, Puttfarcken PS, Coyle JT. Galanthamine, an acetylcholinesterase inhibitor: A time course of the effects on performance and neurochemical parameters in mice. *Pharmacol Biochem Behav*. 1989; 34(1):129-37. [https://doi.org/10.1016/0091-3057\(89\)90364-X](https://doi.org/10.1016/0091-3057(89)90364-X)

33. Irwin RL, Smith HJ. Cholinesterase inhibition by galanthamine and lycoramine. *Biochem Pharmacol*. 1960; 3(2):147-8. [https://doi.org/10.1016/0006-2952\(60\)90030-7](https://doi.org/10.1016/0006-2952(60)90030-7)

34. Lilienfeld S. Galantamine - A novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer's disease. *CNS Drug Rev*. 2002; 8(2):159-76. <https://doi.org/10.1111/j.1527-3458.2002.tb00221.x>

35. Fishkin RJ, Ince ES, Carlezon WA, Dunn RW. D-Cycloserine Attenuates Scopolamine-Induced Learning and Memory Deficits in Rats. *Behav Neural Biol*. 1993; 59(2):150-7. [https://doi.org/10.1016/0163-1047\(93\)90886-M](https://doi.org/10.1016/0163-1047(93)90886-M)

36. Feldman H, Gauthier S, Hecker J, Vellas B, Subbiah P, Whalen E. A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer's disease. *Neurology*. 2001; 57(4):613-20. <https://doi.org/10.1212/WNL.57.4.613>

37. Belluardo N, Mudò G, Blum M, Fuxé K. Central nicotinic receptors, neurotrophic factors and neuroprotection. *Behav Brain Res*. 2000; 113(1-2):21-34. [https://doi.org/10.1016/S0166-4328\(00\)00197-2](https://doi.org/10.1016/S0166-4328(00)00197-2)

38. Donnelly-Roberts DL, Xue IC, Arneric SP, Sullivan JP. In vitro neuroprotective properties of the novel cholinergic channel activator (ChCA), ABT-418. *Brain Res*. 1996; 719(1-2):36-44. [https://doi.org/10.1016/0006-8993\(96\)00063-7](https://doi.org/10.1016/0006-8993(96)00063-7)

39. Yamashita H, Nakamura S. Nicotine rescues PC12 cells from death induced by nerve growth factor deprivation. 1996; 213:145-7. [https://doi.org/10.1016/0304-3940\(96\)12829-9](https://doi.org/10.1016/0304-3940(96)12829-9)

40. Shimohama S, Greenwald DL, Shafron DH, Akaika A, Maeda T, Kaneko S, et al. Nicotinic α 7 receptors protect against glutamate neurotoxicity and neuronal ischemic damage. *Brain Res*. 1998; 779(1-2):359-63. [https://doi.org/10.1016/S0006-8993\(97\)00194-7](https://doi.org/10.1016/S0006-8993(97)00194-7)

41. Wang HY, Lee DHS, D'Andrea MR, Peterson PA, Shank RP, Reitz AB. β -Amyloid 1-42 binds to α 7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. *J Biol Chem* [Internet]. 2000; 275(8):5626-32. <https://doi.org/10.1074/jbc.275.8.5626>

42. Nakamizo T, Kawamata J, Yamashita H, Kanki R, Kihara T, Sawada H, et al. Stimulation of nicotinic acetylcholine receptors protects motor neurons. *Biochem Biophys Res Commun*. 2005; 330(4):1285-9. <https://doi.org/10.1016/j.bbrc.2005.03.115>

43. Kihara T, Sawada H, Nakamizo T, Kanki R, Yamashita H, Maelicke A, et al. Galantamine modulates nicotinic receptor and blocks A β -enhanced glutamate toxicity. *Biochem Biophys Res Commun*. 2004; 325(3):976-82. <https://doi.org/10.1016/j.bbrc.2004.10.132>

44. Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. *Brain Behav Immun* [Internet]. 2009; 23(1):41-5. <https://doi.org/10.1016/j.bbi.2008.06.011>

45. Marrero MB, Lucas R, Salet C, Hauser TA, Mazurov A, Lippiello PM, et al. An α 7 nicotinic acetylcholine receptor-selective agonist reduces weight gain and metabolic changes in a mouse model of diabetes. *J Pharmacol Exp Ther*. 2010; 332(1):173-80. <https://doi.org/10.1124/jpet.109.154633>

46. Amori RE, Lau J PA. Efficacy and safety of incretin therapy in type 2 diabetes: Systematic review and meta-analysis. *JAMA*. 2007; 298(2):194-206. <https://doi.org/10.1001/jama.298.2.194>

47. Geronikolou SA, Albanopoulos K, Chroussos G, Cokkinos D. Evaluating the homeostasis assessment model insulin resistance and the cardiac autonomic system in bariatric surgery patients: A meta-analysis. *Adv Exp Med Biol*. 2017; 988:249-59. https://doi.org/10.1007/978-3-319-56246-9_20

48. Taşçilar ME, Yokuşoğlu M, Boyraz M, Baysan O, Köz C, Dündaröz R. Cardiac Autonomic Functions in Obese Children - Original Article. *J Clin Res Pediatr Endocrinol*. 2011; 3(2):60-4. <https://doi.org/10.4274/jcrpe.v3i2.13>

49. Das UN. Vagus nerve stimulation as a strategy to prevent and manage metabolic syndrome. *Med Hypotheses* [Internet]. 2011; 76(3):429-33. <https://doi.org/10.1016/j.mehy.2010.11.013>

50. Abiola M, Favier M, Christodoulou-Vafeiadou E, Pichard AL, Martelly I, Guillet-Deniau I. Activation of Wnt/ β -catenin signaling increases insulin sensitivity through a reciprocal regulation of Wnt10B and SREBP-1c in skeletal muscle cells. *PLoS One*. 2009; 4(12):1-14. <https://doi.org/10.1371/journal.pone.0008509>

51. Jojo GM, Kuppusamy G, Selvaraj K, Baruah UK. Prospective of managing impaired brain insulin signalling in late onset Alzheimers disease with existing diabetic drugs. *J Diabetes Metab Disord*. 2019; 18(1):229-42. <https://doi.org/10.1007/s40200-019-00405-2>

52. Mezeiova E, Spilovska K, Nepovimova E, Gorecki L, Soukup O, Dolezal R, et al. Profiling donepezil template into multipotent hybrids with antioxidant properties. *J Enzyme Inhib Med Chem* [Internet]. 2018; 33(1):583-606. <https://doi.org/10.1080/14756366.2018.1443326>

53. Traykova M, Traykov T, Hadjimitova V, Krikorian K, Bojadzieva N. Antioxidant properties of galantamine hydrobromide. *Zeitschrift fur Naturforsch - Sect C J Biosci*. 2003; 58(5-6):361-5. <https://doi.org/10.1515/znc-2003-5-613>

54. Benchekroun M, Ismaili L, Pudlo M, Luzet V, Gharbi T, Refouelet B, et al. Donepezil-ferulic acid hybrids as anti-Alzheimer drugs. *Future Med Chem*. 2015; 7(1):15-21. <https://doi.org/10.4155/fmc.14.148>

55. Brodaty H, Woodward M, Boundy K, Barnes N, Allen G. A naturalistic study of galantamine for Alzheimer's disease. *CNS Drugs*. 2006; 20(11):935-43. <https://doi.org/10.2165/00023210-200620110-00006>

56. Akilo OD, Kumar P, Choonara YE, Pradeep P, du Toit LC, Pillay V. Hypothesis: apo-lactoferrin-Galantamine Proteo-alkaloid Conjugate for Alzheimer's disease Intervention. *J Cell Mol Med*. 2018; 22(3):1957-63. <https://doi.org/10.1111/jcm.13484>

57. Vidoni ED, Clutton J, Becker AM, Sherry E, Bothwell R MJ. Trial of oxaloacetate in alzheimer's disease (toad): Interim fdg pet analysis. *Alzheimer's Dement J Alzheimer's Assoc*. 2018; 14(7):P1435-6. <https://doi.org/10.1016/j.jalz.2018.06.2411>

58. Kowal NM, Ahring PK, Liao VVY, Indurti DC, Harvey BS, O'Connor SM, et al. Galantamine is not a positive allosteric modulator of human $\alpha 4\beta 2$ or $\alpha 7$ nicotinic acetylcholine receptors. *Br J Pharmacol.* 2018; 175(14):2911-25. <https://doi.org/10.1111/bph.14329>

59. Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer's disease: a systematic review and meta-analysis. *Clin Interv Aging* [Internet]. 2008;3(January):456-67. Available from: <http://www.ncbi.nlm.nih.gov/article/fcgi?artid=2546466&tool=pmcentrez&rendertype=abstract>

60. Fisher AA, Davis MW. Prolonged QT interval, syncope, and delirium with galantamine. *Ann Pharmacother.* 2008; 42(2):278-83. <https://doi.org/10.1345/aph.1K514>

61. Prvulovic D, Hampel H, Pantel J. Galantamine for Alzheimer's disease (Review). *Expert Opin Drug Metab Toxicol.* 2010; 4:345-54. <https://doi.org/10.1517/17425251003592137>

62. Diab M, Coloe J, Bechtel MA. Bullous pemphigoid precipitated by galantamine hydrobromide. *Cutis.* 2009; 83(3):139-40.

63. parallel-group 6-month study." *Clinical therapeutics* 28.3 (2006): 365-372 Dunbar Fiona Young Zhu and H. Robert Brashear. "Post hoc comparison of daily rates of nausea and vomiting with once- and twice-daily galantamine from a double-blind placebo-controlled. *Post Hoc Comparison of Daily Rates of Nausea and Vomiting with Once- and Twice-Daily Galantamine from a Double-*. 2006; <https://doi.org/10.1016/j.clinthera.2006.03.002>

64. Scott LJ, Goa KL, Giacobini E, Medical G, McDowell FH, Masterton W, et al. A Review of its Use in Alzheimer's Disease. *Adis Drug Eval.* 2000; 60(5):1095-122. <https://doi.org/10.2165/00003495-200060050-00008>

65. Rockwood K, Mintzer J, Truyen L, Wessel T, Wilkinson D. Effects of a flexible galantamine dose in Alzheimer's disease: A randomised, controlled trial. *J Neurol Neurosurg Psychiatry.* 2001; 71(5):589-95. <https://doi.org/10.1136/jnnp.71.5.589>