

Open Access Full Text Article

Review Article

Abrus precatorius: A comprehensive insight into the phytochemical, pharmacological, therapeutic activities and safety

Aswin Rafif Khairullah¹ , Tridiganita Intan Solikhah^{2*} , Arif Nur Muhammad Ansori¹ , Gavrila Amadea Puspitarani³ , Dina Dewi Anggraini⁴ , Gabrielle Ann Villar Posa⁵

¹ Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia

² Division of Veterinary Clinic, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia

³ Infectious Diseases and One Health, Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh

⁴ Midwifery Study Program, Poltekkes Kemenkes Semarang, Semarang, Indonesia

⁵ School of Environmental Science and Management, University of the Philippines Los Banos, Los Banos, Philippines

Article Info:

Article History:

Received 18 November 2021
Reviewed 27 December 2021
Accepted 05 January 2022
Published 15 January 2022

Cite this article as:

Aswin RK, Tridiganita IS, Arif NMA, Gavrila AP, Dina DA, Gabrielle AVP, *Abrus precatorius*: A comprehensive insight into the phytochemical, pharmacological, therapeutic activities, and safety, *Journal of Drug Delivery and Therapeutics*. 2022; 12(1):151-157

DOI: <http://dx.doi.org/10.22270/jddt.v12i1.5173>

*Address for Correspondence:

Tridiganita Intan Solikhah, Division of Veterinary Clinic, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia

ORCID ID: <https://orcid.org/0000-0002-8434-6273>

Abstract

Abrus precatorius L., belonging to the family of Fabaceae is one of the potential herbal plants to be used as natural medicine. *A. precatorius* is capable of growing in tropical and subtropical areas of the world. The leaves of *A. precatorius* contain pinitol, triterpene glycosides, glycyrrhizin, and alkaloids. The leaves of *A. precatorius* can also treat leukoderma, skin diseases, itching, eye pain, and wounds. The seeds of *A. precatorius* contain flavonoids, steroids, alkaloids, anthocyanins, lectins, and fixed oils and can treat skin diseases, ulcers, and nervous system disorders. The roots of *A. precatorius* contain glycyrrhizin and alkaloid compounds and are able to treat rheumatism, alexiteric, sore throat, and vomiting. *A. precatorius* shows several therapeutic activities such as antimicrobial, anti-helminthics, antimalarial, antifungal, nephroprotective, immunomodulatory, neuromuscular, antidiabetic, anti-inflammatory, antifertility, antiserotonergic, antidiarrheal, antitumor, antispasmodic, and memory enhancing properties. Inappropriate dose of *A. precatorius* will cause toxic effects. Thus *A. precatorius* can be a good potential herbal plant to be used as a natural medicine.

Keywords: *Abrus precatorius*, Fabaceae, Medicine, Pharmacology, Phytochemistry.

Introduction

Since the beginning of human civilization, herbal plants have often been used to cure various diseases ¹⁻³. Herbal plants have been an ancient tradition much older than contemporary pharmacology, medicine, and chemistry ^{4,5}. The World Health Organization reported that around 75% of the world's population still uses medicinal methods derived from herbal plants ⁶. In addition, medicines from herbal plants are widely used because they are cheaper, safer, and have various pharmacological activities ⁷⁻⁹.

A. precatorius, a plant belonging to the Fabaceae family, has good potential to be used as herbal medicine ¹⁰. This plant is commonly known as Indian licorice, Crab's eye, Jequirity, and Rosary pea. This plant is known as Gunja in Sanskrit and Ratti in Hindi ¹¹. *A. precatorius* is native to India; however, it can be found in all tropical and sub-tropical regions around the world ¹².

A. precatorius was first described as a medicinal plant by William Boericke in the Homoeopathic Materia Medica entitled *Jequirity* ¹³. This plant is traditionally used to treat cuts, wounds from animal bites, and several other diseases such as rabies, tetanus, and leucoderma ¹⁴. This plant is also effective in treating dysentery and diarrhea ¹⁵. In addition, this plant also shows efficacy as a tonic, aphrodisiac, emetic, and laxative ¹¹. *A. precatorius* is believed to have various pharmacological activities such as antibacterial, antihelminthic, antidiabetic, and antitumor ¹³.

Given the efficacious of the *A. precatorius* plant as a medicinal plant, this review offers a comprehensive insight into the phytochemical, pharmacological, therapeutic activities, and safety of *A. precatorius*, and demonstrates that it can be used as a reliable source for preparation of new drugs.

Origin Names

This plant in Indonesia is called Saga or Weglis; in Philippines Jequirity; in Nepal Rati gedi or Crab's eye; in Egypt Rosary pea; in Pakistan Gunchi; in USA Precatory bean ¹⁰.

Taxonomy

Kingdom: Plantae
 Division: Magnoliophyta
 Class: Magnoliopsida
 Order: Fabales
 Family: Fabaceae
 Genus: Abrus
 Species: *Abrus precatorius* L. ¹⁶

Plant description

A. precatorius is a twisted woody vine capable of growing up to 6 meters. The leaves resemble feathers, compound, alternate, pinnate with small oval leaflets. The branches are greenish-yellow. The flowers are abundant and appear in the leaf axils along the stem. The flowers are small and clustered with a length of 3 cm to 8 cm. The flowers are white or purple. The fruits have a nut-like shape with a length of about 3 cm containing hard ovoid shiny seed in black, dark red, with a length of about 1 cm. The seeds are red with a black spot covering one end. The roots are tortuous and branched ¹⁷. The morphology of *A. precatorius* can be seen in Figure 1.

Figure 1: *Abrus precatorius* L. ¹⁸

Geographical distribution

A. precatorius grows in tropical and subtropical areas of the world. The plant can be found in China, India, South Africa, and Brazil, and commonly found throughout the plains of India, from the Himalayas to South India and Ceylon. This plant is able to grow at an altitude of 1200 m in the Himalayas ¹¹. In addition, it is also widely cultivated in Nigeria and Southeast Asian countries ¹⁹.

Phytocemistry

The phytochemical content of the parts of *A. precatorius* plant are as follows:

Leaves

A. precatorius leaves contain pinitol, triterpene glycosides, glycyrrhizin up to 10%, and alkaloids such as hepaphotine, precatorine, abrine, choline ¹¹. Triterpene glycosides consist of abusosides A, B, C, and tree glycosides based on abrutigenin and cycloartane type aglycones ²⁰. Other active compounds found in *A. precatorius* leaves are abruslactone A, tritepenes abrusgenic acid, methyl abrusgenate,

liquirtiginin-7-diglycosides, liquirtiginin-7-monoglycosides, toxifolin-3-glucoside, and the flavonoid vitexin ²¹.

Seeds

A. precatorius seeds contain carbohydrates (42.42%), fat (3.92%), ash (5.38%), moisture (5.06%), crude protein (39.20%), and crude fiber (9.08%) ²². The active compounds found in the seeds of *A. precatorius* are flavonoids, steroids, alkaloids, anthocyanins, lectins, and fixed oils ²³. Alkaloids from the seeds of *A. precatorius* contain choline, hepaphotine, precatorine, and abrine ¹¹. *A. precatorius* seed oil contains a lot of linoleic acid and oleic acid ²⁴. Steroids from the seeds of *A. precatorius* contain stigmasterol, -sitosterol, abricin, 5β-cholanic acid, cholesterol, and linoleic ²⁵. The red color of *A. precatorius* seeds is due to the presence of pelargonidin, delphinidin, abranin glycosides, and cyanide ²⁶. Several other compounds such as sophoradiol, saponin, hederagenin methyl ether, abrisapogenol J, kaikasaponin III methyl ester, flavones such as aknone and abrectorin are other major constituents of *A. precatorius* seeds ²⁷. The main constituents of *A. precatorius* seeds are lectins and abrins. Lectins are toxic (abrin) and non-toxic (abrus agglutinin). Abrin is denoted by abrin a, b, c, and d consisting a large β-polypeptide chain and a short polypeptide chain linked by disulfide bonds ²⁸.

Root

The roots of *A. precatorius* contain glycyrrhizin compounds and alkaloids such as precasine and abrasives in addition to abrine and related bases ²⁹.

Medicinal benefits

The medical benefits of parts of the *A. precatorius* plant are as follows:

Leaves

The leaves of *A. precatorius* can be used as a tonic and aphrodisiac. The leaves of *A. precatorius* can also be used to treat leucoderma, skin diseases, itching, eye diseases, and wounds ²⁶. In addition, the leaves of *A. precatorius* are also efficacious to treat stomatitis, asthma, dental caries, migraine, fever, and tuberculosis ³⁰. *A. precatorius* leaves soaked in warm oil are applied to the surface of the skin, experiencing rheumatic pain ²⁶. *A. precatorius* leaves juice mixed with oil can be applied over a bloating stomach ³¹. *A. precatorius* leaves powder mixed with sugar are used to treat menorrhagia and leucoderma ³². *A. precatorius* leaves can also be used to treat gastritis, diarrhea, insomnia, cancer, kidney disease, and heart disease ³³.

Seeds

A. precatorius seeds can be used to treat skin diseases, ulcers, and nervous system disorders ³⁴. *A. precatorius* seeds that are processed into a paste can be applied to the skin to treat shoulder joint stiffness, sciatica, bruises, and paralysis ³⁵. Seeds of *A. precatorius* can be used as a laxative, but it should be noted that in large doses, it will be toxic and cause cholera-like symptoms ³⁶. *A. precatorius* seeds can also be used as a natural contraceptive ³⁷.

Root

A. precatorius roots can be used to treat rheumatism, alexiteria, laryngitis, and vomiting ³⁸. *A. precatorius* root extract can be used to treat coughs ¹⁰. In addition, the root can also be used to treat cancer, gastritis, diarrhea, insomnia, kidney disease, and heart disease ³⁹. *A. precatorius* roots has its own uses in treating jaundice, gonorrhea, and other infections ³².

Traditional uses

A. preatorius has anti-suppurative properties; the *A. preatorius* plant ground with lime can be used to treat acne and abscesses¹⁰. Oral decoction of *A. preatorius* leaves can cure colds and coughs²⁶. The root of *A. preatorius* is useful for treating hemoglobinuric bile and jaundice¹¹. The root paste can be used to cure stomach aches, prevent abortion, and recover from tumors³⁰. The roots of *A. preatorius* powder mixed with pure butter can be utilized to cure coughs²⁶. The roots of *A. preatorius* can be utilized as medicine from snake bites by chewing⁴⁰. *A. preatorius* roots extract in hot water can be given orally to use as an anticonvulsant and anti-malarial⁴¹. In addition, the liquid broth from the dried root of *A. preatorius* taken orally is efficacious for the treatment of bronchitis and hepatitis⁴². A paste of *A. preatorius* leaves and seeds can be rubbed on the head for gray hair¹¹. Dry seeds of *A. preatorius* that are ground into a powder can be given orally to cure worm infestations in the digestive tract²⁶.

The bright red color of *A. preatorius* seeds attracts children's attention, so there are cases when children in rural areas who do not have knowledge of the *A. preatorius* plant eat its seeds which are poisonous when consumed⁴³. Boiled *A. preatorius* seeds are often eaten by residents in several parts of India^{44,45}. *A. preatorius* seeds also have several active compounds that are a source of insecticides and antimicrobials⁴⁶. *A. preatorius* is considered a diuretic, expectorant, antidote, laxative, febrifuge, anodyne, aphrodisiac, hemostat, refrigerant, vermifuge, antimicrobial, emollient, vomiting reliever, sedative, laxative, and abortifacient^{47,48}. In addition, *A. preatorius* is also used to cure blennorrhea, cancer, colic, seizures, diarrhea, diabetes, night blindness, snake bites, conjunctivitis, fever, rheumatism, jaundice, gonorrhea, headaches, ulcers, gastritis, ophthalmia, malaria, and chronic nephritis⁴⁹. Soaked in hot water, *A. preatorius* seed extract can be taken orally to treat malaria²⁶. Dry *A. preatorius* seed powder is used by various African ethnic groups as a natural contraceptive¹¹. In addition, *A. preatorius* seeds can also be used to treat tuberculosis and painful swelling⁵⁰.

Some of therapeutic uses

A. preatorius has many therapeutic activity as listed in below:

Antimicrobial activity

The antimicrobial activity of the leaf, stem, and seed oil extracts of *A. preatorius* is quite effective in inhibiting the growth of several bacteria such as *Klebsiella pneumonia*, *Bacillus subtilis*, *Corynebacterium spp*, *Enterococcus faecalis*, *Staphylococcus aureus*, *Streptococcus windosus*, *Staphylococcus epidermidis*, and *Escherichia coli* through agar well diffusion techniques. *A. preatorius* roots extract also showed antimicrobial activity on various types of bacteria tested. Different solvent concentrations or fractions showed inhibitory activity against thirteen gram-positive and gram-negative bacteria. Through bioautography tests, it has been established that the antimicrobial activity of the *A. preatorius* extract is localized to specific chromatophores in the chloroform fraction⁵¹.

Antihelmintic activity

The aqueous extracts of the roots and stems of *A. preatorius* were observed for their antihelmintic activities against schistosomes and cestodes. The aqueous extract of *A. preatorius* root indicated lethal antihelmintic activity combating cestodes at a concentration of 103 mg/ml.

Meanwhile, aqueous extract of *A. preatorius* root at a concentration of 0.6 mg/ml and aqueous extract of *A. preatorius* stem at a dose of 1.5 mg/ml showed lethal antihelmintic activity against schistosomes. Tannins, steroids, terpenes, flavonoids, and alkaloids from *A. preatorius* may play a role in this antihelmintic activity⁵².

Antimalarial activity

Isoflavaquinone-abruquinone compound isolated from *A. preatorius* extract showed antimalarial activity. Assessment of antimalarial activity was then carried out based on cytotoxicity and antiplasmoidal activity. Cytotoxicity activity was evaluated in melanoma cells (A375), whereas antiplasmoidal activity was evaluated by micro-radioactive methods. The assay of the *A. preatorius* extract was carried out at three diverse times in triplicate in 96-plate culture with the culture mostly at the ring stage at 0.5-1% parasitemia. *A. preatorius* extract showed IC50 values below 20 g / ml⁵³.

Antifungal activity

Dry *A. preatorius* seed extract at a concentration of 1% effectively inhibited the growth of *Cryptococcus neoformans* 54.

Nephroprotective activity

The evaluation of the nephroprotective activity of the aqueous extract of the stem of *A. preatorius* was carried out to specify the restoring effect of acetaminophen and cisplatin-induced nephrotoxicity. The restoring effect of *A. preatorius* on HEK 293 cells damaged by acetaminophen and cisplatin was evaluated by the mitochondrial activity assay of MTS. The test results indicated that the water extract of the *A. preatorius* stem had the best recovery effect and could be utilized for the prevention or medication of kidney distraction^{55,56}.

Immunomodulatory activity

Abrus agglutinin is one of the compounds dissociated from the seed extract of *A. preatorius*. This compound is similar to ML-1 with regard to the specificity of carbohydrates [gal (β1 → 3) gal / Nac], observed both in native (NA) and heat denatured (HDA) conditions for NK cell activation, cytokine secretion, murine splenocyte proliferation, and thymocyte proliferation in vitro with the aim of assessing its potential as an immunomodulator. HDA and NA activated splenocytes and induced the production of cytokines such as IFN-γ, IL-2, TNF-α, and TNF-β, which could exhibit a type of Th1 immune response. Native agglutinin abrasive and HDA-induced conditioned media of adherent splenocytes can stimulate non-adherent splenocytes and vice versa. Heat denatured abrasive agglutinin and induced NK cell activation at a much lower concentration than NA concentration, but the rate of NK cell activation was higher for NA. Thymocyte proliferation by HDA and NA was also evaluated. This study showed that *Abrus* agglutinin could be a potential immunomodulator in the original form as well as in the hot form^{57,58}.

Neuromuscular activity

The neuromuscular activity of the ethanol extract of *A. preatorius* leaves was evaluated using isolated frog abdominal rectus muscles and phrenic nerve-diaphragm muscle preparations of rats and chicks. Ethanol extract of *A. preatorius* leaves hampered acetylcholine-induced contraction in rectus abdominis toad and rat phrenic nerve diaphragm muscle preparations. The effect depended on the dose of the ethanol extract of *A. preatorius* leaves. In

addition, the ethanolic extract of *A. pectorarius* leaves caused paralysis when injected intravenously into chicks and had no effect on direct electrical stimulation of the diaphragms of mice. The inhibitory effect on the diaphragm preparation of rat phrenic nerves from ethanol extract of *A. pectorarius* leaves is strengthened in the presence of increased magnesium ions, reduced calcium ions, or decreased potassium ions. Thus, the ethanolic extract of *A. pectorarius* leaves shows similarity to D-tubocurarine chloride in terms of the neuromuscular block pattern. Neither the petroleum ether nor the aqueous extract of the leaves of *A. pectorarius* showed any significant changes in the skeletal muscle used in this study. Therefore, the nerve toxic component of *A. pectorarius* leaves is particularly in the ethanol extract of *A. pectorarius*⁵⁹.

Antidiabetic activity

An ethnobotany survey in five districts of the Nigerian state of Lagos was carried out by filling out a well-known semi-structured questionnaire for diabetes treatment^{60,61}. In the survey, about 100 people answered, most of the respondents came from the Yoruba tribe⁶². About half of the respondents had 20-30 years of experience in medicating diabetes by utilizing herbal plants (96%) without conventional treatment for diabetes. Among them, most of the men (76%) had knowledge of traditional diabetes treatment. They also developed an effective and easily recognizable diagnostic tool for diabetes. In the survey, fifty multi-component herbal recipes were covered, consisting mostly of liquid preparations. The drug in liquid form was often given orally without showing any serious side effects (92%). The main antidiabetic plants⁶³ include *A. pectorarius*, *Blighia sapida*, and *Alchornea cordifolia*. The leaves of these plants must be well squeezed in water until they release the juice, then the decoction can be used as a treatment for diabetes by using it as an infusion⁶⁴.

Anti-inflammatory activity

Two triterpenoid compounds, namely saponin 1 and saponin 2, and their derivatives namely acetate 3 and acetate 4 isolated from the *A. pectorarius* plant were evaluated for their anti-inflammatory activity utilizing the croton oil ear model. The ear tissue parts of mice treated with anti-inflammatory agents were compared with the test treatment group. The results showed reduced inflammation in the ears of the mice tested. Triterpenoid compounds from *A. pectorarius* showed anti-inflammatory activity but acetate indicated greater inhibition at concentrations of 300 µg and 600 µg. The acetate derivative of triterpenoid compounds was more effective at a concentration of 600 µg among all test treatment groups⁶⁵.

Antifertility activity

Evaluation of the antifertility activity of *A. pectorarius* seed extract managed intraperitoneally to adult male albino mice BALB/c strain on the integrity of spermatozoa DNA and sperm production. Daily sperm production was measured by calculating testicular spermatids in the Horwell chamber while DNA decay to epididymal spermatozoa was specified by comet test within 20 days of the experimental procedure. The administration of ethanol seed extract of *A. pectorarius* (20 and 60 mg/kg) intraperitoneally caused a very significant mitigation in daily sperm production. Reversal in sperm production was monitored in all medicated animals after 20 days of therapy interruption. Similarly, a very significant increase in DNA damage was monitored in all medicated mice and no significant reversibility in DNA damage was monitored during the therapy period. This

study proved that *prelatorius* seed extract acted as an anti-fertility or contraceptive agent with a risk of DNA decay to spermatozoa and could cause teratogenic effects⁶⁶.

Antiserotonergic activity

The antiserotonergic activity of the ethyl acetate extract of *A. pectorarius* leaves was examined on frog fundus strips utilizing sumatriptan as the standard drug. The ethyl acetate extract of *A. pectorarius* leaves was effective in treating migraine headaches. The leaves of *A. pectorarius* on soxhlet extraction with ethyl acetate showed the appearance of protein, saponins, amino acids, carbohydrates, tannins, alkaloids, as well as antiserotonergic activity on the frog fundus strips, which were shown (Graded dose response) compared to sumatriptan as a standard drug⁶⁷. In another research, the anti-migraine activity of *A. pectorarius* was demonstrated using fundus muscle preparations of Wister albino mice and male frogs using a Sherrington rotating drum. The muscle contraction influence of crude ethyl acetate and petroleum ether *A. pectorarius* extract was carried out on both muscle preparations⁶⁸.

Antidiarrheal activity

Dry seed chromatography fraction of *A. pectorarius* (10 mg/kg) was administered intragastrically to castor oil induced rats. This chromatographic fraction showed significant antidiarrheal activity⁶⁹.

Antitumor activity

Ethanol extract of *A. pectorarius* leaves given intraperitoneally to mice showed inactive results in Sarcoma 180 (ASC) AP074⁷⁰. Aqueous extract of *A. pectorarius* seeds administered intraperitoneally to mice showed active results in Sarcoma (Yoshida solid and ASC)⁷¹. Aqueous extract of *A. pectorarius* seeds given subcutaneously to mice indicated inactive results in Sarcoma (Yoshida ASC) AP012⁷².

Antispasmodic activity

The chromatographic fraction of *A. pectorarius* seeds at a dose of 0.2 mg/ml given to epinephrine-induced mice actively affected ACh-, PGE-2-, oxytocin- and epinephrine-induced contractions⁷³.

Memory enhancer activity

The therapeutic potential of *A. pectorarius* has been studied in a model of Alzheimer's illness by identifying glycochemical microglial cell activation (MGC) in autopic brain samples. *A. pectorarius* agglutinin confess MGC in the white matter of the brain, which exhibits stem-like cells and appears very dense in the proximal region of oligodendroglial cells. Lectin compounds from the *A. pectorarius* plant have been studied to identify histochemically the activation of microglia cells in autopic brain samples from Alzheimer's illness subjects¹⁰.

Toxicological

Although *A. pectorarius* has many therapeutic properties, it should be noted that inaccurate dosage or intake can lead to life-threatening toxicity⁷⁴. *A. pectorarius* seeds could cause toxic effects at doses of 90 to 120 mg⁷⁵. In addition, *A. pectorarius* seeds contains abrin, which in doses of 0.0001 to 0.0002 mg/kg could be a natural poison⁷⁶. The poisoning effects of ingested *A. pectorarius* seeds can influence the kidneys, gastrointestinal tract, spleen, lymphatic and liver system⁷⁷. Exposure to *A. pectorarius* seed extract causes conjunctivitis, eye damage, and blindness⁷⁸. Another symptom of poisoning is acute gastroenteritis with vomiting,

nausea and diarrhea leading to shock, seizures, and dehydration⁷⁹.

Conclusion

A. precatorius is a potential herbal plant that is good for use as a natural medicine. The stems, seeds, and roots of the *A. precatorius* plant each has their own traditional uses. In addition, the use of *A. precatorius* with an incorrect dose will cause toxic effects.

References

1. Safira A, Savitri SL, Putri ARB, Hamongan JM, Safinda B, Solikhah TI, et al. Review on the pharmacological and health aspects of Hylocereus or Pitaya: An update. *J Drug Deliv Ther.* 2021; 11(6):297-303. <https://doi.org/10.22270/jddt.v11i6.5181>
2. Khairullah AR, Solikhah TI, Ansori ANM, Hanisia RH, Puspitarani GA, Fadholly A, et al. Medicinal importance of Kaempferia galanga L. (Zingiberaceae): A comprehensive review. *J Herbmed Pharmacol.* 2021; 10(3):281-8. <https://doi.org/10.34172/jhp.2021.32>
3. Ansori ANM, Kharisma VD, Solikhah TI. Medicinal properties of *Muntingia calabura* L.: A Review. *Res J Pharm Technol.* 2021; 14(8):4505-8.
4. Khairullah AR, Solikhah TI, Ansori ANM, Fadholly A, Ramandinianto SC, Ansharieta R, et al. A review of an important medicinal plant : *Alpinia galanga* (L.) willd. *Syst Rev Pharm.* 2020; 11(10):387-95. <https://doi.org/10.34172/jhp.2021.32>
5. Solikhah TI, Solikhah GP, Susilo RJK. Aloe vera and Virgin Coconut Oil (VCO) accelerate healing process in domestic cat (*Felis domesticus*) suffering from scabies. *Iraqi J Vet Sci.* 2021; 35(4):699-704. <https://doi.org/10.33899/ijvs.2020.127884.1539>
6. Martin-Herrera D, Abdala S, Benjumea D, Gutierrez-Luis J. Diuretic activity of some *Withania aristata* Ait. fractions. *J Ethnopharmacol.* 2008; 117(3):496-9. <https://doi.org/10.1016/j.jep.2008.03.004>
7. Khairullah AR, Solikhah TI, Ansori ANM, Hidayatullah AR, Hartadi EB, Ramandinianto SC, et al. Review on the Pharmacological and Health Aspects of Apium Graveolens or Celery : An Update. *Syst Rev Pharm.* 2021; 12(1):606-12.
8. Solikhah TI, Setiawan B, Ismukada DR. Antidiabetic activity of papaya leaf extract (*Carica Papaya* L.) isolated with maceration method in alloxan-induces diabetic mice. *Syst Rev Pharm.* 2020; 11(9):774-8.
9. Solikhah TI, Solikhah GP. Effect of *Muntingia calabura* L. leaf extract on blood glucose levels and body weight of alloxan-induced diabetic mice. *Pharmacogn J.* 2021; 13(6):1450-5. <https://doi.org/10.5530/pj.2021.13.184>
10. Bhatia M, Siddiqui N, Gupta S. *Abrus precatorius* (L.): An evaluation of traditional herb. *J Pharm Res.* 2013; 3:3296-315.
11. Garaniya N, Bapodra A. Ethno botanical and Phytophrmacological potential of *Abrus precatorius* L.: A review. *Asian Pac J Trop Biomed.* 2014; 4:S27-34. <https://doi.org/10.12980/APJTB.4.2014C1069>
12. Tabasum S, Khare S, Jain K. Spectrophotometric quantification of total phenolic, flavonoid, and alkaloid contents of *Abrus precatorius* L. seeds. *Asian J Pharm Clin Res.* 2016; 9(2):371-4.
13. Tabasum S, Khare S, Jain K. Establishment of Quality Standards of *Abrus precatorius* Linn. Seeds. *Indian J Pharm Sci.* 2018; 80(3):541-6. <https://doi.org/10.4172/pharmaceutical-sciences.1000389>
14. Shourie A, Kalra K. Analysis of phytochemical constituents and pharmacological properties of *Abrus precatorius* L. *Int J Pharma Bio Sci.* 2013; 4:91-101.
15. Monago CC, Alumanah EO. Antidiabetic effect of chloroform-methanol extract of *Abrus Precatorius* Linn Seed in alloxan diabetic rabbit. *J Appl Sci Env Mgt.* 2005; 9(1):85-8.
16. Attal AR, Otari K V, Shete R V, Upasani CD, Nandgude TD. *Abrus precatorius* Linnaeus: a phytopharmacological review. *J Pharm Res.* 2010; 3(11):2585-7.
17. Okhale SE, EM N. *Abrus precatorius* Linn (Fabaceae): phytochemistry, ethnomedicinal uses, ethnopharmacology and pharmacological activities. *Int J Pharm Sci Res.* 2016; 1:37-43.
18. Solanki A, Zaveri M. Pharmacognosy, phytochemistry and pharmacology of *Abrus precatorius* leaf: A review. *Int J Pharm Sci Rev Res.* 2012; 13(2):71-6.
19. Prabha M, Perumal C, Kumar P, Soundarajan, Srinivasan S SR. Review Article Pharmacological activities of *Abrus precatorius* (L.) seeds. *Int J Pharm Med Res J homepage.* 2015; 3(2):195-200.
20. Bahrami Y, Franco CMM. Acetylated triterpene glycosides and their biological activity from holothuroidea reported in the past six decades. *Mar Drugs.* 2016; 14(8):147. <https://doi.org/10.3390/14080147>
21. Ragasa CY, Lorena GS, Mandia EH, Raga DD, Shen C-C. Chemical constituents of *Abrus precatorius*. *Amer J Essent Oils Nat Prod.* 2013; 1(2):7-10.
22. Das A, Jain V, Mishra A. A brief review on a traditional herb: *Abrus precatorius* (L.). *Int J Forensic Med Toxicol Sci.* 2016; 1(1):1-10. <https://doi.org/10.18231/jijfmts.2016.001>
23. Pal RS, Ariharasivakumar G, Girhepunjhe K, Upadhyay A. In-vitro antioxidant activity of phenolic and flavonoid compounds extracted from seeds of *Abrus precatorius*. *Int J Pharm Pharm Sci.* 2009; 1(2):136-40.
24. Obeta JC, Agu CV, Njoku OU, Okonkwo CC, Anaduaka EG. Potentials of non-edible *Abrus precatorius* seed oil towards biodiesel production. *African J Biotechnol.* 2014; 13(44). <https://doi.org/10.5897/AJB2014.13979>
25. Yonemoto R, Shimada M, Gunawan-Puteri MDPT, Kato E, Kawabata J. α -Amylase inhibitory triterpene from *Abrus precatorius* leaves. *J Agric Food Chem.* 2014; 62(33):8411-4. <https://doi.org/10.1021/jf502667z>
26. Bhakta S, Das SK. The medicinal values of *Abrus precatorius*: a review study. *J Adv Biotechnol Exp Ther.* 2020; 3(2):84-91. <https://doi.org/10.5455/jabet.2020.d111>
27. Verma S. Phytochemical and pharmacological study on *Abrus precatorius*. *Asian J Plant Sci Res.* 2016; 6(2):24-6.
28. Herrmann MS, Behnke WD. A characterization of abrin a from the seeds of the *Abrus precatorius* plant. *Biochim Biophys Acta (BBA)-Protein Struct.* 1981; 667(2):397-410. [https://doi.org/10.1016/0005-2795\(81\)90206-3](https://doi.org/10.1016/0005-2795(81)90206-3)
29. Verma D, Tiwari SS, Srivastava S, Rawat AKS. Pharmacognostical evaluation and phytochemical standardization of *Abrus precatorius* L. seeds. *Nat Prod Sci.* 2011; 17(1):51-7.
30. DeFilipps RA, Krupnick GA. The medicinal plants of Myanmar. *PhytoKeys.* 2018; 102:1-341. <https://doi.org/10.3897/phytokeys.102.24380>
31. Balamurugan S, Vijayakumar S, Prabhu S, Yabesh JEM. Traditional plants used for the treatment of gynaecological disorders in Vedaranyam taluk, South India-an ethnomedicinal survey. *J Tradit Complement Med.* 2018; 8(2):308-23. <https://doi.org/10.1016/j.jtcme.2017.06.009>
32. Janghel V, Patel P, Chandel SS. Plants used for the treatment of icterus (jaundice) in Central India: A review. *Ann Hepatol.* 2019; 18(5):658-72. <https://doi.org/10.1016/j.aohep.2019.05.003>
33. Kubiatowicz R, Benson L. Oh no! Ethnobotany. The safe handling and storage of hazardous ethnobotanical artifacts. In: Collection forum. 2003. p. 59-73.

34. Dhole SB, Majumdar AS. Detoxification of *Abrus precatorius* L. Seeds by Ayurvedic Shodhana process and anti-inflammatory potential of the detoxified extract. *J Ayurveda Integr Med.* 2014; 5(3):154. <https://doi.org/10.4103/0975-9476.140472>

35. Shoemaker J. Jequirity (*Abrus precatorius*, linné); Its use in diseases of the skin. *Lancet.* 1884; 124(3179):185-7. [https://doi.org/10.1016/S0140-6736\(02\)13691-9](https://doi.org/10.1016/S0140-6736(02)13691-9)

36. Reedman L, Shih RD, Hung O. Survival after an intentional ingestion of crushed abrus seeds. *West J Emerg Med.* 2008; 9(3):157.

37. Bhakta S, Awal A, Das SK. Herbal contraceptive effect of *Abrus precatorius*, *Ricinus communis*, and *Syzygium aromaticum* on anatomy of the testis of male Swiss albino mice. *J Adv Biotechnol Exp Ther.* 2019; 2(2):36-43. <https://doi.org/10.5455/jabet.2019.d23>

38. Taur DJ, Patil RN, Patil RY. Antiasthmatic related properties of *Abrus precatorius* leaves on various models. *J Tradit Complement Med.* 2017; 7(4):428-32. <https://doi.org/10.1016/j.jtcm.2016.12.007>

39. Polito L, Bortolotti M, Maiello S, Battelli MG, Bolognesi A. Plants producing ribosome-inactivating proteins in traditional medicine. *Molecules.* 2016; 21(11):1560. <https://doi.org/10.3390/molecules21111560>

40. Upasani S V, Beldar VG, Tatiya AU, Upasani MS, Surana SJ, Patil DS. Ethnomedicinal plants used for snakebite in India: a brief overview. *Integr Med Res.* 2017; 6(2):114-30. <https://doi.org/10.1016/j.imr.2017.03.001>

41. Adesina SK. Studies on some plants used as anticonvulsant in Amerindian and African traditional medicine. *Fitoterapia.* 1982;53:147-62.

42. Kuo S-C, Chen S-C, Chen L-H, Wu J-B, Wang J-P, Teng C-M. Potent antiplatelet, anti-inflammatory and antiallergic isoflavanquinones from the roots of *Abrus precatorius*. *Planta Med.* 1995; 61(04):307-12. <https://doi.org/10.1055/s-2006-958089>

43. Karthikeyan A, Amalnath SD. *Abrus precatorius* poisoning: a retrospective study of 112 patients. *Indian J Crit Care Med.* peer-reviewed, Off Publ Indian Soc Crit Care Med. 2017; 21(4):224. https://doi.org/10.4103/ijccm.IJCCM_320_16

44. Rajaram N, Janardhanan K. The chemical composition and nutritional potential of the tribal pulse, *Abrus precatorius* L. *Plant foods Hum Nutr.* 1992; 42(4):285-90. <https://doi.org/10.1007/BF02194088>

45. Pandey VN. Leaf protein content and yield of some Indian legumes. *Plant Foods Hum Nutr.* 1994; 46(4):313-22. <https://doi.org/10.1007/BF01088430>

46. Saxena AP, Vyas KM. Antimicrobial activity of seeds of some ethnomedicinal plants. *J Econ Taxon Bot.* 1986; 8(2):291-300.

47. Nath D, Sethi N, Singh RK, Jain AK. Commonly used Indian abortifacient plants with special reference to their teratologic effects in rats. *J Ethnopharmacol.* 1992; 36(2):147-54. [https://doi.org/10.1016/0378-8741\(92\)90015-J](https://doi.org/10.1016/0378-8741(92)90015-J)

48. Hikino H, Aota K, Takemoto T. Structure and absolute configuration of cyperotundone. *Chem Pharm Bull.* 1966; 14(8):890-6. <https://doi.org/10.1248/cpb.14.890>

49. Elisabetsky E, Figueiredo W, Oliveria G. Traditional Amazonian nerve tonics as antidepressant agent: Chaunochiton kappleri: A case study. *J Herbs Spices Med Plants.* 1992; 1(1-2):125-62. https://doi.org/10.1300/J044v01n01_11

50. Arsecularatne SN, Gunatilaka AAL, Panabokke RG. Studies on medicinal plants of Sri Lanka. Part 14: toxicity of some traditional medicinal herbs. *J Ethnopharmacol.* 1985; 13(3):323-35. [https://doi.org/10.1016/0378-8741\(85\)90078-9](https://doi.org/10.1016/0378-8741(85)90078-9)

51. Alli AI, Ehinmidu JO, Ibrahim YKE. Preliminary phytochemical screening and antimicrobial activities of some medicinal plants used in Ebiraland. *Bayero J Pure Appl Sci.* 2011;4(1):10-6. <https://doi.org/10.4314/bajopas.v4i1.2>

52. Mølgård P, Nielsen SB, Rasmussen DE, Drummond RB, Makaza N, Andreassen J. Anthelmintic screening of Zimbabwean plants traditionally used against schistosomiasis. *J Ethnopharmacol.* 2001; 74(3):257-64. [https://doi.org/10.1016/S0378-8741\(00\)00377-9](https://doi.org/10.1016/S0378-8741(00)00377-9)

53. Ménan H, Banzouzi J-T, Hocquette A, Pélassier Y, Blache Y, Koné M, et al. Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria. *J Ethnopharmacol.* 2006; 105(1-2):131-6. <https://doi.org/10.1016/j.jep.2005.10.027>

54. Sirsi M. In vitro study of the inhibitory action of some chemotherapeutic agents on a freshly isolated strain of *Cryptococcus neoformans*. *Hindustan Antibiot Bull.* 1963; 6(2):39-40.

55. Sohn S-H, Lee E-Y, Lee J-H, Kim Y, Shin M, Hong M, et al. Screening of herbal medicines for recovery of acetaminophen-induced nephrotoxicity. *Environ Toxicol Pharmacol.* 2009; 27(2):225-30. <https://doi.org/10.1016/j.etap.2008.10.009>

56. Sohn S-H, Lee H, Nam J, Kim S-H, Jung H-J, Kim Y, et al. Screening of herbal medicines for the recovery of cisplatin-induced nephrotoxicity. *Environ Toxicol Pharmacol.* 2009; 28(2):206-12. <https://doi.org/10.1016/j.etap.2009.04.005>

57. Tripathi S, Maiti TK. Immunomodulatory role of native and heat denatured agglutinin from *Abrus precatorius*. *Int J Biochem Cell Biol.* 2005; 37(2):451-62. <https://doi.org/10.1016/j.biocel.2004.07.015>

58. Bhutia SK, Mallick SK, Maiti TK. In vitro immunostimulatory properties of *Abrus* lectins derived peptides in tumor bearing mice. *Phytomedicine.* 2009; 16(8):776-82. <https://doi.org/10.1016/j.phymed.2009.01.006>

59. Wambebe C, Amosun SL. Some neuromuscular effects of the crude extracts of the leaves of *Abrus precatorius*. *J Ethnopharmacol.* 1984; 11(1):49-58. [https://doi.org/10.1016/0378-8741\(84\)90095-3](https://doi.org/10.1016/0378-8741(84)90095-3)

60. Ojewole JAO. Laboratory evaluation of the hypoglycemic effect of *Anacardium occidentale* Linn (Anacardiaceae) stem-bark extracts in rats. *Methods Find Exp Clin Pharmacol.* 2003; 25(3):199-204. <https://doi.org/10.1358/mf.2003.25.3.769640>

61. Ojewole JAO. Antinociceptive, anti-inflammatory and antidiabetic effects of *Bryophyllum pinnatum* (Crassulaceae) leaf aqueous extract. *J Ethnopharmacol.* 2005; 99(1):13-9. <https://doi.org/10.1016/j.jep.2005.01.025>

62. Jouad H, Haloui M, Rhiouani H, El Hilaly J, Eddouks M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez-Boulemane). *J Ethnopharmacol.* 2001; 77(2-3):175-82. [https://doi.org/10.1016/S0378-8741\(01\)00289-6](https://doi.org/10.1016/S0378-8741(01)00289-6)

63. Osadebe PO, Okide GB, Akabogu IC. Study on anti-diabetic activities of crude methanolic extracts of *Loranthus micranthus* (Linn.) sourced from five different host trees. *J Ethnopharmacol.* 2004; 95(2-3):133-8. <https://doi.org/10.1016/j.jep.2004.06.029>

64. Gbolade AA. Inventory of antidiabetic plants in selected districts of Lagos State, Nigeria. *J Ethnopharmacol.* 2009; 121(1):135-9. <https://doi.org/10.1016/j.jep.2008.10.013>

65. Anam EM. Anti-inflammatory activity of compounds isolated from the aerial parts of *Abrus precatorius* (Fabaceae). *Phytomedicine.* 2001; 8(1):24-7. <https://doi.org/10.1078/0944-7113-00001>

66. Jahan S, Rasool S, Khan MA, Ahmad M, Arsahd MZM, Abbasi AM. Antifertility effects of ethanolic seed extract of *Abrus precatorius* L. on sperm production and DNA integrity in adult male mice. *J Med Plants Res.* 2009; 3(10):809-14.

67. Choudhari AB, Sayyed N, Khairnar AS. Evaluation of antiserotonergic activity of ethyl acetate extract of *Abrus precatorius* leaves. *J Plant Res.* 2011; 4(3):570-2.

68. Khairnar AS, Parthasarathy V, Nazim S, Ahmed MH, Borase L, Chaudhari A, et al. Determination of antimigraine property of leaves extracts of *Abrus precatorius* by serotonergic receptor agonist activity. *J Pharm Res.* 2011; 4(4):1000-3.

69. Ibrahim AM. Anthelmintic activity of some Sudanese medicinal plants. *Phyther Res.* 1992;6(3):155-7.
<https://doi.org/10.1002/ptr.2650060312>

70. Itokawa H, Hirayama F, Tsuruoka S, Mizuno K, Takeya K, Nitta A. Screening test for antitumor activity of crude drugs (III). Studies on antitumor activity of Indonesian medicinal plants. *Shoyakugaku zasshi.* 1990; 44(1):58-62.

71. Reddy VVS, Sirsi M. Effect of *Abrus precatorius* L. on experimental tumors. *Cancer Res.* 1969; 29(7):1447-51.

72. Lalithakumari H, Reddy V V, Rao GR, Sirsi M. Purification of Proteins From *Abrus Precatorius* L. & Their Biological Properties. *Indian J Biochem.* 1971; 8(4):321-3.

73. Nwodo OFC, Botting JH. Uterotonic activity of extracts of the seeds of *Abrus precatorius*. *Planta Med.* 1983;47(04):230-3.
<https://doi.org/10.1055/s-2007-969994>

74. Nenov VD, Marinov P, Sabeva J, Nenov DS. Current applications of plasmapheresis in clinical toxicology. *Nephrol Dial Transplant.* 2003; 18(suppl_5):v56-8.
<https://doi.org/10.1093/ndt/gfg1049>

75. Tam CC, Henderson TD, Stanker LH, He X CLW. Abrin toxicity and bioavailability after temperature and pH treatment. *Toxins (Basel).* 2017; 9(10):320.
<https://doi.org/10.3390/toxins9100320>

76. Wooten JV, Pittman CT, Blake TA, Thomas JD, Devlin JJ, Higgerson RA et al. A case of abrin toxin poisoning, confirmed via quantitation of L-abrine (N-methyl-L-tryptophan) biomarker. *J Med Toxicol.* 2014; 10(4):392-4.
<https://doi.org/10.1007/s13181-013-0377-9>

77. Patil MM, Patil SV, Akki AS, Lakhkar B BS. An arrow poison (*Abrus precatorius*) causing fatal poisoning in a child. *J Clin Diagnostic Res JCDR.* 2016; 10(3):SD03-4.
<https://doi.org/10.7860/JCDR/2016/18234.7439>

78. Karpurashetti NB, Hiremath SK, Manjulabai KH KS. A review of gunja (*Abrus precatorius*. linn) on both aspect of medicine as well as poison. *Asian J Pharm Res Dev.* 2014; 2(1):66-7.

79. Alhamdani M, Brown B NP. Abrin poisoning in an 18-month-old child. *Am J Case Rep.* 2015; 16:146-8.
<https://doi.org/10.12659/AJCR.892917>