

Open Access Full Text Article

Review Article

Oxygen, Hyperbaric Oxygen and Ozone as Therapeutic Agents in Oral and Maxillofacial Surgery: literature Review

Manal Abdalla Eltahir

Assistant Professor, Oral and Maxillofacial Surgery and Diagnostic Science, College of Dentistry, Qassim University, KSA

Article Info:

Article History:

Received 04 March 2022
Reviewed 07 April 2022
Accepted 13 April 2022
Published 15 April 2022

Cite this article as:

Manal Abdalla Eltahir, Oxygen, Hyperbaric Oxygen and Ozone as Therapeutic Agents in Oral and Maxillofacial Surgery: literature Review, Journal of Drug Delivery and Therapeutics. 2022; 12(2-s):202-205

DOI: <http://dx.doi.org/10.22270/jddt.v12i2-s.5294>

*Address for Correspondence:

Manal Abdalla Eltahir, Assistant Professor, Oral and Maxillofacial Surgery and Diagnostic Science, College of Dentistry, Qassim University, KSA

ORCID ID: <https://orcid.org/0000-0002-6962-4044>

Abstract

Medical consideration in the surgical specialities such as Oral and Maxillofacial Surgery, in the form of prescribing medications for some diseases, preoperative preparation, post operative care and follow up, is an important and integrated part in management of surgical patients,

Oxygen as the drug plays key role in treatment of surgical patient, and contributes strongly in treatment of major trauma, shock, sepsis; perioperative and postoperative considerations and in patients with various other medical comorbidities.

in this review we discussed the oxygen therapy as well as hyperbaric Oxygen in addition to the Oxygen with the 3 atoms, namely Ozone, in oral and Maxillofacial Surgery speciality.

Keywords: O₂ supplement, adjunctive therapy, HBO, OZONE, osteonecrosis, Medication related necrosis

1- O₂

Oxygen therapy is the administration of oxygen at concentrations greater than that in ambient air (20.9%) with the intent of treating or preventing the symptoms and manifestations of hypoxia, which includes agitation, personality change, nausea, headache, tachycardia and cyanosis ¹

Administration of supplemental oxygen is an essential element of appropriate management of many conditions including, major trauma, shock, sepsis; perioperative and postoperative considerations as well as for patients with various other medical comorbidities ²

1-1 In general anaesthesia on daily base surgery

Oxygen supplement use For Maintenance of routine anesthesia, during the induction as Preoxygenation is well accepted practice ³ as well as in post operative recovery, most postoperative surgical patients routinely receive supplemental oxygen therapy to prevent hypoxemia, and furtherly prevent its deleterious effect s (arrhythmias, myocardial ischemia, and cognitive dysfunction), with its lately effect on the tissue oxygenation which will affect the tissue healing and the immune system (Oxidative killing by neutrophils was impaired at low oxygen tensions often found in wounds) ⁴ to the degree that may precipitate infection ⁵ the goals of postoperative oxygen therapy should be to maintain normoxemia and avoid unnecessary oxygen administration

Causes which may precipitate postoperative hypoxemia are:

- Anaesthetic factors such as alveolar hypoventilation, ventilation/perfusion mismatching,

-decreased cardiac output,

-Shivering (increased oxygen consumption) ⁶ (induced by volatile agents or recovery from intra-operative hypothermia).

Also, 'diffusion hypoxia' may transiently contribute to early hypoxemia as a result of the very soluble nitrous oxide diffusing out of the circulation into the alveoli when aesthesia is terminated, reducing the concentration of oxygen in the alveolar gas. ¹

1-2 FOR Trauma patient

Supplementary oxygen is widely used for trauma patient in both prehospital, initial phase of treatment, as well as hospital phase. ⁷

Blood loss is one reason that can lead to hypoxia in trauma patient, due to the Low intravascular volume resulting in poor oxygen transportation, ⁸ which may necessitate administration of supplemented oxygen, and indeed supplementary oxygen will be simultaneously with the correction of the causative factors of hypoxaemia.

At a hospital level, the supplementary oxygen is needed at the time of operation for the correction and surgical treatment of the trauma. ³

Both hypoxaemia and hyperoxaemia may be harmful, so using O₂ should be use cautiously

1-3 space infection, and/or septic patient

Air way obstruction represent a serious and dangerous manifestation in some space infection in the head and neck region such as parapharyngeal spaces, lateral pharyngeal spaces, and obviously Ludwig's angina, with the hypoxia as the final predicted result.¹

By using the principle of treating the underline cause, the main concern should be directed to the correction of this obstruction, Oxygen is a treatment for hypoxaemia, not breathlessness. nevertheless, still the supplementary oxygen has got a role in the management of such cases¹

On the other hand, there is an important role for supplementary Oxygen, if this infection progress to septic shock.

Sepsis is a common reason for ICU's admission⁹ patients with sepsis receive supplemental oxygen to get the benefit that boost the body's ability to fight infection might be enhanced with liberal use of oxygen via enhanced oxidative killing of bacteria because neutrophil superoxide production increases in the presence of high oxygen tension^{3,4}

2-Hyperbaric Oxygen;

HBO therapy is a therapy based on the inhalation of 100% pure oxygen intermittently in a completely closed pressure chamber, at pressures higher than 1 atmosphere, from ambient air, by mask or by endotracheal tube¹⁰ it shares the effect of oxygen and effect of Pressure¹¹

The pathophysiology of ORN is best illustrated by the "3 H" principle which describes the effect of radiation on tissue as presented by Marx¹²

Hyperbaric oxygen therapy (HBO) is an effective adjunctive therapy for chronic osteomyelitis and osteoradionecrosis and can also be used for the treatment of MRONJ¹³ Although the mechanism of HBO effect on MRONJ is not fully clarified, this treatment modality has been proven to be successful in increasing as adjunctive therapy before or after the surgical treatment.¹⁴

2-1- Osteoradionecrosis (ORN)

is a dreaded complication of the use of radiation therapy in the treatment of head and neck cancer¹⁵ The incidence of osteonecrosis in oncology patients treated with high doses of radiation (1% to 15%).¹⁶ The mandible is most commonly affected¹⁷

Hyperbaric Oxygen therapy (HBOT) for treatment of radiation -damaged tissues was introduced in the early 1970.^{18,19}

There is a role of HBO in both treatment and prophylaxis of osteonecrosis(ORN)²⁰

Although still considered controversial by some, hyperbaric oxygen (HBO) therapy used as an adjunctive treatment for ORN has been associated with improved success rates^{21,22,23}

There is wide consensus on the use of prophylactic HBO in prophylaxis of mandibular osteonecrosis, still there is a lack of knowledge about the indications for HBOT in ORN and, whether the stage of ORN also plays a role in the efficacy of HBOT²⁴

2-2 In Medication related necrosis

Medication-related osteonecrosis of the jaw (MRONJ, new nomenclature replacing bisphosphonate-related osteonecrosis of the jaw [BRONJ]) is one of the major complications after tooth extraction in patients using bisphosphonates (BPs)²⁵. Microscopically, MRONJ as a condition that causes depletion of osteoclast activity and function, which is affect the bone

turnover and wound healing²⁶. Since osteoclast activity and functions are regulated by reactive oxygen-sensitive signaling molecules, theoretically, this gives justification to HBO to be use adjunctive therapy.²⁶

HBO is not yet widely considered an efficient treatment for MRONJ as there are a lack of Randomized Control Trials (RCT) on its action.²⁷

3-Ozone

Ozone (O₃), a gas discovered in the mid-nineteenth century is a molecule consisting of three atoms of oxygen in a dynamically unstable structure²⁸. It is an atmospheric gas (O₃) founded in the Earth's stratosphere with excellent medicinal properties, and minimally invasive therapy, including antimicrobial activity, immunostimulant and antioxidant²⁹

Medical O₃ 's effectiveness has been well-documented, with minimal side effects. in treating the infection, by its ability to Inactivate bacteria, viruses, fungi, yeast and protozoa:

It was suggested that the effects of ozone are cumulative, so the repeated therapies are recommended³⁰

There is 3forms for the Ozone in the medical field: gaseous, water (ozonated water), and oil "Commercially available ozone gel/oil (depending on the medical condition for which it is intended to be used³¹

Ozone can accelerate Post extraction socket healing and more over can act as analgesic and as antibiotic with its antibacterial activity.³¹

3-2- In osteonecrosis

There is a wide variation in recommendations and guidelines in international literature for the treatment of osteoradionecrosis. The benefits of using ozone as stimulation of local revascularization through the enhancement of angiogenesis and fibroblasts, there is promising result in treatment of osteoradio necrosis³² as well as the prophylaxis³³

3-3- In medication related necrosis

Ozone therapy was introduced in the list of approaches to treat MRONJ in 2012²⁹

The O₂ /O₃ therapy with and without the debridement with piezoelectric surgery represents a promising approach to improve the treatment of BRONJ and therefore the life quality of the patient³⁴

It acts as Coadjunct therapy with promising result²⁹

3-4 In Temporomandibular joint disorder

TMDs are commonly treated in a conservative fashion, accordingly emerging of ozone minimally invasive with its all properties as analgesic and antibacterial is let it more than welcoming for the treatment of TMJD,

It was found that Ozone gas injection for treatment of internal derangement of the TMJ has a better outcome in comparing with other therapy nonsteroidal anti-inflammatory drugs and muscle relaxants³⁵

On the other hand, there is effectiveness of bio-oxidative ozone therapy in the TMD of muscular origin³⁶

The O₂ /O₃ therapy has a low biological and economic impact thus representing a valuable therapeutic approach that could be considered/implemented as the mainstream therapy for the

Conclusion

Medical aspect in treatment of patients is being hand in hand with the surgical part in oral and Maxillofacial surgery, before surgery the patient needs to be medicated as part of preparation for the surgery and then for optimal result, the wound healing is an important factor for satisfying surgical result.

Oxygen as a drug play important role before, during and after any surgical procedure.

Both Hyperbaric oxygen and Ozone have been used as adjunctive therapies before or after, the surgical treatment of osteoradionecrosis and Medication related necrosis.

hyperbaric oxygen and Ozone (oxygen with 3 atoms) constitute application of the modern science at the medical field assisting in healing in many cases.

Author Contributions

The author confirms being the sole contributor of this work and has approved it for publication

Competing interests: None

Ethical approval: Not required.

References

- 1- Singh V, Gupta P, Khatana S, Bhagol A. Supplemental oxygen therapy: Important considerations in oral and maxillofacial surgery. *Natl J Maxillofac Surg* 2011; 2:10-4. <https://doi.org/10.4103/0975-5950.85846>
- 2- O'Driscoll BR, Howard LS, Earis J, et al. *BMJ Open Resp Res* 2017; 4:e000170. <https://doi.org/10.1136/bmjresp-2016-000170>
- 3- Paul J. Young ,Daniel Frei, Oxygen therapy for critically ill and post operative patients, *Journal of Anesthesia* 2021; 35:928-938 <https://doi.org/10.1007/s00540-021-02996-8>
- 4- . Allen DB, Maguire JJ, Mahdavian M, Wicke C, Marcocci L, Scheuenstuhl H,et al. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. *Arch Surg.* 1997; 132(9):991-6. <https://doi.org/10.1001/archsurg.1997.01430330057009>
- 5- Satoshi Suzuki , Oxygen administration for postoperative surgical patients: a narrative review *Journal of Intensive Care* 2020; 8:79 <https://doi.org/10.1186/s40560-020-00498-5>
- 6- Ralley FE, Wynands JE, Ramsay JG, Carli F, MacSullivan R. The effects of shivering on oxygen consumption and carbon dioxide production in 123 patients rewarming from hypothermic cardiopulmonary bypass. *Can J Anaesth.* 1988; 35(4):332-7 <https://doi.org/10.1007/BF03010851>
- 7- Eskesen TG, et al. *BMJ Open* 2018; 8:e020880. <https://doi.org/10.1136/bmjopen-2017-020880>
- 8- Guillermo Gutierrez, H David Reines and Marian E Wulf-Gutierrez, Clinical review: Hemorrhagic shock *Critical Care* 2004; 8:373-381 <https://doi.org/10.1186/cc2851>
- 9- Farshid Rahimibashar,et al Sepsis at ICU Admission Increases the ICU Mortality Rates Among Very Long ICU Stay Patients:A Secondary Analysis, *Hospital Practices and and Research* 2020; 5(4):134-140 <https://doi.org/10.34172/hpr.2020.26>
- 10- Füsun Kocaman Ürütük, Current Approach to Hyperbaric Oxygen Therapy, *Istanbul Med J* 2020; 21(4):234-41, <https://doi.org/10.4274/imj.galenos.2020.89725>
- 11- Sefika Körpinar , and Hafize Uzun The Effects of Hyperbaric Oxygen at Different Pressures on Oxidative Stress and Antioxidant Status in Rats, *Medicina* 2019; 55:205. <https://doi.org/10.3390/medicina55050205>
- 12- - Marx RE. Osteoradionecrosis: a new concept of its pathophysiology. *J Oral Maxillofac Surg* 1983; 41(5):283-8 [https://doi.org/10.1016/0278-2391\(83\)90294-X](https://doi.org/10.1016/0278-2391(83)90294-X)
- 13- Hallman, M., Cederlund, A., Lindskog, S., Lundgren, S., & Sennerby, L. A clinical histologic study of bovine hydroxyapatite in combination with autogenous bone and fibrin glue for maxillary sinus floor augmentation. Results after 6 to 8 months of healing. *Clinical Oral Implants Research*, 2011; 12(2):135-143. <https://doi.org/10.1034/j.1600-0501.2001.012002135.x>
- 14- Watanabe T, Asai K, Fukuhara S, Uozumi R, Bessho K Effectiveness of surgery and hyperbaric oxygen for antiresorptive agent-related osteonecrosis of the jaw: A subgroup analysis by disease stage. *PLoS ONE* 2021; 16(1):e0244859. <https://doi.org/10.1371/journal.pone.0244859>
- 15- - David, Sàndor, Evans, Brown, Hyperbaric Oxygen Therapy and Mandibular Osteoradionecrosis: A Retrospective Study and Analysis of Treatment Outcomes, *Journal of the Canadian Dental Association*, July/August 2001; 67(7):384-390
- 16- Khan AA, Morrison A, Hanley DA, Felsenberg D, McCauley LK, O'Ryan F, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. *J Bone Miner Res.* 2015 Jan; 30(1):3-23. <https://doi.org/10.1002/jbmr.2405>
- 17- KHAN ET AL, Diagnosis and Management of Osteonecrosis of the Jaw: A Systematic Review and International Consensus, *Journal of Bone and Mineral Research*, 2015; 30(1):3-23 <https://doi.org/10.1002/jbmr.2593>
- 18- Greenwood TW and Gilchrist AG. Hyperbaric oxygen and wound healing in post irradiation head and neck surgery. *British Journal of Surgery* 1973; 60:394-397. <https://doi.org/10.1002/bjs.1800600522>
- 19- Mainous EG and Hart GB. Osteoradionecrosis of the mandible; treatment with HBO. *Archives of Otolaryngology* 1975; 101:173-177 <https://doi.org/10.1001/archotol.1975.00780320031007>
- 20- Shaw et al. HOPON (Hyperbaric Oxygen for the Prevention of Osteoradionecrosis): a randomised controlled trial of hyperbaric oxygen to prevent osteoradionecrosis of the irradiated mandible: study protocol for a randomised controlled trial *Trials* 2018; 19:22 <https://doi.org/10.1186/s13063-017-2376-7>
- 21- Aitasalo K, Grenman R, Virolainen E, Niinikoski J, Klossner J. A modified protocol to treat early osteoradionecrosis of the mandible. *Undersea Hyperb Med* 1995; 22(2):161-70.
- 22- McKenzie MR, Wong FL, Epstein JB, Lepawsky M. Hyperbaric oxygen and postradiation osteonecrosis of the mandible. *Eur J Cancer B Oral Oncol* 1993; 29B(3):201-7 [https://doi.org/10.1016/0964-1955\(93\)90023-8](https://doi.org/10.1016/0964-1955(93)90023-8)
- 23- Beumer J, Harrison R, Sanders B, Kurrasch M. Osteoradionecrosis: predisposing factors and outcomes of therapy. *Head Neck Surg* 1984; 6(4):819-27 <https://doi.org/10.1002/hed.2890060404>
- 24- Dieleman et al, Does hyperbaric oxygen therapy play a role in the management of osteoradionecrosis? A survey of Dutch oral and maxillofacial surgeons, *Int. J. Oral Maxillofac. Surg.* 2021; 50:273-276 <https://doi.org/10.1016/j.ijom.2020.06.014>
- 25- Kyeong-Mee Park, et al, Synergistic effect of hyperbaric oxygen therapy with PTH [1- 34] on calvarial bone graft in irradiated rat, *Oral Diseases*. 2019; 25:822-830. <https://doi.org/10.1111/odi.13037>
- 26- Freiberger, J. J. Utility of hyperbaric oxygen in treatment of bisphosphonate-related osteonecrosis of the jaws. *J. Oral Maxillofac. Surg.*, 2009; 67(5 Suppl):96-106. <https://doi.org/10.1016/j.joms.2008.12.003>
- 27- BIANCARDI, M. R.; et al Hyperbaric oxygen and medication-related osteonecrosis of the jaw (MRONJ): An integrative review. *Int. J. Odontostomat.*, 2021; 15(4):806-811. <https://doi.org/10.4067/S0718-381X2021000400806>
- 28- Elvis AM, Ekta JS. Ozone therapy: A clinical review. *J Nat Sc Biol Med* 2011; 2:66-70). <https://doi.org/10.4103/0976-9668.82319>
- 29- Mariana Pinheiro Saldanha et al, Medication-Related Osteonecrosis of the Jaw Treated by Ozonized Oil: A Case Report, *Journal of Oral Diagnosis* 2020; 1-5, DOI: <https://doi.org/10.5935/2525-5711.20200023>

30- Sagai and Bocci, Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress? *Medical Gas Research* 2011; 1:29,1-18 <https://doi.org/10.1186/2045-9912-1-29>

31- Devyani Bahl et al, Ozone Therapy for Healing of Extraction Socket, *World Journal of Dentistry*, 2022; 13:1

32- Bianco E, Maddalone M, Porcaro G, Amosso E, Baldoni M. Treatment of Osteoradionecrosis of the Jaw with Ozone in the Form of Oil-based Gel: 1-year follow-up. *J Contemp Dent Pract* 2019; 20(2):270-276 <https://doi.org/10.5005/jp-journals-10024-2508>

33- Batinjan et al, Ozone therapy in the prevention of ORN of the jaw; *Saudi Med J* 2014; 35(10).

34- Girolamo Donati 1 , Valentina Laura Donati 2 , Carlo Alberto Rossi Oxygen/Ozone Therapy: a promising approach for the treatment of bisphosphonate-related osteonecrosis of the jaw; *Qeios*, 2021, <https://doi.org/10.32388/0E5Q04>

35- Daif ET. Role of intra-articular ozone gas injection in the management of internal derangement of the temporomandibular joint. *Oral Surg Oral Med Oral Pathol Oral Radiol* 2012; 113(6):e10-4. <https://doi.org/10.1016/j.tripleo.2011.08.006>

36- Celakil T, Muric A, Gokcen Roehlig B, Evgiloglu G, Keskin H. Effect of high-frequency bio-oxidative ozone therapy for masticatory muscle pain: A double-blind randomised clinical trial. *J Oral Rehabil* 2017; 44(6):442-51. <https://doi.org/10.1111/joor.12506>