

Open Access Full Text Article

Research Article

Hepatoprotective Properties of *Sarcocephalus latifolius* Extract in Hyperglycemic Rat Model

Kingsley I. Chukwudozie^{1,2} , Brendan C. Ezeudoka³ , Vanessa C. Okechukwu^{1*}

¹ Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria

² School of Pharmacy, Jiangsu University, Peoples Republic of China

³ School of Medicine, Jiangsu University, Peoples Republic of China

Article Info:

Article History:

Received 21 February 2022

Reviewed 12 March 2022

Accepted 19 March 2022

Published 15 April 2022

Cite this article as:

Chukwudozie KI, Ezeudoka BC, Okechukwu VC, Hepatoprotective Properties of *Sarcocephalus latifolius* Extract in Hyperglycemic Rat Model, Journal of Drug Delivery and Therapeutics. 2022; 12(2-s):72-76

DOI: <http://dx.doi.org/10.22270/jddt.v12i2-s.5268>

*Address for Correspondence:

Vanessa C. Okechukwu, Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria.

ORCID ID: <https://orcid.org/0000-0003-0514-4233>

Abstract

Currently, there is a need for safe, effective, and less costly antidiabetic medications, and investigating medicinal plants for new antidiabetic medication is gaining increased attention. Diabetes mellitus is a chronic metabolic disease associated with hyperglycemia, dyslipidemia, and hepatocellular damage. *Sarcocephalus latifolius* (family Rubiaceae) has been widely explored in ethnomedicine for the treatment and management of various disorders. The biochemical, hepatoprotective, and histological effects of aqueous-ethanolic leaf extract of *S. latifolius* in alloxan-induced diabetic rats were investigated. Thirty (30) juvenile male Wistar rats were placed into six groups, each with five rats. Normal rats made up Group 1, while diabetic rats in Groups 2-4 were given 200, 400, and 800 mg/Kg body weight of aqueous-ethanolic leaf extract, respectively; diabetic rats in Group 5 were given a standard anti-diabetic drug (0.2 mg/kg glibenclamide), and diabetic rats in Group 6 were left untreated. When compared to control rats, Alloxan induction led to a significant elevation in plasma glucose level, liver enzymes, low density lipoprotein (LDL), total cholesterol (TC), and triglycerides (TG), but a significant decrease in high density lipoprotein (HDL). The alterations in the following parameters were returned to normal levels when the diabetic rats were administered *S. latifolius* extract. The results indicate that *S. latifolius* showed hypoglycemic and hypolipidemic potentials, and may serve as a remedy for the management of diabetes.

Keywords: *Sarcocephalus latifolius*, Diabetes, Albino rats, Alloxan, Liver

1. INTRODUCTION

Diabetes mellitus (DM) is a metabolic disorder which is characterized by a persistent rise in blood glucose level. Diabetic patients can utilize many interventions including dietary management and regular exercise to manage their health status¹. In addition, the use of alternative and complementary medicine for the treatment and management of DM have gained greater importance². Medicinal plants have provided valuable therapeutic agents for treating diseases and disorders, and they are widely employed in many regions of the world, particularly in rural areas where modern medical facilities are limited³. Recently, there has been an increase in plant-based therapeutic products in both developed and developing countries because they are mostly non-toxic, have fewer side effects, and are available at affordable prices^{4,5}. One such medicinal plant is *S. latifolius*. The plant African peach (*S. latifolius*) grows in many tropical and subtropical regions of Africa and Asia and is used for medicinal purposes in folk medicine.

The plant is commonly used in traditional medicine for treating diabetes and malaria⁶. *S. latifolius* is also used to treat various other ailments such as liver diseases⁷, stomach disorder and cough⁸. Increasingly, diabetes management involves non-conventional drugs. It is estimated that 25 to 57% of people with diabetes have at one time or another

resorted to complementary and alternative medicine, including medicinal plants⁹.

Hypercholesterolemia and hyperglycemia are on the increase in the human population, and their drugs are not easily affordable to most of the affected individuals¹⁰. Moreover, undesirable side effects associated with these drugs made it imperative to explore other alternative sources for managing these diseases. The study aimed to provide some scientific support for the use of *S. latifolius* in ethnomedicine to treat diabetes. To achieve this, studies were carried out to evaluate the anti-diabetic, anti-hepatotoxic and anti-hyperlipidemic activities of *S. latifolius* in alloxan-induced diabetic rats, with the goal of determining the plant's acute toxicity implications when used conventionally in diabetes therapy.

2. MATERIALS AND METHODS

2.1 Collection of Plant Material

Fresh roots and leaves of *S. latifolius* harvested from a forest in Obukpa, South-eastern Nigeria. The samples were identified by Mr Felix Nwafor, a plant taxonomist at the Department of Pharmacognosy, University of Nigeria.

2.2 Extraction Procedure

Extraction was carried out as previously described¹¹. The roots were washed with clean tap water, and dried for 7 days in the shade, after which they were pulverized into a coarse powder.

A 2 kg portion of powder was cold macerated in 8 liters of 95% (v/v) ethanol (Sigma-Aldrich) at ambient temperature for 48 hours, and then filtered with Whatman No. 1 filter paper. The resulting filtrate was evaporated to dryness under a cool stream of air to obtain the extract.

2.3 Phytochemical Analysis of Crude Aqueous Extracts

This was done using standard methods as previously described¹². The phytochemicals tested for include; alkaloids, saponins, flavonoids, tannins, glycosides and essential oils.

2.4 Experimental Animals

A total of 30 juvenile male Wistar rats weighing 150-200 g were obtained from the University of Nigeria, Nsukka's Faculty of Veterinary Medicine. Male rats were selected for this study because they are regarded to be more stable physiologically and less subject to hormonal changes, which could affect the results. The animals were housed under standard laboratory conditions and allowed free access to feed and clean water. The animals were treated in accordance with the National Institutes of Health's (NIH) guidelines for laboratory animal use and care¹³.

2.5 Induction of Diabetes

Following a 12-hour fast, 25 rats received an intraperitoneal injection of alloxan solution at the dose of 150 mg/kg. Rats with a fasting blood glucose level of greater than 140 mg/dl for 5 consecutive days were judged to have developed diabetes and were selected for the study.

2.6 Experimental Groups and Treatments

The experimental rats were randomly divided into 6 different experimental groups of 5 rats per group.

Group 1: normal control (received 1ml distilled water/kg body)
 Groups 2: diabetic rats (received 200mg/kg of *S. latifolius* extract).
 Groups 3: diabetic rats (received 400mg/kg of *S. latifolius* extract).
 Groups 4: diabetic rats (received 600mg/kg of *S. latifolius* extract).
 Groups 5: diabetic rats (received 0.2 mg/kg of glibenclamide).
 Group 6: diabetic rats (untreated)

The treatments were given orally twice a day, every 12 hours, for 21 days.

2.7 Measurement of Blood Glucose

The animals were fasted for 12 hours before blood samples were taken from the rats' tail veins and examined for fasting blood glucose levels using a glucometer (ACON Laboratories Inc, USA). Until the end of the treatment, measurements were taken every seven days.

2.8 Biochemical Parameters Determination

The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), albumin, high-density lipoproteins(HDL), low-density lipoproteins (LDL), triglycerides (TG) and total Cholesterol (TC) were determined using assay kits from Randox Laboratories Ltd (United Kingdom).

2.7 Acute Toxicity Study

This was carried out as previously described¹². The extract was administered to six groups of five rats each at doses of 10, 100, 1000, 1600, 2900 and 5000 mg/kg. The rats were monitored for clinical signs of toxicity and mortality.

2.9 Statistical Analysis

The data obtained was to one-way Analysis of Variance (ANOVA), using IBM SPSS Statistics software version 23. Significance was accepted at $p \leq 0.05$.

3. RESULTS AND DISCUSSION

Diabetes mellitus is a public health problem in a large number of countries worldwide. This needs the development of more effective and minimally invasive therapeutic techniques. Plants with anti-diabetic properties may be a rich source of new hypoglycemia compounds. Hyperglycemia and impaired glucose metabolism are the primary markers of diabetes, and alloxan injection dramatically raised the blood glucose of the experimental rats compared to the normal control. Alloxan causes diabetes mellitus by causing the destruction of certain pancreatic cells, which results in hyperglycemia. Treatment with *S. latifolius* extract, on the other hand, corrected the alloxan-induced hyperglycemia (Table 1). This observation is in consonant with the findings of earlier studies that reported the hypoglycemic effects of *S. latifolius* extracts⁸.

Table 1: Blood sugar levels in rats before and after treatment with different doses of *S. latifolius* extract

Stages	Treatment groups					
	Control (Normal rats)	200 mg/kg bw	400 mg/kg	600 mg/kg	Standard control	Diabetic control
Baseline	81.25 \pm 4.91 ^{A1}	73.82 \pm 5.37 ^{A1}	79.70 \pm 6.13 ^{A1}	85.72 \pm 7.14 ^{A1}	86.62 \pm 67.09 ^{A1}	77.40 \pm 8.10 ^b
After induction	79.51 \pm 9.01 ^{A1}	258.58 \pm 60.41 ^{B45}	291.57 \pm 68.85 ^{B3}	349.40 \pm 26.61 ^{B3}	279.49 \pm 34.06 ^{B3}	294.14 \pm 46.27 ^b
Day 7	87.47 \pm 8.57 ^{A1}	160.63 \pm 30.45 ^{A234}	132.60 \pm 94.14 ^A	135.70 \pm 25.31 ^{A12}	96.43 \pm 3.87 ^{A1}	409.63 \pm 43.72 ^b
Day 14	78.79 \pm 3.70 ^{A1}	112.94 \pm 33.49 ^{A123}	94.20 \pm 8.61 ^{A1}	93.80 \pm 22.10 ^{A12}	84.61 \pm 2.41 ^{A1}	432.53 \pm 45.30 ^b
Day 21	74.63 \pm 5.86 ^{A1}	79.21 \pm 7.31 ^{A12}	75.60 \pm 8.20 ^{A1}	82.70 \pm 5.75 ^{A1}	80.29 \pm 7.24 ^{A1}	487.60 \pm 36.12 ^b

Values are represented as Mean (\pm) standard deviation. Values with different figures as superscripts in a row differ significantly ($p \leq 0.05$). Values with different alphabets as superscripts for a parameter in a column differ significantly ($p \leq 0.05$)

The hypoglycemic activity of *S. latifolius* leaves extract could be related to phytochemicals found in the leaves. Alkaloids, flavonoids, and saponin are among the phytochemicals present, and they are believed to have a hyperglycemic effect^{14,15}. Also, it is known that these phytochemical constituents can stimulate insulin actions on the beta cells of

the pancreas¹⁶. The preliminary phytochemical screening revealed the presence of glycosides, saponins, tannins, alkaloids, and flavonoids in the crude aqueous-ethanolic leave extracts of *S. latifolius*. These bioactive compounds are present in varying concentrations in the plant extract, as shown in Table 6.

Table 6: Results of Phytochemical Analysis

Phytochemicals	Amount
Alkaloids	+++
Flavonoids	+++
Tannins	+++
Saponins	+++
Glycosides	++
Fats and Oil	+

Key: + slightly present, ++ moderately present, +++ Abundantly present

In the present study, alloxan-induced diabetic rats developed dyslipidemia. The increased TG, TC, and LDL levels, and reduced HDL levels in alloxan-induced diabetic rats seen in this study are consistent with prior studies on changes in these markers in diabetic animals 17-19. Diabetes-induced hyperlipidemia could be caused by increased mobilization of fat from adipose tissue due to glucose underutilization. However, treatment with *S. latifolius* extracts significantly ($P<0.05$) reduced the TC, TG and LDL when compared to the diabetic untreated rats. Similarly, the HDL which was reduced in the diabetic untreated rats was significantly increased ($P<0.05$) in the groups administered the *S. latifolius* extracts (Table 4 and 5), and this is consistent with previous studies that reported hypolipidaemic properties of *S. latifolius* extracts 20

Table 4: Effect of oral administration of leaf extract on HDL and LDL of Alloxan induced diabetic rats

GROUPS	BASELINE	AFTER INDUCTION	7 DAYS	14 DAYS	21 DAYS	HDL/LDL (mg/dl)
Group 1	73.22 ± 8.65 ^{A1}	75.24 ± 5.90 ^{B1}	72.60 ± 3.13 ^{C1}	70.88 ± 1.47 ^{C1}	71.21 ± 4.72 ^{B1}	HDL
	14.73 ± 1.36 ^{A1}	17.69 ± 2.72 ^{A1}	15.92 ± 9.13 ^{A1}	14.21 ± 7.21 ^{A1}	16.50 ± 3.50 ^{AB1}	LDL
Group 2	80.44 ± 2.71 ^{A4}	20.21 ± 1.74 ^{A2}	32.25 ± 1.21 ^{B2}	49.40 ± 1.52 ^{B3}	71.30 ± 1.03 ^{B4}	HDL
	16.66 ± 3.74 ^{A1}	83.17 ± 6.13 ^{B4}	59.42 ± 2.51 ^{B3}	37.75 ± 3.33 ^{BC2}	22.17 ± 5.31 ^{B1}	LDL
Group 3	72.92 ± 4.16 ^{A4}	21.76 ± 1.31 ^{A1}	36.81 ± 6.76 ^{B2}	63.22 ± 7.21 ^{B3}	70.19 ± 4.06 ^{B4}	HDL
	13.10 ± 1.02 ^{A1}	88.67 ± 2.12 ^{B4}	60.31 ± 3.53 ^{B3}	38.05 ± 2.03 ^{B2}	11.10 ± 3.50 ^{A1}	LDL
Group 4	83.45 ± 2.50 ^{A4}	28.10 ± 4.20 ^{A1}	39.63 ± 6.02 ^{B2}	57.80 ± 2.03 ^{B3}	79.39 ± 1.60 ^{B4}	HDL
	15.71 ± 6.52 ^{A1}	80.92 ± 3.35 ^{B4}	52.71 ± 4.90 ^{B3}	34.13 ± 7.04 ^{C2}	17.30 ± 1.63 ^{AB1}	LDL
Group 5	76.42 ± 3.10 ^{A4}	23.46 ± 3.14 ^{A1}	42.61 ± 5.23 ^{B2}	65.11 ± 5.71 ^{B3}	78.25 ± 4.15 ^{B4}	HDL
	12.52 ± 4.50 ^{A1}	78.82 ± 1.46 ^{B4}	50.31 ± 8.36 ^{B3}	31.68 ± 9.31 ^{B2}	13.12 ± 1.33 ^{AB1}	LDL
Group 6	78.15 ± 1.56 ^{A2}	25.79 ± 5.42 ^{A1}	21.31 ± 7.27 ^{A1}	23.87 ± 6.22 ^{A1}	19.68 ± 5.17 ^{A1}	HDL
	18.41 ± 6.72 ^{A1}	85.65 ± 1.74 ^{B2}	82.70 ± 7.13 ^{C2}	87.16 ± 1.59 ^{D2}	84.15 ± 6.17 ^{C2}	LDL

Values are represented as Mean (±) standard deviation. Values with different figures as superscripts in a row differ significantly ($p \leq 0.05$). Values with different alphabets as superscripts for a parameter in a column differ significantly ($p \leq 0.05$)

Table 5: Effect of oral administration of leaf extract on Triglycerides (TG) and total cholesterol (TC) of alloxan induced diabetic rats

GROUPS	BASELINE	AFTER INDUCTION	7 DAYS	14 DAYS	21 DAYS	TG/TC (mg/dl)
Group 1	74.67 ± 2.51 ^{A1}	73.28 ± 2.04 ^{A1}	75.90 ± 9.13 ^{A1}	72.13 ± 3.04 ^{A1}	76.30 ± 7.14 ^{A1}	TG
	102.60 ± 2.19 ^{A1}	99.18 ± 4.32 ^{A1}	101.50 ± 3.10 ^{A1}	104.50 ± 4.21 ^{A1}	100.26 ± 1.39 ^{A1}	TC
Group 2	71.70 ± 1.23 ^{A1}	109.00 ± 4.12 ^{B4}	103.10 ± 5.36 ^{B3}	89.21 ± 6.02 ^{B2}	75.16 ± 6.15 ^{A1}	TG
	96.67 ± 2.15 ^{A1}	132.71 ± 2.19 ^{B3}	112.14 ± 7.03 ^{B2}	105.98 ± 3.12 ^{A1}	98.31 ± 6.06 ^{A1}	TC
Group 3	68.16 ± 2.21 ^{A1}	115.4 ± 7.32 ^{B3}	99.87 ± 2.19 ^{B2}	77.62 ± 1.69 ^{B2}	66.20 ± 2.33 ^{A1}	TG
	108.20 ± 7.09 ^{A12}	128.21 ± 9.12 ^{B4}	118.42 ± 1.98 ^{B3}	112.64 ± 3.34 ^{A2}	105.21 ± 4.14 ^{A1}	TC
Group 4	73.32 ± 1.55 ^{A1}	118.30 ± 3.20 ^{B3}	97.96 ± 3.03 ^{B2}	89.52 ± 2.14 ^{B2}	72.23 ± 5.07 ^{A1}	TG
	101.70 ± 3.61 ^{A1}	126.26 ± 2.13 ^{B3}	114.22 ± 3.17 ^{B2}	107.51 ± 5.12 ^{A12}	103.25 ± 5.16 ^{A1}	TC
Group 5	77.32 ± 7.11 ^{A1}	108.63 ± 4.23 ^{B3}	96.66 ± 2.61 ^{B2}	85.16 ± 7.35 ^{B2}	76.21 ± 4.21 ^{A1}	TG
	105.26 ± 2.51 ^{A1}	122.43 ± 1.20 ^{B2}	110.20 ± 5.46 ^{B1}	104.27 ± 3.35 ^{A1}	106.11 ± 2.67 ^{A1}	TC
Group 6	76.21 ± 2.42 ^{A1}	104.21 ± 6.37 ^{B2}	109.45 ± 7.22 ^{C2}	111.62 ± 1.41 ^{C2}	108.32 ± 2.67 ^{B2}	TG
	99.78 ± 2.15 ^{A1}	130.40 ± 3.37 ^{B2}	127.83 ± 6.71 ^{C2}	131.34 ± 6.21 ^{B2}	133.22 ± 7.31 ^{B2}	TC

Values are represented as Mean (±) standard deviation. Values with different figures as superscripts in a row differ significantly ($p \leq 0.05$). Values with different alphabets as superscripts for a parameter in a column differ significantly ($p \leq 0.05$)

The phytochemical constituents of *S. latifolius* could have contributed to the capacities of the plant extract to reverse diabetic dyslipidemia. Previous empirical investigations showed that phytochemicals such as saponins, flavonoids and tannins can ameliorate dyslipidemia ^{9,15}. The liver is severely damaged in patients with diabetes mellitus. These damages include abnormal liver enzymes levels, necrosis, inflammation, hepatocellular damage and acute liver failure. Liver enzymes are essential biomarkers in the body that are used to diagnose and measure whether the liver is functioning normally or not. Changes in liver enzyme levels are caused by major or subtle changes in the integrity of cellular membranes in liver tissues. Increased levels of ALP, AST, and ALT, as observed in the alloxan-induced diabetic rats are indicators of hepatocellular damage (Table 2 and 3), and it is mainly due to exudation of

these enzymes from the cytoplasm of liver cells into the bloodstream^{21,22}. Since these enzymes are undeniably, markers of liver injury, the elevated levels of these enzymes in diabetes conditions were attributed to harm induced to the hepatocytes by alloxan, which now disrupts the normal activities of the liver^{23,24}. Following treatment with the plant extract, the activities of these marker enzymes were significantly reduced in the *S. latifolius* extract treated diabetic rats (Table 2 and 3), indicating the plant's hepatoprotective properties, which is consistent with some studies reporting the plant's hepatoprotective properties ²⁰. The ability of *S. latifolius* to exert a protective effect on the liver and lower the level of liver enzymes in the blood could be related to flavonoids' hepatoprotective characteristics, which serve as membrane stabilizers to protect the liver cells from harm ^{25,26}.

Table 2: Effect of oral administration of *S. latifolius* leaf extract on aspartate transaminase (AST) and alkaline phosphatase (ALP) of alloxan induced diabetic rats

GROUPS	BASELINE	AFTER INDUCTION	7 DAYS	14 DAYS	21 DAYS	AST/ALP (IU/L)
Group 1	66.28 ± 4.53 ^{A1}	62.71 ± 2.32 ^{A1}	64.49 ± 1.47 ^{A1}	70.21 ± 2.15 ^{A1}	63.26 ± 9.12 ^{A1}	AST
	84.23 ± 3.57 ^{A1}	87.56 ± 3.28 ^{A1}	86.22 ± 2.02 ^{A1}	87.13 ± 2.91 ^{A1}	83.83 ± 2.11 ^{A1}	ALP
Group 2	70.69 ± 3.06 ^{A1}	101.29 ± 4.87 ^{B3}	91.41 ± 2.61 ^{B2}	81.26 ± 3.56 ^{C1}	75.18 ± 2.24 ^{A1}	AST
	78.23 ± 4.37 ^{A1}	137.31 ± 2.21 ^{C4}	118.63 ± 3.23 ^{B3}	108.41 ± 1.55 ^{C2}	80.42 ± 2.97 ^{A1}	ALP
Group 3	70.25 ± 5.76 ^{A1}	103.45 ± 8.04 ^{B3}	89.13 ± 9.47 ^{B2}	72.62 ± 2.41 ^{BC1}	68.84 ± 2.90 ^{A1}	AST
	73.81 ± 9.64 ^{A1}	125.21 ± 6.44 ^{BC4}	113.74 ± 2.69 ^{B3}	80.93 ± 2.41 ^{BC2}	71.63 ± 2.10 ^{A1}	ALP
Group 4	74.28 ± 2.15 ^{A1}	111.50 ± 3.00 ^{B3}	92.12 ± 4.26 ^{B3}	72.40 ± 9.22 ^{C2}	71.59 ± 4.00 ^{A12}	AST
	89.19 ± 8.12 ^{A1}	131.14 ± 5.27 ^{C4}	112.70 ± 8.00 ^{B3}	92.81 ± 3.03 ^{C2}	85.26 ± 5.74 ^{A1}	ALP
Group 5	72.65 ± 5.96 ^{A1}	99.08 ± 6.12 ^{B2}	83.28 ± 2.35 ^{B2}	70.20 ± 6.21 ^{B1}	71.54 ± 5.69 ^{A1}	AST
	85.49 ± 7.27 ^{A1}	123.50 ± 2.92 ^{BC2}	112.63 ± 6.00 ^{B2}	84.11 ± 4.18 ^{AB1}	81.22 ± 3.63 ^{A1}	ALP
Group 6	67.80 ± 5.45 ^{A1}	106.40 ± 5.77 ^{B2}	113.80 ± 6.36 ^{C2}	108.50 ± 4.76 ^{D23}	116.21 ± 7.28 ^{B3}	AST
	80.90 ± 4.15 ^{A1}	133.90 ± 2.41 ^{B2}	126.20 ± 6.17 ^{C2}	125.20 ± 4.10 ^{D2}	131.54 ± 5.14 ^{B2}	ALP

Values are represented as Mean (±) standard deviation. Values with different figures as superscripts in a row differ significantly ($p \leq 0.05$). Values with different alphabets as superscripts for a parameter in a column differ significantly ($p \leq 0.05$)

Table 3: Effect of oral administration of *S. latifolius* leaf extract on Alanine transaminase (ALT) of alloxan induced diabetic rats.

GROUPS	BASELINE	AFTER INDUCTION	7 DAYS	14 DAYS	21 DAYS	ALT (mg/dl)
Group 1	33.25 ± 5.22 ^{A1}	36.80 ± 3.15 ^{A1}	30.11 ± 6.80 ^{A1}	28.39 ± 7.20 ^{A1}	37.00 ± 3.13 ^{A1}	ALT
Group 2	31.62 ± 5.15 ^{A1}	68.78 ± 1.73 ^{B4}	62.00 ± 9.37 ^{B3}	51.00 ± 3.10 ^{C2}	31.76 ± 1.40 ^{A1}	ALT
Group 3	36.88 ± 3.67 ^{A1}	73.41 ± 6.80 ^{B4}	67.40 ± 4.60 ^{B3}	42.76 ± 4.50 ^{BC2}	34.28 ± 2.50 ^{A1}	ALT
Group 4	34.22 ± 2.03 ^{A1}	62.68 ± 2.90 ^{B4}	51.20 ± 7.20 ^{B3}	40.89 ± 2.72 ^{C2}	32.56 ± 3.86 ^{A1}	ALT
Group 5	40.05 ± 5.27 ^{A1}	70.33 ± 6.98 ^{B3}	59.60 ± 3.61 ^{B2}	43.61 ± 3.60 ^{AB1}	39.35 ± 2.65 ^{A1}	ALT
Group 6	39.37 ± 4.32 ^{A1}	66.37 ± 5.16 ^{B2}	70.30 ± 0.67 ^{C2}	73.22 ± 2.13 ^{D2}	72.12 ± 3.01 ^{B2}	ALT

Values are represented as Mean (±) standard deviation. Values with different figures as superscripts in a row differ significantly ($p \leq 0.05$). Values with different alphabets as superscripts for a parameter in a column differ significantly ($p \leq 0.05$)

In acute toxicity study, a scale proposed by ²⁷ roughly classifies substances administered via the oral route according to their LD₅₀ as follows: Very toxic (LD₅₀ < 1.0 mg/kg bw), toxic (LD₅₀ up to 10.0 mg/kg bw), less toxic (LD₅₀ up to 100.0 mg/kg bw) and only slightly toxic (up to 1000.0 mg/kg bw). Substances with LD₅₀ values greater than 5,000 mg/kg bw are

practically non-toxic. Acute toxicity evaluation revealed that *S. latifolius* extract did not produce any mortality in the animals up to a dose of 5000 mg/kg. Hence LD₅₀ > 5000 mg/kg. The high oral LD₅₀ (> 5000 mg/kg) obtained suggested that the extract is practically non-toxic when administered via the oral route in ethnomedical use.

4. CONCLUSION

This study revealed that *S. latifolius* ethanolic extract have hypolipidemic, hypoglycemic and hepatoprotective effects in alloxan-induced diabetic rats. As a result, plant extracts may contribute beneficially in the treatment and management of diabetes mellitus and its associated complications. The plant extract was demonstrated to be non-toxic when taken orally in the acute toxicity study. However, more research on chronic toxicity is needed to determine the long-term effects of using this plant extract.

Declaration of Competing Interest

The authors declare no conflicts of interest.

Acknowledgement

The authors express their gratitude to Mr. Agbo Anthony of the Faculty of Veterinary Medicine, University of Nigeria, for his technical help.

REFERENCES

1. Seedevi P, Ramu Ganesan A, Moovendhan M, et al. Anti-diabetic activity of crude polysaccharide and rhamnose-enriched polysaccharide from *G. lithophila* on Streptozotocin (STZ)-induced in Wistar rats. *Sci Rep.* 2020; 10(1):1-12. <https://doi.org/10.1038/s41598-020-57486-w>
2. Olehnik SK, Fowler JL, Avramovich G, Hara M. Quantitative analysis of intra-and inter-individual variability of human beta-cell mass. *Sci Rep.* 2017; 7(1):1-7. <https://doi.org/10.1038/s41598-017-16300-w>
3. Ekor M. The growing use of herbal medicines : issues relating to adverse reactions and challenges in monitoring safety. *Front Pharmacol.* 2014; 4:1-10. <https://doi.org/10.3389/fphar.2013.00177>
4. Ajiboye BO, Oyinloye BE, Agboinghale PE, Sunday A, Asogwa E, Kappo AP. Antihyperglycaemia and related gene expressions of aqueous extract of *Gongronema latifolium* leaf in alloxan-induced diabetic rats. *Pharm Biol.* 2019; 57(1):604-611. <https://doi.org/10.1080/13880209.2019.1657907>
5. Ekakite, L; Ajiboye, B.O.; Oyinloye, B.E.; Owero-ozzeze, O.S.; Onikanni, S.A.; Ojo OA. Attenuation of diabetic nephropathy in alloxan-induced diabetic rats by Solanum macrocapon linn leaves aqueous extract. *Comp Clin Path.* 2021; 30(2):173-179. <https://doi.org/10.1007/s00580-021-03220-5>
6. Asase A, Oppong-Mensah G. Traditional antimalarial phytotherapy remedies in herbal markets in southern Ghana. *J Ethnopharmacol.* 2009; 126(3):492-499. <https://doi.org/10.1016/j.jep.2009.09.008>
7. Haidara M, Bourdy G, De Tommasi N, et al. Medicinal plants used in Mali for the treatment of malaria and liver diseases. *Nat Prod Commun.* 2016; 11(3):339-352. <https://doi.org/10.1177/1934578X1601100309>
8. Yesufu HB, Bassi PU, Khan IZ, Abdulrahman FI, Mohammed GT. Phytochemical screening and hepatoprotective properties of the aqueous root bark extract of *Sarcocapetus latifolius* (Smith) Bruce (African peach). *Arch Clin Microbiol.* 2010; 1(2):1-5. <https://doi.org/10.3823/207>
9. Grossman, Loren D, Robert AS. Complementary and Alternative Medicine for Diabetes Canada Clinical Practice Guidelines Expert Committee. *Can J Diabetes.* 2018; 42:154-161. <https://doi.org/10.1016/j.jcjd.2017.10.023>
10. Analike RA, Ahaneku JE. Effects of *Gongronema latifolium* on blood lipids , lipoproteins and glucose values in adult Nigerians Effects of *Gongronema latifolium* on blood lipids , lipoproteins and glucose values in adult Nigerians. 2020; (August). <https://doi.org/10.5455/2320-6012.ijrms20150413>
11. Chukwudozie K, Agbo MC, Okonkwo UK, Ezeonu IM. Oral Administration of *Gongronema latifolium* Leaf Extract Modulates Gut Microflora and Blood Glucose of Induced Diabetic Rats. *J Pure Appl Microbiol.* 2021; 15(1):346-355. <https://doi.org/10.22207/JPAM.15.1.29>
12. Harborne J.B. Methods of Plant Analysis. In: *Phytochemical Methods*. Springer Dordrecht; 1984:1-36. https://doi.org/10.1007/978-94-009-5570-7_1
13. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. *GUIDE FOR THE CARE AND USE OF LABORATORY ANIMALS*. 8th ed. National Academies Press (US); 2011.
14. Al-hindi B, Yusoff NA, Atangwho IJ, Ahmad M, Asmawi MZ. A Soxhlet Extract of *Gongronema latifolium* Retains Moderate Blood Glucose Lowering Effect and Produces Structural Recovery in the Pancreas of STZ-Induced Diabetic Rats. *Med Sci.* 2016; 4(9):1-16. <https://doi.org/10.3390/medsci4020009>
15. Governa P, Baini G, Borgonetti V, et al. Phytotherapy in the Management of Diabetes : A Review. *Molecules.* 2018; 23(105):1-22. <https://doi.org/10.3390/molecules23010105>
16. Rosenzweig T, Sampson SR. Activation of Insulin Signaling by Botanical Products. *Int J Mol Sci.* 2021; 22(4193):1-20. <https://doi.org/10.3390/ijms22084193>
17. Srivastava AK, Mukerjee A, Tripathi A. Antidiabetic and antihyperlipidemic activities of *Cucumis melo* var. *momordica* fruit extract on experimental animals. *Futur J Pharm Sci.* 2020; 6(1). <https://doi.org/10.1186/s43094-020-00116-z>
18. Kifle ZD, Anteneh DA, Atnafie SA. Hypoglycemic, anti-hyperglycemic and antihyperlipidemic effects of bersama abyssinica fresen (Melianthaceae) leaves' solvent fractions in normoglycemic and streptozotocin-induced diabetic mice. *J Exp Pharmacol.* 2020; 12:385-396. <https://doi.org/10.2147/JEP.S273959>
19. Rahayu SE, Sinaga E, Suprihatin, Jayanto AD, Adistron Y. Antihyperglycemic and antihyperlipidemic effects of methanolic seeds extract of *pandanus odoratissimum* in Alloxan-Induced Diabetic Rats. *Syst Rev Pharm.* 2020; 11(6):946-953. <https://doi.org/10.31838/srp.2020.6.133>
20. V.H.A. E, A.N.C. O. Sub-acute effects of orally administered Ethanol extract of Root of *Sarcocapetus latifolius* (African peach) on Liver function markers of Wistar albino Rats. *Int Res J Med Sci.* 2014; 2(2):13-17. <https://doi.org/10.48198/NJPAS/20.A15>
21. Chiu YJ, Chou SC, Chiu CS, et al. Hepatoprotective effect of the ethanol extract of *Polygonum orientale* on carbon tetrachloride-induced acute liver injury in mice. *J Food Drug Anal.* 2018; 26(1):369-379. <https://doi.org/10.1016/j.jfda.2017.04.007>
22. Wei X, Luo C, He Y, et al. Hepatoprotective Effects of Different Extracts From Triphala Against CCl4-Induced Acute Liver Injury in Mice. *Front Pharmacol.* 2021; 12(July):1-18. <https://doi.org/10.3389/fphar.2021.664607>
23. Aloke C, Ogbodo PN, Ejike CECC. Hepatoprotective Effects of Ethanol Extracts of *Gongronema latifolium* Leaves in a Carbon Tetrachloride (CCl 4) -Induced Murine Model of Hepatocellular Injury. *Pharmacologia.* 2018; 9:55-61. <https://doi.org/10.5567/pharmacologia.2018.55.61>
24. Fagbahun OF, Awoniran PO, Babalola OO, Agboola FK, Msagati TAM. Changes in the biochemical , hematological and histopathological parameters in STZ-Induced diabetic rats and the ameliorative effect of *Kigelia africana* fruit extract. *Heliyon.* 2020; 6:e03989. <https://doi.org/10.1016/j.heliyon.2020.e03989>
25. Okon IA, Ufot UF, Onoyeraye UG, Nwachukwu EO, Owu DU. Effect of *Gongronema latifolium* on lipid profile , oral glucose tolerance test and some hematological parameters in fructose- induced hyperglycemia in rats. *Pharm Biomed Res.* 2019; 5(1):25-31. <https://doi.org/10.18502/pbr.v5i1.762>
26. Farzaei MH, Singh AK, Kumar R, et al. Targeting Inflammation by Flavonoids: Novel Therapeutic Strategy for Metabolic Disorders. 2019; 20. <https://doi.org/10.3390/ijms20194957>
27. Lorke D, Ag B. A New Approach to Practical Acute Toxicity Testing. *Arch Toxicol.* 1983; 54:275-287. <https://doi.org/10.1007/BF01234480>