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Abstract 

Polymeric micelles are highly proficient of modulating the function, distribution of drugs in the body, and can overcome biological barriers 
hence provoked as novel nanomedicine via various formulations. Current review emphasis on application of several polymers, biomaterials, 
lipids for the preparation of polymeric micelles formed by several molecular interactions between the block co-polymers and encapsulated 
molecules.  Micellar carriers will be selected on basis of the type of polymer/payload interaction, which includes biological  interface focused on 
the internal chemistry and fabrication of block-co polymers. Several features of these carriers can be manipulated to catering a broad range of 
drugs through active sensing of body targets. The fine-tuning of their properties in response to particular stimuli, modulating the activity of the 
loaded drugs at the targeted sites, even at the subcellular level. To end with, the future perspective and impending challenges for polymeric 
micelles as nanomedicine are elaborated, anticipating prompting further innovations.   
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1. Introduction 

Several pharmaceutical and biotechnology companies are 
focusing on the development of several new proteins and 
peptide-based compounds for treating a wide range of 
diseases. This was further supported by rapid advancement 
in the biotechnology and genome research fields. But, 
conversely, these new compounds are larger, hydrophilic, 
and relatively unstable in contrast with the traditional active 
moieties. All these features make them ineffective for 
permeation across biological barriers and enzymatic 
degradation, consequently, peptides and proteins are very 
difficult to deliver by conventional pathways like oral or 
transdermal, or nasal 1-4. 

Owing to adsorption and low bioavailability through these 
routes, proteins and peptides are administered preferably by 
intramuscular or subcutaneous injection. However, half-lives 
of these proteins are only several minutes of a few hours, 
when administered parenterally, thus require frequent 
dosing for optimum therapeutic efficacy.   Extensive research 
has been performed to overall the above issues discussed. 
Controlled release systems are one amongst them, to obtain 
the well-defined pharmacokinetic profile. One promising 
approach is to encapsulate the peptides or proteins in a 

polymer matrix, to protect them from degradation and rapid 
clearance thus prolongs the release of the drug 5-10. A broad 
range of degradable and non-degradable polymers have been 
used as matrices to incorporate several drugs. Several 
carriers like nanocrystals, nanoparticles, ethosomes, have 
been formulated 10-13. Among all these biodegradable 
polymers are preferred to avoid further surgical removal of 
the matrix after depletion of the drug from the system. The 
continuous release of drugs from the biodegradable polymer 
matrix could occur either by diffusion of the drug from the 
matrix or by the degradation of the polymer or by a 
combination of the two mechanisms. 

Yet, a major concern for these systems is biocompatibility, 
the stability of encapsulated moieties during processing, 
release, and storage. Despite these challenges, several 
controlled-release formulations were approved and 
marketed.  As shown below, the polymer matrix can be 
formulated either as nanospheres, microspheres, injectable 
gel, or implant. Spheres and gels are most recommended 
over the implants, as no surgical procedure for 
administration is required. List of controlled release systems 
formulated on basis of biodegradable polymers 14-20 [Table 
1].
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Table 1: List of controlled release systems and their application, formulated with biodegradable polymers 

S. No Product Application 

1.  Atridox® Doxycycline PLA gel Periodontal disease 

2.  Gliadel® Carmustin Polyanhydride wafer Brain cancer 

3.  Lupron Depot® Leuprolide acetate PLGA microspheres Prostate cancer 

4.  Nutropin Depot® Somatropin PLGA microspheres Growth hormone deficiency 

5.  Sandostatin LAR® Octreotide acetate PLGA-glucose microspheres Growth hormone suppression 

6.  TrelstarTM Depot Triptorelin PLGA microspheres Prostate cancer 

7.  Zoladex® Goserelin acetate PLGA rod Prostate cancer 

 

2. Biodegradable polymer matrices for controlled 
release: 

The polymer should satisfy several criteria's such as 
biocompatible, degradable within a reasonable period 
(depending on application), and the non-toxic degradation 
products, to use as a drug delivery matrix. Additionally, the 
polymer should be able to provide an optimum environment 
for the encapsulated protein or peptide drug, to prevent 
denaturation, which may cause unwanted immunogenicity 
when administered. The release rate of the drug can be 
tailored by modifying the polymer characteristics to obtain 
optimal therapeutic efficacy.  Several works have focused on 
poly(lactic-co-glycolic acid) (PLGA) copolymers. These 
polymers are in use for several decades as surgical suture 
materials and are known for their excellent biocompatible 
nature 21-25. Their degradation is by Kreb’s cycle to carbon 
dioxide and water.  Despite the success with small peptides, 
such as luteinizing hormone-releasing analogues, there is 
considerable concern about the suitability of PLGA as a 
polymeric carrier for high molecular weight protein drugs 26-

28.  

Protein unfolding and aggregation often occurs during the 
storage or release, because of the interaction of protein 
molecules with the hydrophobic polymeric surface. 
Moreover, the low pH generated during polymer 
degradation could cause chemical degradation of entrapped 
proteins. Another major issue with these PLGA matrices is, 
limited possibilities to manipulate the protein release rate 
and frequently, the initial burst has been noticed from these 
matrices to result in the plateau of incomplete drug release 
29-32. Hence to overcome these issues, Amphiphilic block 
copolymers have gained increasing interest for drug delivery 
applications 32-36. 

Introducing hydrophilic or hydrophobic blocks, a protein 
friendly environment can be created with modified drug 
release properties. In recent times, series of poly(ether-
ester) multiblock copolymers composed of repeating blocks 
of hydrophilic poly(ethylene glycol)-terephthalate (PEGT) 
and hydrophobic poly(butylene terephthalate) (PBT) was 
introduced as a matrix for controlled release systems 37-40.  
This multi-block polymer is currently applied for a broad 
range of pharmaceutical and biomedical applications, 
including FDA approved products Proliposomes, 
Microparticles, Solid lipid Nanoparticles, Nanoparticles, 41-43. 
Several in-vitro and in-vivo studies have shown that 
PEGT/PBT copolymers are biocompatible and can be made 
biodegradable 44-48. Quantitative in-vitro release of fully 
active lysozyme has been reported from these multiblock 
copolymers for Nanoemulsion, Nanocrystals, Nanowires, 
Self-nano emulsifying drug delivery system (SNEDDS) 49-52.  
The controlled release of proteins for a longer period can be 

obtained by combining diffusion and degradation 
mechanisms. Additionally, various copolymer compositions 
could precisely modulate the release.  

3. Biodegradable multiblock copolymers for 
protein delivery applications 

The primary drawback of nucleic acids for pharmaceutical 
application is their inclination to enzymatic degradation in 
biological fluids. When mixed with plasma, naturally 
occurring nucleic acids get digest immediately and various 
strategies have been applied since the beginning to 
overcome the aforesaid issue. These are majorly divided into 
two approaches; one is a chemical modification of nucleotide 
backbone.  A variety of chemically modified nucleotide 
backbones, including phosphorothioate, 2′-Omethylated 
ribose, and “locked (or bridged)” nucleotides, have been 
prepared to enhance the stability of nucleic acids, and some 
of them are used are clinically approved. The details in 
chemical modification approaches are elaborated by several 
researchers using Chitosan, Alginate, PLGA, 
Polyvinylpyrrolidone (PVP), Zein, Okra, 53-58. Another 
approach is the encapsulation of nucleic acids within 
nanoparticulate formulations, such as PIC micelles. With this 
approach, nucleic acids can be protected from external 
stimuli as well as enzymatic degradation, leading to their 
longevity in biological fluids. Certainly, several cationic lipids 
and polymers have been employed for the preparation of 
PICs, polyplex, and termed lipoplex respectively, especially 
with negative charged nucleic acids. Predominantly, PIC 
micelles have been measured as one of the most capable 
systems for systemic oligonucleotide delivery because of the 
above-mentioned properties suitable for stable circulation in 
the bloodstream 59-62. Oligonucleotide delivery further needs 
cautious design criteria for block copolymers and their 
assembly, owing to their inefficient cellular uptake and 
fragility of naked oligonucleotides.  

Oligonucleotide delivery needs contradictory functions such 
as stable encapsulation and stealthiness in the systemic 
circulation for translocation into cytoplasm and endosome. A 
classy approach for the merging of these conflicting 
necessities is the creation of smart PIC micelles that use the 
desired function in the response to specific biological 
signals. The consecutive sections describe the prominent 
strategies to develop such PIC micelles directed to successful 
delivery using Hyaluronic Acid 63-65. Stabilizing the systems 
can be done by using reversible cross-linking of the micellar 
core. Disulfide crosslinking has been considered as the most 
extensively explored mechanism, because of preferable 
diffusion into reductive cytoplasm having higher 
concentrations of glutathione. Accordingly, disulfide cross-
linked PIC micelles loading siRNA showed a certain level of 
stability in serum having media and capable of enhancing 
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gene silencing in the cultured cells. On the other hand, still, 
their half-life was not considerably prolonged in comparison 
to non-cross-linked control micelles, probably due to 
leakage of siRNA payloads from the cross-linking network in 
the systemic circulation. The cross-linking approach can be 
combined with the hydrophobic stabilization using 
cholesterol-modified siRNA (Chol-siRNA), that is, 
CholsiRNA-loaded/disulfide cross-linked PIC micelles, which 
extensively improved the blood circulation 66-68. In the 
meantime, all these results suggest the direct covalent 
conjugation of siRNA with catiomer segment via reversible 
bonds. Thiol functionality to both siRNA and catiomer 
segment can be done by disulfide bond. Alternatively, 
another approach is using natural siRNA structure for 
covalent conjugation with catiomer segments. Therefore, 
natural siRNA loaded in these micelles works as a cross-
linker between PBA-functionalized segments 69-70. Potential 
triggers for siRNA release from PIC micelles can happen 
through ligand exchange reaction and fluids containing cis-
diol compounds. PBA-micelles were stable at blood levels of 
glucose (5 mM) and ATP (0.5 mM). They will release siRNA 
in the presence of intracellular levels of ATP, thus allowing 
the selective cytosolic release of siRNA 71-74. These outcomes 
also suggest that the negative charges derived from 
triphosphate of ATP may be critical for the trigger release of 
siRNA from micelles and micelle destabilization.  

4. Conclusion  

Unique properties of peptide block copolymers make them 
unique carriers when compared to synthetic block 
copolymers. To bring these materials into the application, an 
in-depth understanding of the interplay between 
composition, assembly behavior and other physicochemical 
properties is essential. In this review, concise trends in 
protein building block design approach for preparation, 
characterization techniques, and potential applications were 
discussed. Recombinant technology has become a functional 
approach to engineer protein-based block polymers, as it 
provides advantages to various fields of biomaterials.  
Conjugation of a peptide block with a synthetic block results 
in the formation of novel biomaterials with advanced 
functions. Furthermore, the formulation of several novel 
biomaterials has become possible by applying the concept of 
polymer engineering. Biological peptides possess admirable 
building blocks from which materials desired functionality, 
structure, and architecture can be constructed. Biomaterials 
with programmed structures and functions can be made 
with the conjugation of peptide blocks with synthetic or 
biological blocks. Despite many thriving examples discussed 
here, functionality has begun receiving attention and the 
roles remain to be explored. Still, there are many challenges 
and opportunities to employ the concepts from nature and 
polymer science to adopt several suitable functional 
materials for a wide range of applications.      
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