

REVIEW ARTICLE

IMPORTANCE OF HERBAL ANTI-HYPERLIPIDEMICS IN CARDIAC DISORDERS AND HYPERGLYCAEMIA: REVIEW AT A GLANCE

Praveen K. Dixit *, Suchita Mittal

Department of Pharmacology Jaipur College of Pharmacy, Jaipur, Rajasthan, India-302022

*Corresponding Author's Email: pharmindia.praveen87@gmail.com, Contact: 077372-46077

ABSTRACT:

In recent years, herbal remedies have evolved with enormous impeding of alleviate. Herbal medicine progress against the non-communicable disease like diabetes is one of the propel area of research in the field of worldwide medicine. Hyperlipidemia is a disorder of lipid metabolism manifested by increase of plasma concentrations of the assortment of lipid and lipoprotein fractions. Hyperlipidemia has been one of the maximum risk factors contributing to the occurrence and relentlessness of coronary heart diseases. HMG Co A reductase is a key enzyme involving in rate limiting step of cholesterol biosynthesis. Conservative anti-hyperlipidemic drugs have restricted efficacies and vital side effects, so that alternative lipid lowering agents are required. This review explains the plants possessing significant anti-hyperlipidemic activity with their botanical name, family, part used, extract used and inducing agent of hyperlipidemia

Keywords: Herbal sources, Coronary heart diseases, Anti-hyperlipidemic activity, HMG Co A reductase

INTRODUCTION:

The lipid metabolism is regulated in many different ways. Enzymes are major regulators of lipid metabolism. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is one of the enzymes involved in cholesterol biosynthesis¹. Hyperlipidemia and Hyper-cholesterolemia are not only secondary metabolic dysregulations associated with diabetes but also represent increased risk factors for development of diabetes². Hyperlipidemia is a highly predictive risk factor for atherosclerosis coronary artery disease and cerebral vascular disease³. There is a general consensus that these metabolic disorders share hyperinsulinemia and insulin resistance as a common link leading to both micro- and macro-angiopathies⁴. Generally after a prolonged "silent" period atherogenesis may become clinically significant. The fatty streak and thickening of intima in blood vessels represent the initial lesion of atherosclerosis⁵. Evidence from studies both in animals and humans indicates that progression can be

slowed if elevated serum concentration of the atherogenic lipoprotein and triglycerides are reduced, which in turn prevents coronary heart disease⁶. Natural medicines have been used empirically to lower the cholesterol levels⁷. However, the risk of hyperlipidemia would be reduced by consumption of flavonoids and their glycosides, supported by abundant studies⁸. Phytosterols and natural antioxidants have also been shown to be effective in reducing lipid profiles and also mitigate peroxidative modification of lipoproteins and atherosclerosis⁹. In recent years, the development of lipid lowering drug or formulation from natural source has gained importance¹⁰. A large number of medicinal plants have been tested and found to contain active principles with curative properties against hyperlipidemic¹¹. This paper deals with the study of indigenous herbs viewing prospective for dealing of hyperlipidemic activity.

Table 1: List of herbal sources possessing anti-hyperlipidemic activity

S. No.	Plant Name	Family	Part Used	Extract Used	Inducing Agent
1.	<i>Asparagus racemosus</i> ¹²	Liliaceae	Entire plant	Ethanol	Streptozotocin
2.	<i>Aegle marmelos</i> ¹³	Rutaceae	Leaves	Aqueous	Streptozotocin
3.	<i>Alstonia scholaris</i> Linn ¹⁴	Apocynaceae	Bark	Aqueous	Streptozotocin
4.	<i>Abelmoschus esculentus</i> ¹⁵	Malvaceae	Peel, seed	Powder	Streptozotocin
5.	<i>Artocarpus heterophyllus</i> ¹⁶	Moraceae	Leaves	Ethylacetate	Streptozotocin
6.	<i>Bauhinia purpurea</i> ¹⁷	Fabaceae	Unripe pods and leaves	Ethanol	Cholesterol 2%, sodium cholate 1% and coconut oil 2%
7.	<i>Bauhinia variegata</i> Linn ¹⁸	Ceasalpiniaceae	Stem bark, roots	Aqueous and ethanolic	In vitro
8.	<i>Bruguiera cylindrinca</i> (L) ¹⁹	Rhizophoraceae	Stem, Leaves	Ethanol aqueous	Triton and cholesterol fed
9.	<i>Bryonia laciniosa</i> Linn ²⁰	Cucurbitaceae	Seeds	Ethanol	Streptozotocin
10.	<i>Bersama engleriana</i> ²¹	Melianthaceae	Leaves	Aqueous and methanolic	Streptozotocin/nicotinamide
11.	<i>Boerhaavia diffusa</i> ²²	Nyctaginaceae	Roots	Ethanol	Streptozotocin
12.	<i>Carica papaya</i> Linn ²³	Caricaceae	Leaves	Aqueous	Alloxan

13.	<i>Cinnamomum tamala</i> Nees ²⁴	Lauraceae	Leaves	Aqueous and ethanolic	Cholesterol (100g), cholic acid(50g) in 1 liter of coconut oil supplemented with egg
14.	<i>Cynara scolymus</i> ²⁵	Asteraceae	Leaves	Aqueous	Streptozotocin
15.	<i>Carissa carandas</i> ²⁶	Apocynaceae	Leaves	Aqueous:ethanolic	Egg yolk
16.	<i>Casuarina equisetifolia</i> ²⁷	Casuarinaceae	Bark	Ethanolic	Streptozotocin
17.	<i>Cleome droseriloia</i> ²⁸	Rubiaceae	Herb	Aqueous	Streptozotocin
18.	<i>Cassia auriculata</i> ²⁹	Fabaceae	Flower	Ethanolic	Triton WR 1339
19.	<i>Clitoria ternatea</i> Linn ³⁰	Fabaceae	Leaves, flower	Aqueous	Alloxan
20.	<i>Chloris barbata</i> ³¹	Poaceae	Leaves	Methanol	Streptozotocin
21.	<i>Cinnamomum verum</i> ³²	Lauraceae	Bark	Aqueous	Alloxan
22.	<i>Caesalpinia bonduc</i> L ³³	Fabaceae	Seeds	Hydro-methanolic	Streptozotocin
23.	<i>Cucumis melo</i> Linn ³⁴	Cucurbitaceae	Fruit peel	Chloroform, methanolic, aqueous	Triton-100
24.	<i>Dodonaea viscosa</i> ³⁵	Sapindaceae	Leaves	Aqueous, methanol	Alloxan
25.	<i>Dillenia indica</i> ³⁶	Dilleniaceae	Leaves	Methanolic	Streptozotocin
26.	<i>Eryngium carlineae</i> ³⁷	Apiaceae	Aerial part	Ethanolic	Streptozotocin
27.	<i>Eugenia jambolana</i> ³⁸	Myrtaceae	Pulp, seeds	Ethanolic	Streptozotocin
28.	<i>Euphorbia hirta</i> ³⁹	Euphorbiaceae	Leaves	Ethanolic	Streptozotocin
29.	<i>Erythrina indica</i> ⁴⁰	Fabaceae	Leaves	Aqueous	High fat diet
30.	<i>Gmelina arborea</i> ⁴¹	Verbenaceae	Leaves	Ethanolic	Streptozotocin
31.	<i>Gymnema sylvestre</i> R. Br ⁴² .	Asclepiadaceae	Leaves	Hydroalcoholic	2% Cholesterol, 1% sodium cholate and 2% coconut oil
32.	<i>Helicteres isora</i> L ⁴³	Sterculaceae	Fruit	Ethanol	Streptozotocin
33.	<i>Hibiscus cannabinus</i> L ⁴⁴	Malvaceae	Leaves	Hydroalcoholic	Cholesterol, cholic acid, casein, choline, sucrose
34.	<i>Holarrhena antidyserterica</i> L ⁴⁵	Apocynaceae	Bark	Methanolic	Alloxan
35.	<i>Hypericum perforatum</i> L ⁴⁶	Hypericaceae	Whole plant	Hydroalcoholic	Fructose
36.	<i>Hibiscus platanifolius</i> Linn ⁴⁷	Malvaceae	Leaves	Ethanolic	Alloxan
37.	<i>Lagenaria siceraria</i> ⁴⁸	Cucurbitaceae	Fruit	Juice	Atherogenic diet
38.	<i>Mimosa pudica</i> ⁴⁹	Mimosaceae	Whole plant	Ethanolic	Butter
39.	<i>Mangifera indica</i> L ⁵⁰	Anacardiaceae	Leaves	Aqueous	High cholesterol diet
40.	<i>Morus indica</i> ⁵¹	Moraceae	Leaves	Ethanolic	Alloxan
41.	<i>Momordica charantia</i> ⁵²	Cucurbitaceae	Fruit	Methanolic	Alloxan
42.	<i>Mirabilis jalapa</i> L ⁵³	Nyctaginaceae	Roots	Ethanolic	Streptozotocin
43.	<i>Moringa oleifera</i> ⁵⁴	Moringaceae	Leaves	Aqueous	Alloxan
44.	<i>Musa paradisiaca</i> ⁵⁵	Musaceae	Roots	Methanol	Streptozotocin
45.	<i>Nerium oleander</i> Linn ⁵⁶	Apocynaceae	Flower	Hydroethanolic	Triton WR 1339
46.	<i>Nyctanthes arbortristis</i> Linn ⁵⁷	Nyctanthaceae	Roots	Ethanolic	Streptozotocin
47.	<i>Ocimum gratissimum</i> ⁵⁸	Lamiceae	Leaves	Aqueous	Alloxan
48.	<i>Phyllanthus rheedii</i> ⁵⁹	Euphorbiaceae	Whole plant	Ethanolic	Streptozotocin
49.	<i>Peucedanum pastinacifolium</i> ⁶⁰	Apiaceae	Aerial part	Hydroalcoholic	Streptozotocin
50.	<i>Portulaca oleracea</i> Linn ⁶¹	Portulacaceae	Leaves	Ethanolic	Dexamethasone
51.	<i>Picrorhiza kurroa</i> Royle ex Benth ⁶²	Scrophulariaceae	Roots	Alcoholic, chloroform and aqueous	Triton wr-1339
52.	<i>Piper longum</i> ⁶³	Piperaceae	Roots	Aqueous	Streptozotocin
53.	<i>Prosopis cineraria</i> ⁶⁴	Fabaceae	Bark	Ethanolic	Alloxan

54.	<i>Pedalium murex</i> L ⁶⁵	Pedaliaceae	Fruit	Ethanolic	High fat diet
55.	<i>Pithecellobium dulce</i> ⁶⁶	Leguminosae	Leaves	Aqueous	Triton Wr-1339
56.	<i>Rhododendron arboreum</i> ⁶⁷	Ericacea	Flower	Juice	1% w/w cholesterol
57.	<i>Rhinacanthus nasutus</i> ⁶⁸	Acanthaceae	Leaves	Methanolic	Streptozotocin
58.	<i>Rauwolfia serpentina</i> ⁶⁹	Apocynaceae	Roots	Methanolic	Alloxan
59.	<i>Sida cordifolia</i> Linn ⁷⁰	Malvaceae	Roots	Aqueous	Triton WR-1339
60.	<i>Sphaeranthus indicus</i> ⁷¹	Asteraceae	Flower head	Alcoholic	Atherogenic diet
61.	<i>Suaeda maritima</i> L ⁷²	Chenopodiaceae	Aerial part	Aqueous, alcoholic	Triton
62.	<i>Sapindus emarginatus</i> ⁷³	Sapindaceae	Pericarp	Methanolic	Triton WR-1339
63.	<i>Silybum marianum</i> (L.) Gaertner ⁷⁴	Asteraceae	Seeds	n-Hexane, ethylacetate	1 g cholesterol and 3 g corn oil in 96 g of food.
64.	<i>Salacia chinensis</i> ⁷⁵	Hippocrateaceae	Roots	Pet. ether, chloroform, ethanol and aqueous	Triton- and atherogenic diet
65.	<i>Sesbania grandiflora</i> ⁷⁶	Fabaceae	Leaves	Aqueous	Triton wr-1339
66.	<i>Saussurae lappa</i> ⁷⁷	Asteraceae	Roots	Ethanolic	High cholesterol fed diet
67.	<i>Sphaeranthus indicus</i> Linn ⁷⁸	Compositae	Roots	Ethanolic	Streptozotocin
68.	<i>Urtica dioica</i> ⁷⁹	Urticaceae	Leaves	Ethanolic, aqueous	Alloxan
69.	<i>Uraria crinita</i> ⁸⁰	Leguminosae	Whole plant	Aqueous	Streptozotocin
70.	<i>Terminalia paniculata</i> ⁸¹	Combretaceae	Bark	Aqueous	Streptozotocin
71.	<i>Tagetes erecta</i> ⁸²	Compositae	Whole plant	Hydroalcoholic	Cholesterol
72.	<i>Terminalia pallida</i> ⁸³	Combretaceae	Fruit	Ethanolic	High cholesterol fed diet
73.	<i>Tecoma stans</i> ⁸⁴	Bignoniaceae	Flower	Methanol	Atherogenic Diet
74.	<i>Trichilia connaroides</i> ⁸⁵	Meliaceae	Leaves	Chloroform, methanolic	High fat diet
75.	<i>Trianthema portulacastrum</i> Linn ⁸⁶	Aizoaceae	Whole plant	Methanolic	Alloxan

DESCRIPTION OF PLANTS:

*Aegle marmelos*¹³

The lipid lowering property of an aqueous extract of *Aegle marmelos* leaves on streptozotocin (STZ) induced diabetic rats. The lipid profiles such as serum total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), and very low density lipoprotein (VLDL) were studied. Extracts were administered orally at increasing dose levels of 250mg, 350mg, 450mg/kg body wt., to STZ induced diabetic rats. The levels of TC, TG, LDL, HDL, and VLDL were found to be reduced significantly when compared to that of diabetic control rats. These suggest that *A. marmelos* may be useful in the therapy and management of hyperlipidemia by reducing lipid levels.

*Bauhinia purpurea*¹⁷

The ethanol extract of unripe pods and leaves of *Bauhinia purpurea* was evaluated for antihyperlipidemic activity in cholesterol high fat diet (CHFD) induced hyperlipidemia. Changes in body weight and the analysis of serum lipids were carried out at the end of the study. There was a marked decrease in body weight, total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) levels. Also there was a significant increase in high density lipoprotein levels after the treatment with *Bauhinia purpurea* extracts. Ethanol extract of leaves showed a marked effect over body weight reduction and also had a significant effect on the lipoprotein profile. There is a lowered atherogenic index, TC: HDL-c and LDL: HDL-c ratios in the extract treated groups. The present work indicated that *Bauhinia*

purpurea extracts significantly suppressed the CHFD induced hyperlipidemia in rats, suggesting the antihyperlipidemic and antiatherogenic potential of the extracts.

*Boerhaavia diffusa*²²

Ethanol extract of roots of *Boerhaavia diffusa* was administered to streptozotocin induced rats. Glibenclamide was used as a standard drug. Blood glucose levels were determined after oral administration of a dose of *B. diffusa* (400 mg/kg b. wt) in diabetic groups. The ethanolic extract of *B. diffusa* was found to reduce blood sugar in streptozotocin induced diabetic rats. Reduction in blood sugar could be seen from 7th day after continuous administration of the extract. The effect of extracts of *B. diffusa* on serum lipid profile like Total cholesterol, triglycerides, low density, very low density and high density lipoprotein were also measured in the diabetic and non-diabetic rats. There was significant reduction in Total cholesterol, LDL cholesterol, VLDL cholesterol and improvement in HDL cholesterol in diabetic rats. These results indicated that *B. diffusa* possesses a hypoglycemic and antihyperlipidemic effect.

Carica papaya Linn²³

The antihyperglycemic and hypolipidemic activity of aqueous extract of leaves of *Carica papaya* Linn. (AECPL) in alloxan-induced diabetic albino rats. Diabetes was induced in albino rats by administration of alloxan monohydrate (120 mg/kg, i.p.). Blood samples were analyzed for blood glucose on day 0, 1, 7, 14, 21 and lipid profile on day 21. The AECPL showed significant reduction in blood glucose level and serum lipid profile

levels with 400 mg/kg body weight in alloxan-induced diabetic rats as compared with the control. It is concluded that AECPL is effective in controlling blood glucose levels and in improving lipid profile in diabetic rats.

Cinnamomum tamala Nees²⁴

The hypolipidemic effect of *Cinnamomum tamala* Nees leaves extracts in high cholesterol diet induced hyperlipidemia. Aqueous and ethanolic extracts of leaves of *Cinnamomum tamala* Nees. were administered in doses of 400mg/kg /day p.o. each for 10 days. Simultaneous administration of *Cinnamomum tamala* Nees. leaves extracts significantly prevent the rise in serum levels of total cholesterol, triglyceride, LDL-C,VLDL-C and Atherogenic index whereas significant increases in the level of HDL-C.

*Carissa carandas*²⁶

The lipid lowering activity of aqueous: ethanol (1:1) extract of *Carissa carandas* in Egg yolk induced hyperlipidemic rats. A highly significant increase in the weight of group C (High cholesterol diet) rats was observed when compared with control group N. The extract caused a significant reduction in body weight, Cholesterol, Triglycerides, HDL and LDL in hyperlipidemic rats. Histopathological changes induced by high cholesterol diet were also significantly reduced by the extract. The activity of ethanol and water extract of *C. carandas* was comparable to that of atorvastatin.

*Casuarina equisetifolia*²⁷

The anti diabetic - activity potential of *Casuarina equisetifolia* leaves against streptozotocin (STZ) induced experimental rats. Ethanolic extract of bark of *C. equisetifolia* (EECE) was administered to streptozotocin induced rats. Glibenclamide was used as a standard drug. Blood glucose levels were determined after oral administration of a dose of *C. equisetifolia* (400 mg/kg b. wt) in diabetic groups. Blood glucose levels were determined on 0, 7th, 14th and 21st day after oral administration of ethanolic extracts of *C. equisetifolia* (400 mg/kg). An ethanolic extract of *C. equisetifolia* was found to reduce blood sugar in streptozotocin induced diabetic rats. Reduction in blood sugar could be seen from 7th day after continuous administration of the extract. The effect of extracts of *C. equisetifolia* on serum lipid profile like Total cholesterol, triglycerides, low density, very low density and high density lipoprotein were also measured in the diabetic and non diabetic rats. There was significant reduction in Total cholesterol, LDL cholesterol, VLDL cholesterol and improvement in HDL cholesterol in diabetic rats. These results indicated that *C. equisetifolia* possesses a hypoglycemic and antihyperlipidemic effect.

*Chloris barbata*³¹

The in vivo anti-diabetic and anti-hyperlipidemic activities of methanolic extract *Chloris barbata* (MECB) leaves in normal, glucose-loaded hyperglycemic and streptozotocin (STZ) induced diabetic rats. MECB (100, 200 and 400 mg/kg) was administered to STZ (40 mg/kg, i.p) induced diabetic rats for 28 days. The three doses of MECB showed a significant decrease in blood glucose and significant increase in plasma insulin and liver glycogen levels in treated diabetic rats. MECB showed anti-

hyperlipidemic activity as evidenced by significant decrease in serum TC, TG, LDL-C, VLDL-C levels and significant increase in HDL-C level in treated diabetic rats. MECB also restored the altered plasma enzymes such as SGOT, SGPT and ALP, total protein, liver glycogen levels to near normal. The effect of MECB was comparable to the standard drug glibenclamide. Results of this experimental study indicated that MECB possessed anti-diabetic and anti-hyperlipidemic activities.

Cucumis melo Linn³⁴

Anti-hyperlipidemic activity of *Cucumis melo* fruit peel extract in triton induced hyperlipidemia in rats. Chloroform, Methanolic and aqueous extracts of were administered to the triton induced hyperlipidemic rats for 7 days to study antihyperlipidemic acivity. The results concluded that CMFP methanolic extract (500 mg/kg) have definite antihyperlipidemic activity in Triton X-100 induced hyperlipidemia model and which is equipotent activity when compared with Atorvastatin treated group.

*Dillenia indica*³⁶

The present study was carried out to evaluate antidiabetic and antihyperlipidemic effects of *Dillenia indica* methanolic leaves extracts in streptozotocin induced diabetic Wistar rats by administering graded oral doses (250 and 500 mg/kg body weight) for 21 days. The extract showed significant antidiabetic activity. Furthermore, the decreased body weight of rats was significantly improved after extract treatments. Daily oral treatment with the extract for 21 days to diabetic rats, also resulted in significant reduction in serum cholesterol, triglycerides and serum transaminase levels but HDL-cholesterol level was found to be improved as compared to the diabetic control group.

*Eryngium carlineae*³⁷

The effect of chronic administration of ethanolic extract of *Eryngium carlineae* on glucose, creatinine, uric acid, total cholesterol, and triglycerides levels in serum of streptozotocin- (STZ-) induced diabetic rats. Triglycerides, total cholesterol, and uric acid levels increased in serum from diabetic rats. The administration of *E. carlineae* extract reduced the levels of creatinine, uric acid, total cholesterol, and triglycerides. Thus administration of *E. carlineae* is able to reduce hyperlipidemia related to the cardiovascular risk in diabetes mellitus.

*Erythrina indica*⁴⁰

The antihyperlipidemic activity of aqueous extract of *Erythrina indica* leaf, an indigenous plant used in ayurvedic medicine in india. Administration of Aqueous extract of *E. indica* leaf at two dose level 200mg/kg and 300mg/kg for 30 days resulted in the reduction in total cholestral, triglycerides, low density lipoprotein level and significant increase in high density lipoprotein level in the high fat diet which inual hyperlipidemia in rats. The results are compared to that of standard drug, simvastatin 5mg/kg. The study supports the earlier claims of the plant in obesity.

*Gmelina arborea*⁴¹

The antihyperlipidemic effects of ethanolic leaf extract of *Gmelina arborea* in male wistar albino rats at a dose of

150 mg/kg of body weight and standard drug glibenclamide at the dose of 100 μ g/kg given to the animal models. The extract exhibited significant hypoglycemic activity in animal models when compared with a standard antidiabetic drug Glibenclamide. The hypoglycemia produced by the extract may be due to increased uptake of glucose at tissue level and or increase in pancreatic β -cell function or due to inhibition of intestinal glucose absorption of glucose. The lipid profile such as TC, TG and LDL levels were significantly increased in diabetic control animals where as HDL levels were decreased when compared to the control rats. The ethanolic extract of *G. arborea* produced significant antihyperglycemic activity in STZ induced diabetic rat which is comparable to that the Glibenclamide

***Gymnema sylvestre* R. Br⁴²**

Hyperlipidemia was induced in rats by giving high cholesterol diet (2% cholesterol, 1% sodium cholate and 2% coconut oil) for seven days in standard rat chow diet. The hydroalcoholic extract of *G. sylvestre* R. Br. leaves (200 mg kg⁻¹ b.wt.) was orally administered once a day to rats fed with a high cholesterol diet for seven days. High cholesterol fed diet rats exhibited significant increase in total serum cholesterol, triglycerides, low density lipoproteins, very low density lipoprotein and significant decrease in high density lipoproteins. Treatment with hydroalcoholic extract of *Gymnema sylvestre* R. Br. leaves significantly decreased total serum cholesterol, triglycerides, low density lipoproteins, very low density lipoprotein and increased the high density lipoproteins in hyperlipidemic rats and was comparable with that of standard atorvastatin. Hence significant antihyperlipidemic activity of hydroalcholic extract of *Gymnema sylvestre* R. Br. leaves.

***Hibiscus cannabinus* L⁴⁴**

The activity was assessed by estimation of serum lipid profile viz. total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), high density lipoprotein cholesterol (HDL-C), stress (TBARS) and liver histopathological studies of control and drug-treated animals. The extract exhibited a strong dose dependent antihyperlipidemic activity and at dose level 400mg/kg p.o. the extract showed a significant decrease in the levels of serum TC, TG, LDL-C, VLDL-C and TBARS. The extract markedly prevented the liver microvesicular steatosis in hyperlipidemic rats. The study demonstrated that the extract exhibits a potent lipid lowering activity in diet induced hyperlipidemia which account for some of the medical claims attributed to this plant.

***Hypericum perforatum* L⁴⁶**

Hypericum is tested for hypolipidemic activity in normal rats, antiobesity activity in high-fat-diet induced obese rats, and fructose-fed rats. *Hypericum* was orally administered as suspension in 0.3% carboxymethyl cellulose at the doses of 100 and 200 mg/kg body weight for 15 consecutive days. *Hypericum* significantly lowered total cholesterol and low-density cholesterol in normal rats. *Hypericum* significantly inhibited weight gain in high-fat-fed rats. In fructose-fed rats, *Hypericum* normalised the dyslipidemia induced by fructose feeding and improved

the insulin sensitivity. Taken together, *Hypericum* could be the antidepressant therapy of choice for patients suffering from comorbid diabetes and obesity.

***Lagenaria siceraria*⁴⁸**

The effect of juice of the fresh fruits of *Lagenaria siceraria* on the blood cholesterol level of atherogenic diet rats was evaluated. The study was undertaken to assess body weight, total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL) and very low density lipoprotein (VLDL). They were significantly lower in the juice extract treated groups compared to the control group. The study showed that juice of the fresh fruits of *L. siceraria* have the potential to cause a blood cholesterol lowering effect. The serum biochemistry changes may suggest that the juice extract has a tonic effect on the kidneys and the liver and these organs play central role in drug metabolism. Absence of significant lesion in the kidney, liver and testes may indicate that the plant is safe for medicinal use.

***Mimosa pudica*⁴⁹**

The hypolipidemic activity of *Mimosa pudica* extract was studied on high fat diet induced models of hyperlipidemia in rats. Hyperlipidemia in experimental rats evidenced by an enhancement in the levels of Cholesterols, Triglycerides, LDL and VLDL. Ehanol extract showed significant hypolipidemic effect by lowering the serum levels of biochemical parameters such as significant reduction in the level of serum Cholesterol, TG, LDL, VLDL and increase in HDL level which was similar to the standard drug Lovastatin.

***Moringa oleifera*⁵⁴**

The effect of aqueous leaf extract of *Moringa oleifera* on plasma glucose level, total cholesterol level, triglycerides (TG), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in male albino rats. Diabetes was induced by 100 mg/kg of alloxan monohydrate. The control and the diabetic groups received distilled water while the diabetic treated group was administered 400 mg/kg body weight of aqueous leaf extract of *M. oleifera* for 28 days. At the end of the experiment, plasma glucose level, cholesterol, Triglycerides (TG), High Density Lipoprotein (HDL) and Low Density Lipoprotein (LDL) were determined in all the experimental animals after 12 hours fast. The result showed significant increases in plasma cholesterol, TG and LDL level of the diabetic control group when compared with the normal control group while there were no significant differences in the *M. oleifera* -treated diabetic group and the normal control group. The HDL however was not different in all the three groups. Oral administration of aqueous leaf extract of *M. oleifera* may reduce the plasma lipid imbalances associated with diabetes mellitus.

***Ocimum gratissimum*⁵⁸**

The effect of chronic administration of aqueous leaf extract of *Ocimum gratissimum* on total cholesterol level, triglycerides (TG), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in male albino rats. At the end of the experiment, plasma glucose level, cholesterol, TG, HDL and LDL were determined in all the experimental animals after 12 h fast. The result showed

significant increases in plasma cholesterol, TG and LDL level of the diabetic group when compared with the control group while there were no significant differences in the OG-treated diabetic group and the control group. The HDL however was not different in all the three groups. It was then concluded that oral administration of aqueous leaf extract of *O. gratissimum* may reduce the plasma lipid imbalances associated with diabetes mellitus.

***Picrorhiza kurroa* Royle ex Benth⁶²**

The alcoholic, chloroform and aqueous root extracts of *Picrorhiza kurroa* Royle ex Benth were screened for its antihyperlipidemic activity in Triton WR-1339 induced albino rats. Atorlip-20 was used as reference standard. The results showed significant decrease in triglyceride and cholesterol level when compared with the hypolipemic groups by using different dose: low (50mg/kg), high (200mg/kg) and standard Atorlip-20(4mg/kg bw) and by treating for 7 hr and 24 hr.

***Pedalium murex* L⁶⁵**

The anti hyperlipidemic potential of the ethanolic extract from the fruits of *Pedalium murex* at doses of 200 and 400 mg/kg/p.o. in high fat diet fed rats. Biochemical parameters like serum total cholesterol (TC), High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), very low density lipoprotein (VLDL) and triglycerides (TG) levels were measured and compared with animals concurrently treated with reference standards Gemfibrozil and Atorvastatin. The ethanolic extract showed a significant decrease in triglycerides, LDL, VLDL, cholesterol and a significant increase in HDL levels at the tested doses.

***Pithecellobium dulce*⁶⁶**

Pithecellobium dulce (PD) was study on anti-hyperlipidemic activity of aqueous extract of leaves of PD against triton induced hyperlipidemia in rats. PD administered at a dose of 200 μ g/kg (p.o) to the triton induced hyperlipidemic rats. PD has shown a significant decrease in the levels of serum cholesterol, phospholipids, triglyceride, LDL, VLDL and significant increase in the level of serum HDL. Aqueous extract fraction decreased serum level of total cholesterol, LDL and increased the serum HDL cholesterol level.

***Sapindus emarginatus*⁷³**

Sapindus emarginatus (SE) was study for antihyperlipidemic activity of methanol extract of pericarps of SE against Triton induced hyperlipidemia in

rats. SE was administered at a dose of 100 and 200mg/kg (p.o) to Triton induced hyperlipidemic rats. Fenofibrate was used as reference standard. SE shows a significant decrease in the levels of serum cholesterol, phospholipid, triglyceride, LDL, VLDL and significant increase in the level of serum HDL at the dose of 100 and 200mg/kg (p.o) against Triton induced hyperlipidemic in rats. Methanol extracts decreased serum level of total cholesterol by 69.72%. On the other hand aqueous extract of SE increased the serum HDL cholesterol level by 24.11%. The reduction of LDL cholesterol level by extract was 30.31%.

***Sida cordifolia* Linn⁷⁰**

The study was to evaluate antioxidant and antihyperlipidemic activity of an aqueous extract of root of *Sida cordifolia* Linn. (SCAE) against Triton WR-1339 and High fat diet (HFD) induced hyperlipidemia in experimental animal. Effect of simultaneous administration of SCAE in different doses (200 & 400 mg/kg) by oral route was estimated in Triton WR-1339 and HFD induced hyperlipidemic animals by estimating serum lipid levels of cholesterol (TC), Triglycerides (TG), Low density lipoproteins (LDL), High density lipoprotein (HDL) and Very low density lipoprotein (VLDL) and atherogenic index. Whereas antioxidant activity was carried out by estimating serum levels oxidative marker Superoxide dismutase (SOD) and Catalase (CAT). It was revealed that the aqueous extract of *Sida cordifolia* possesses significant hyperlipidemic activity in acute as well as chronic hyperlipidemic models in the company of promising antioxidant activity. So, it was concluded that aqueous extract of *Sida cordifolia* possesses potential antioxidant and antihyperlipidemic activity in experimental animals.

CONCLUSION:

Indian plant varieties have proved the worth of the herbs in plummeting the blood sugar level. Hyperlipidemia is a predictable problem of Diabetes mellitus categorized by elevated levels of cholesterol, triglycerides and phospholipids and changes in lipoprotein composition in other hand these changes are also associated with cardiac diseases. . This article gives an overview of some conventionally used medicinal plants which have significant anti-hyperlipidemic property and may be useful as anticipatory agents in some ailments like cardiac disorders and hyperglycaemia. By this review, it can be concluded that in the core of the nature there are so many plants which possess potent anti-hyperlipidemic property and many more are still to be explored.

REFERENCES:

1. Patel HD, Shah GB, Trivedi V. Investigation of HMG Co A Reductase Inhibitory Activity of Antihyperlipidemic Herbal Drugs *In Vitro* Study. Asian J Exp Biol Sci 2011; 2(1): 63-68.
2. Ansarullah, Jadeja RN, Thounaojam MC, Patel V, Devkar RV, Ramachandran AV. Antihyperlipidemic potential of a polyherbal preparation on triton WR 1339 (Tyloxapol) induced hyperlipidemia: A comparison with lovastatin. International Journal of Green Pharmacy 2009; 3(2): 119-124.
3. Shrivastava R, Solanki SS, Tomar V, Guard N, Guard A, Kannojia P et al Comparative evaluation of polyherbal combination of hypolipidemic activity. International Journal of Pharmaceutical Sciences and Drug Research 2009; 1(1): 9-12.
4. Said O, Saad B, Fulder S, Amin R, Kassis E, Khalil K. Hypolipidemic Activity of Extracts from *Eriobotrya japonica* and *Olea europaea*, Traditionally Used in the Greco-Arab Medicine in Maintaining Healthy Fat Levels in the Blood. The Open Complementary Medicine Journal 2009; 1: 84-91.
5. Das S, Hakim A, Mittal A. Study of the antihyperlipidemic, antioxidative and antiatherogenic activity of *Aegle marmelos* linn. in rabbit receiving high fat diet. Asian Journal of Pharmaceutical and Clinical Research 2012; 5(4): 69-72.
6. Borate AR, Suralkar AA, Birje SS, Malusare PV, Bangale PA. Antihyperlipidemic effect of protocatechuic acid in fructose induced hyperlipidemia in rats. International Journal of Pharma and Bio Sciences 2011; 2(4): 456-460.

7. Al-Dosari MS. Hypolipidemic and antioxidant activities of avocado fruit pulp on high cholesterol fed diet in rats. African Journal of Pharmacy and Pharmacology 2011; 5(12): 1475-1483.
8. Chen J, Li X. Hypolipidemic effect of flavonoids from mulberry leaves in triton WR-1339 induced hyperlipidemic mice. Asia Pac J Clin Nutr 2007; 16 (1): 290-294.
9. Ghosh R, Kadam PP, Kadam VJ. Antioxidant and hypolipidemic activity of Kumbhajatu in hypercholesterolemic rats. Int J Ayurveda Res 2010; 1(3): 159-162.
10. Raj CD, Jayanthi V, Manaswini VS, Gayathri R, Ranjani C, Brindha P. Effect of polyherbal formulation (OB-6) on high fat diet induced hyperlipidemia in rats. International Journal of Pharmacy and Pharmaceutical Sciences 2012; 4(2): 31-35.
11. Dixit PK, Mittal S. Herbal sources of anti-arthritis potential: A comprehensive review. International Journal of Pharmaceutical and Biomedical Research 2013; 4(2): 88-92.
12. Vadivelan R, Dipanjan M, Umasankar P, Dhanabal SP, Satishkumar MN, Antony S, et al. Hypoglycemic, antioxidant and hypolipidemic activity of *Asparagus racemosus* on streptozotocin-induced diabetic in rats. Advances in Applied Science Research 2011; 2(3): 179-185.
13. Devi K, Sivaraj A, Kumar PV, Ahmed KSZ, Sathiyaraj K, Kumar BS et al. Hypolipidemic effect of *Aegle marmelos* leaf extract in streptozotocin (STZ) induced diabetic male albino rats. International Journal of PharmTech Research 2010; 2(1): 259-265.
14. Bandawane D, Juvekar A, Juvekar M. Antidiabetic and Antihyperlipidemic Effect of *Alstonia scholaris* Linn Bark in Streptozotocin Induced Diabetic Rats. Indian Journal of Pharmaceutical Education and Research 2011; 45(2): 114-120.
15. Sabitha V, Ramachandran S, Naveen KR, Panneerselvam K. Antidiabetic and antihyperlipidemic potential of *Abelmoschus esculentus* (L.) Moench. in streptozotocin-induced diabetic rats. J Pharm Bioallied Sci 2011; 3(3): 397-402.
16. Chackrewarthy S, Thabrew MI, Weerasuriya MKB, Jayasekera S. Evaluation of the hypoglycemic and hypolipidemic effects of an ethylacetate fraction of *Artocarpus heterophyllus* (jak) leaves in streptozotocin-induced diabetic rats. Pharmacogn Mag 2010; 6(23): 186-190.
17. Lakshmi BVS, Neelima N, Kasthuri N, Umarani V, Sudhakar M. Antihyperlipidemic activity of *Bauhinia purpurea* extracts in hypercholesterolemic albino rats. International Journal of PharmTech Research 2011; 3(3): 1265-1272.
18. Rajani GP, Ashok P. *In vitro* antioxidant and antihyperlipidemic activities of *Bauhinia variegata* Linn. Indian Journal of Pharmacology 2009; 41(5): 227-232.
19. Lakshmi V, Sonkar R, Khanna AK. Antihyperlipidemic and antioxidant activities of *Bruguiera cylindrina* (L.). Chron Young Sci 2012; 3(3): 236-43.
20. Patel SB, Santani D, Shah MB, Patel VS. Anti-hyperglycemic and Anti-hyperlipidemic Effects of *Bryonia Laciniosa* Seed Extract and its Saponin Fraction in Streptozotocin-induced Diabetes in Rats. J Young Pharm 2012; 4(3): 171-176.
21. Pierre W, Gildas AJH, Ulrich MC, Modeste WN, Benoît NT, Albert K. Hypoglycemic and hypolipidemic effects of *Bersama engleriana* leaves in nicotinamide/streptozotocin-induced type 2 diabetic rats. BMC Complementary and Alternative Medicine 2012; 12: 264.
22. Murti K, Lambole V, Panchal M, Kumar U. Antidiabetic and antihyperlipidemic activity of roots of *Boerhaavia diffusa* on streptozotocin induced diabetic rats. Pharmacologyonline 2011; 1: 15-21.
23. Maniyar Y, Bhixavatimath P. Antihyperglycemic and hypolipidemic activities of aqueous extract of *Carica papaya* Linn. leaves in alloxan-induced diabetic rats. J Ayurveda Integr Med 2012; 3(2): 70-74.
24. Dhulasavant V, Shinde S, Pawar M, Naikwade NS. Antihyperlipidemic Activity of *Cinnamomum tamala* Nees. on High Cholesterol Diet Induced Hyperlipidemia. International Journal of PharmTech Research 2010; 2(4): 2517-2521.
25. Heidarian E, Soofiniya Y. Hypolipidemic and hypoglycemic effects of aerial part of *Cynara scolymus* in streptozotocin-induced diabetic rats. Journal of Medicinal Plants Research 2011; 5(13): 2717-2723.
26. Sumbul S, Ahmed SI. Anti-hyperlipidemic Activity of *Carissa carandas* (Auct.) Leaves Extract in Egg Yolk Induced Hyperlipidemic Rats. Journal of Basic & Applied Sciences 2012; 8: 124-134.
27. Sriram N. Antidiabetic and antihyperlipidemic activity of bark of *Casuarina equisetifolia* on streptozotocin induced diabetic rats. International Journal of Pharmacy Review and Research 2011; 1(1): 4-8.
28. El-Khawaga OY, Abou-Seif MA, El-Waseef A and Negm AA. Hypoglycemic, Hypolipidemic and Antioxidant Activities of *Cleome droserifolia* in Streptozotocin-Diabetic Rats. Journal of Stress Physiology & Biochemistry 2010; 6(4): 28-41.
29. Vijayaraj P, Muthukumar K, Sabarirajan J, Nachiappan V. Antihyperlipidemic activity of *Cassia auriculata* flowers in triton WR 1339 induced hyperlipidemic rats. Exp Toxicol Pathol 2013; 65(1-2): 135-41.
30. Daisy P, Santosh K, Rajathi M. Antihyperglycemic and antihyperlipidemic effects of *Clitoria ternatea* Linn. in alloxan-induced diabetic rats. African Journal of Microbiology Research 2009; 3(5): 287-291.
31. Kumar AS, Kavimani S, Jayaveera KN. Anti-diabetic and anti-hyperlipidemic effects of methanol extracts of *Chloris barbata*(SW.) in Streptozotocin- induced diabetic rats. European Journal of Experimental Biology 2012; 2 (4): 1346-1353.
32. El-Desoky GE, Aboul-Soud MAM, Al-Numair KS. Antidiabetic and hypolipidemic effects of Ceylon cinnamon (*Cinnamomum verum*) in alloxan-diabetic rats. Journal of Medicinal Plants Research 2012; 6(9): 1685-1691.
33. Jana K, Chatterjee K, Bera TK, Maiti S, De D, Ali KM et al. Antihyperglycemic and antihyperlipidemic effects of hydro-methanolic extract of seed of *Caesalpinia bonduc* in streptozotocin induced diabetic male albino rat. International Journal of PharmTech Research 2010; 2(4): 2234-2242.
34. Bidkar JS, Bhujbal MD, Dama GY. Anti-hyperlipidemic activity of *Cucumis melo* fruit peel different extract in Triton X-100 induced hyperlipidemia in rats. International Journal of Universal Pharmacy and Bio Sciences 2012; 1(1): 1-13.
35. Ahmad M, Mahmood Q, Gulzar K, Akhtar MS, Saleem M, Qadir MI. Antihyperlipidemic and Hepatoprotective Activity of *Dodonaea viscosa* Leaves Extracts in Alloxan-Induced Diabetic Rabbits (*Oryctolagus cuniculus*). Pak Vet J 2012; 32(1): 50-54.
36. Kumar S, Kumar V, Prakash O. Antidiabetic and antihyperlipidemic effects of *Dillenia indica* (L.) leaves extract. Braz. J. Pharm. Sci 2011; 47(2).
37. Noriega-Cisneros R, Ortiz-A'vila O, Esquivel-Gutierrez E, Clemente-Guerrero M, Manzo-Avalos S, Salgado-Garciglia R et al. Hypolipidemic Activity of *Eryngium carlineae* on Streptozotocin-Induced Diabetic Rats. Biochemistry Research International 2012; 1-5.
38. Srivastava B, Sinha AK, Gaur S, Barshiliya Y. Study of hypoglycaemic and hypolipidemic activity of *Eugenia Jambolana* pulp and seed extract in Streptozotocin induced diabetic albino rats. Asian Journal of Pharmacy and Life Science 2012; 2(1): 10-19.
39. Maurya AK, Tripathi S, Ahmed Z, Sahu RK. Antidiabetic and antihyperlipidemic effect of *Euphorbia hirta* in streptozotocin induced diabetic rats. Der Pharmacia Lettre 2012; 4(2): 703-707.
40. Kamalraj R. Antihyperlipidemic studies on leaf extract of *Erythrina indica* lam. International Journal of Research in Pharmacy and Chemistry 2011; 1(3): 488-490.
41. Punitha D, Thandavamoorthy A, Arumugasamy K, Suresh SN, Danya U, Udhayasan Kar RM. Anti-hyperlipidemic effect of ethanolic leaf extract of *Gmelina arborea* in streptozotocin induced male wistar albino rats. International Journal of Life Sciences and Pharma Research 2012; 2(3): 46-51.
42. Rachh PR, Rachh MR, Ghadiya NR, Modi DC, Modi KP, Patel NM et al. Antihyperlipidemic Activity of *Gymenma sylvestre* R. Br. Leaf Extract on Rats Fed with High Cholesterol Diet. International Journal of Pharmacology 2010; 6: 138-141.
43. Raja AB, Elanchezhiyan C, Sethupathy S. Antihyperlipidemic activity of *Helicteres isora* fruit extract on streptozotocin induced diabetic male wistar rats. European Review for Medical and Pharmacological Sciences 2010; 14: 191-196.
44. Shivali, Mahadevan N, Kamboj P. Antihyperlipidemic effect of hydroalcoholic extract of Kenaf (*Hibiscus cannabinus* L.) leaves in high fat diet fed rats. Annals of Biological Research 2010; 1(3): 174-181.

45. Bandawane DD, Bibave KH, Jaydeokar AV, Patil US, Hirvale MG. Antihyperglycemic and Antihyperlipidemic Effects of Methanolic Extract of *Holarrhena antidysenterica* Bark in Alloxan Induced Diabetes Mellitus in Rats. *Pharmacologia* 2013; 4(2): 95-106.

46. Husain GM, Chatterjee SS, Singh PN, Kumar V. Hypolipidemic and Antiobesity-Like Activity of Standardised Extract of *Hypericum perforatum* L. in Rats. *ISRN Pharmacology* 2011; 1-7.

47. Saravanan D, Lakshmi IA, Gobinath M, Kumar BG, Priya S, Syamala E et al. Potential Antioxidant, Hypoglycemic and Hypolipidemic Effect of Leaves of *Hibiscus platanifolius* Linn. *International Journal of Pharmaceutical Sciences and Drug Research* 2011; 3(3): 236-240.

48. Nainwal P, Dhamija K, Tripathi S. Study of antihyperlipidemic effect on the juice of the fresh fruits of *Lagenaria siceraria*. *International Journal of Pharmacy and Pharmaceutical Sciences* 2011; 3(1): 88-90.

49. Sowmya A, Ananthi T. Hypolipidemic activity of *Mimosa pudica* Linn on Butter Induced Hyperlipidemia in Rats. *Asian J. Res. Pharm. Sci* 2011; 1(4): 123-126.

50. Shah KA, Patel MB, Shah SS, Chauhan KN, Parmar PK, Patel NM. Antihyperlipidemic activity of *Mangifera indica* l. leaf extract on rats fed with high cholesterol diet. *Der Pharmacia Sinica* 2010; 1(2): 156-161.

51. Pradeep Kumar R, Sujatha D, Saleem TSM, Chetty CM, Ranganayakulu D. Potential hypoglycemic & hypolipidemic effect of *Morus Indica* and *Asystasia gangetica* in alloxan induced diabetes mellitus. *Int. J. Res. Pharm. Sci* 2010; 1(1): 51-56.

52. Hossain MS, Ahmed M, Islam A. Hypolipidemic and hepatoprotective effects of different fractions of methanolic extract of *Momordica charantia* (Linn.) in alloxan induced diabetic rats. *International Journal of Pharmaceutical Sciences and Research* 2011; 2(3): 601-607.

53. Zhou JY, Zhou SW, Zeng SY, Zhou JY, Jiang MJ, He Y. Hypoglycemic and Hypolipidemic Effects of Ethanolic Extract of *Mirabilis jalapa* L. Root on Normal and Diabetic Mice. *Evidence-Based Complementary and Alternative Medicine* 2012; 1-9.

54. Oyedepo TA, Babarinde SO, Ajayeoba TA. Evaluation of Anti-hyperlipidemic Effect of Aqueous Leaves Extract of *Moringa oleifera* in Alloxan Induced Diabetic Rats. *International Journal of Biochemistry Research & Review* 2013; 3(3): 1-9.

55. Mallick C, Maiti R, Ghosh D. Comparative Study on Antihyperglycemic and Antihyperlipidemic Effects of Separate and Composite Extract of Seed of *Eugenia jambolana* and Root of *Musa paradisiaca* in Streptozotocin-Induced Diabetic Male Albino Rat. *Iranian Journal of Pharmacology & Therapeutics* 2006; 5(1): 27-33.

56. Gayathri V, Ananthi S, Vasanthi HR. Antihyperlipidemic Potential of Polyphenol and Glycoside Rich *Nerium oleander* Flower against Triton WR-1339-Induced Hyperlipidemia in Experimental Sprague Dawley Rats. *Journal of Chemistry* 2013; 1-8.

57. Murti K, Kaushik M, Kaushik A. Evaluation of Hypoglycemic and Hypolipidemic Activity of *Nyctanthes Arbor-tristis* Linn against Streptozotocin Induced Diabetic Rats. *American Journal of Pharmacology and Toxicology* 2012; 7(1): 8-11.

58. Ayinla MT, Dada SO, Shittu ST, Olayaki LA, Akiode AO and Ojulari SL. Anti-hyperlipidemic effect of aqueous leaf extract of *Ocimum gratissimum* in alloxan induced diabetic rats. *International Journal of Medicine and Medical Sciences* 2011; 3(12): 360-363.

59. Sivajothi V, Dey A, Jayakar B, Rajkapoor B. Antihyperglycemic, Antihyperlipidemic and Antioxidant Effect of *Phyllanthus rheedii* on Streptozotocin Induced Diabetic Rats. *Iranian Journal of Pharmaceutical Research* 2008; 7(1): 53-59.

60. Movahedian A, Zolfaghari B, Sajjadi SE, Moknatjou R. Antihyperlipidemic effect of *Peucedanum pastinacifolium* extract in streptozotocin-induced diabetic rats. *Clinics* vol 2010; 65(6).

61. Pragda SS, Kuppast IJ, Mankani KL, Ramesh L. Evaluation of antihyperlipidemic activity of leaves of *Portulaca oleracea* linn against dexamethasone induced hyperlipidemia in rats. *International Journal of Pharmacy and Pharmaceutical Sciences* 2012; 4(4): 279-283.

62. Singh V, Chaudhary A, Gunjan. Anti-Hyper Lipidemic activity of *Picrorhiza kurroa* Royle ex Benth Roots. *International Journal of Drug Development & Research* 2012; 4(3): 88-91.

63. Nabi SA, Kasetti RB, Sirasanagandla S, Tilak TK, Kumar MVJ, Rao CA. Antidiabetic and antihyperlipidemic activity of *Piper longum* root aqueous extract in STZ induced diabetic rats. *BMC Complementary and Alternative Medicine* 2013; 13: 37.

64. Sharma S, Garg V, Paul A. Antihyperglycemic, antihyperlipidemic and antioxidative potential of *Prosopis cineraria* bark. *Indian Journal of Clinical Biochemistry* 2010; 25(2): 193-200.

65. Balasubramanian MN, Muralidharan P, Balamurugan G. Anti Hyperlipidemic Activity of *Pedalium murex* (Linn.) Fruits on High Fat Diet Fed Rats. *International Journal of Pharmacology* 2008; 4: 310-313.

66. Sundarajan T, Raj kumar T, Udhayakumar E and Arunachalam G. Hypolipidemic activity of *Pithecellobium Dulce* Bench. in Triton Wr-1339 Induced Hyperlipidemic Rats. *International Journal of Chemical and Pharmaceutical Sciences* 2010; 1(2): 50-53.

67. Thangaraj V. Hypolipidemic effect of *Rhododendron arboreum* Sm. linn flower juice in experimentally induced hypercholesterolemic rabbits. *Int J Pharm Biomed Res* 2013; 4(1): 46-49.

68. Rao PV, Madhavi K, Naidu MD. Hypolipidemic Properties of *Rhinacanthus nasutus* in Streptozotocin Induced Diabetic Rats. *Journal of Pharmacology and Toxicology* 2011; 1-7.

69. Qureshi SA, Nawaz A, Udani SK, Azmi B. Hypoglycaemic and Hypolipidemic Activities of *Rauwolfia serpentina* in Alloxan-Induced Diabetic Rats. *International Journal of Pharmacology* 2009; 5(5): 323-326.

70. Makwana MV, Pandya NM, Doshi BD, Darji DN, Desai SA, Bhaskar VH. Evaluation of antioxidant and antihyperlipidemic potential of *Sida cordifolia* linn. in experimental animals. *International Journal of Pharmacy* 2012; 2(3): 520-525.

71. Pande W, Dubey S. Antihyperlipidemic activity of *Sphaeranthus indicus* on atherogenic diet induced hyperlipidemia in rats. *Int J Green Pharm* 2009; 3(2): 159-61.

72. Singh S, Mann R, Sharma SK. Antihyperlipidemic activity of *Suaeda maritima* L dumortier stem in triton induced hyperlipidemic in rats. *International Journal of Research in Ayurveda and Pharmacy* 2013; 4(2): 203-206.

73. Jeyabalan S and Palayan M. Antihyperlipidemic activity of *Sapindus emarginatus* in Triton WR-1339 induced albino rats. *Research J. Pharm. and Tech* 2009; 2(2): 319-323.

74. Radjabian T and Huseini HF. Anti-Hyperlipidemic and Anti-Atherosclerotic Activities of Silymarins from Cultivated and Wild Plants of *Silybum marianum* L. with Different Content of Flavonolignans. *Iranian Journal of Pharmacology & Therapeutics* 2010; 9: 63-67.

75. Sikarwar MS, Patil MB. Antihyperlipidemic activity of *Salacia chinensis* root extracts in triton-induced and atherogenic diet-induced hyperlipidemic rats. *Indian J Pharmacol* 2012; 44(1): 88-92.

76. Saravanan A, Vanitha S, Ganesh M, Jayaprakash J, Ramaswamy NM. Hypolipidemic activity of *Sesbania grandiflora* in triton wr-1339 induced hyperlipidemic rats. *International Journal of Phytomedicine* 2010; 2: 52-58.

77. Anbu J, Anjana A, Purushothaman K, Sumithra M, Suganya S, Bathula NK et al. Evaluation of antihyperlipidemic activity of ethanolic extract of *Saussuraea lappa* in rats. *International Journal of Pharma and Bio Sciences* 2011; 2(4): 550-556.

78. Ramachandran S, Asokkumar K, Maheswari MU, Ravi TK, Sivashammugam AT, Saravanan S et al. Investigation of Antidiabetic, Antihyperlipidemic, and In Vivo Antioxidant Properties of *Sphaeranthus indicus* Linn. in Type 1Diabetic Rats: An Identification of Possible Biomarkers. *Evidence-Based Complementary and Alternative Medicine* 2011; 1-8.

79. Mahjoub S, Davari S, Moazezi Z, Qujeq D. Hypolipidemic Effects of Ethanolic and Aqueous Extracts of *Urtica Dioica* in Rats. *World Applied Sciences Journal* 2012; 17(10): 1345-1348.

80. Liu X, Liu Y, Kong H, Zhu W, Wang G, Zhang J, Qiu Y, Pang J. Antihyperglycemic and antihyperlipidemic effect of *Uraria crinita* water extract in diabetic mice induced by STZ and food. *Journal of Medicinal Plants Research* 2010; 4(5): 370-374.

81. Ramachandran S, Rajasekaran A, Manisenthilkumar KT. Investigation of hypoglycemic, hypolipidemic and antioxidant activities of aqueous extract of *Terminalia paniculata* bark in diabetic rats. Asian Pacific Journal of Tropical Biomedicine 2012; 262-268.
82. Raghuveer R, Sreeja K, Sindhuri T, Kumar SA. Antihyperlipidemic effect of *Tagetes erecta* in cholesterol fed hyperlipidemic rats. Der Pharmacia Lettre 2011; 3(5): 266-270.
83. Sampathkumar MT, Kasetti RB, Nabi SA, Sudarshan PR, Swapna S, Apparao C. Antihyperlipidemic and antiatherogenic activities of *Terminalia pallida* Linn. fruits in high fat diet-induced hyperlipidemic rats. J Pharm Bioallied Sci 2011; 3(3): 449-452.
84. Kameshwaran S, Jothimaniyannan C, Senthilkumar R, Kothai AR. Anti-obesity and Hypolipidemic Activity of Methanol Extract of *Tecomia stans* Flowers on Atherogenic Diet Induced Obesity in Rats. Pharmacologia 2013; 4(2): 77-81.
85. Subbarao PG, Ashok P. Antihyperlipidemic effect of *Trichilia connaroides* in hypercholesterolemic rats and its possible mechanism. J Pharm Bioallied Sci 2011; 3(2): 230-235.
86. Anreddy RNR, Porika M, Yellu NR, Devarakonda RK. Hypoglycemic and Hypolipidemic Activities of *Trianthema portulacastrum* Linn. Plant in Normal and Alloxan Induced Diabetic Rats. International Journal of Pharmacology 2010; 6(2): 129-133.