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Abstract

Polymeric micelles are highly proficient of modulating the function, distribution of drugs in the body, and can overcome biological barriers
hence provoked as novel nanomedicine via various formulations. Current review emphasis on application of several polymers, biomaterials,
lipids for the preparation of polymeric micelles formed by several molecular interactions between the block co-polymers and encapsulated
molecules. Micellar carriers will be selected on basis of the type of polymer/payload interaction, which includes biological interface focused on
the internal chemistry and fabrication of block-co polymers. Several features of these carriers can be manipulated to catering a broad range of
drugs through active sensing of body targets. The fine-tuning of their properties in response to particular stimuli, modulating the activity of the
loaded drugs at the targeted sites, even at the subcellular level. To end with, the future perspective and impending challenges for polymeric

micelles as nanomedicine are elaborated, anticipating prompting further innovations.

Keywords: Proteins, Peptides, Co-block Polymers, Lipids, Controlled, Drug Delivery.

Article Info: Received 03 Oct 2020;

*Address for Correspondence:

Review Completed 21 Nov 2020;

Accepted 29 Nov 2020;  Available online 15 Dec 2020

Calico R, Munjulury VSD, Assessment of Modern Excipients in Controlled Delivery of Proteins and Peptides, Journal of
Drug Delivery and Therapeutics. 2020; 10(6-s):134-138

http://dx.doi.org/10.22270/jddt.v10i6-s.4631

Venkata Sai Dheeraj Munjulury, Cipla Ltd., [IPD-R&D, LBS Marg, Vikhroli(W), Mumbai 400083, India

1. Introduction

Several pharmaceutical and biotechnology companies are
focusing on the development of several new proteins and
peptide-based compounds for treating a wide range of
diseases. This was further supported by rapid advancement
in the biotechnology and genome research fields. But,
conversely, these new compounds are larger, hydrophilic,
and relatively unstable in contrast with the traditional active
moieties. All these features make them ineffective for
permeation across biological barriers and enzymatic
degradation, consequently, peptides and proteins are very
difficult to deliver by conventional pathways like oral or
transdermal, or nasal 1-4.

Owing to adsorption and low bioavailability through these
routes, proteins and peptides are administered preferably by
intramuscular or subcutaneous injection. However, half-lives
of these proteins are only several minutes of a few hours,
when administered parenterally, thus require frequent
dosing for optimum therapeutic efficacy. Extensive research
has been performed to overall the above issues discussed.
Controlled release systems are one amongst them, to obtain
the well-defined pharmacokinetic profile. One promising
approach is to encapsulate the peptides or proteins in a
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polymer matrix, to protect them from degradation and rapid
clearance thus prolongs the release of the drug 5-10. A broad
range of degradable and non-degradable polymers have been
used as matrices to incorporate several drugs. Several
carriers like nanocrystals, nanoparticles, ethosomes, have
been formulated 10-13. Among all these biodegradable
polymers are preferred to avoid further surgical removal of
the matrix after depletion of the drug from the system. The
continuous release of drugs from the biodegradable polymer
matrix could occur either by diffusion of the drug from the
matrix or by the degradation of the polymer or by a
combination of the two mechanisms.

Yet, a major concern for these systems is biocompatibility,
the stability of encapsulated moieties during processing,
release, and storage. Despite these challenges, several
controlled-release formulations were approved and
marketed. As shown below, the polymer matrix can be
formulated either as nanospheres, microspheres, injectable
gel, or implant. Spheres and gels are most recommended
over the implants, as no surgical procedure for
administration is required. List of controlled release systems
formulated on basis of biodegradable polymers 14-20 [Table
1].
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Table 1: List of controlled release systems and their application, formulated with biodegradable polymers

S.No | Product

Application

1. Atridox® Doxycycline PLA gel

Periodontal disease

Gliadel® Carmustin Polyanhydride wafer

Brain cancer

Lupron Depot® Leuprolide acetate PLGA microspheres

Prostate cancer

Growth hormone deficiency

Sandostatin LAR® Octreotide acetate PLGA-glucose microspheres

Growth hormone suppression

TrelstarTM Depot Triptorelin PLGA microspheres

Prostate cancer

Zoladex® Goserelin acetate PLGA rod

2
3
4. Nutropin Depot® Somatropin PLGA microspheres
5
6
7

Prostate cancer

2. Biodegradable polymer matrices for controlled
release:

The polymer should satisfy several criteria's such as
biocompatible, degradable within a reasonable period
(depending on application), and the non-toxic degradation
products, to use as a drug delivery matrix. Additionally, the
polymer should be able to provide an optimum environment
for the encapsulated protein or peptide drug, to prevent
denaturation, which may cause unwanted immunogenicity
when administered. The release rate of the drug can be
tailored by modifying the polymer characteristics to obtain
optimal therapeutic efficacy. Several works have focused on
poly(lactic-co-glycolic acid) (PLGA) copolymers. These
polymers are in use for several decades as surgical suture
materials and are known for their excellent biocompatible
nature 21-25, Their degradation is by Kreb’s cycle to carbon
dioxide and water. Despite the success with small peptides,
such as luteinizing hormone-releasing analogues, there is
considerable concern about the suitability of PLGA as a

polymeric carrier for high molecular weight protein drugs 26-
28,

Protein unfolding and aggregation often occurs during the
storage or release, because of the interaction of protein
molecules with the hydrophobic polymeric surface.
Moreover, the low pH generated during polymer
degradation could cause chemical degradation of entrapped
proteins. Another major issue with these PLGA matrices is,
limited possibilities to manipulate the protein release rate
and frequently, the initial burst has been noticed from these
matrices to result in the plateau of incomplete drug release
2932, Hence to overcome these issues, Amphiphilic block
copolymers have gained increasing interest for drug delivery
applications 32-36,

Introducing hydrophilic or hydrophobic blocks, a protein
friendly environment can be created with modified drug
release properties. In recent times, series of poly(ether-
ester) multiblock copolymers composed of repeating blocks
of hydrophilic poly(ethylene glycol)-terephthalate (PEGT)
and hydrophobic poly(butylene terephthalate) (PBT) was
introduced as a matrix for controlled release systems 37-40,
This multi-block polymer is currently applied for a broad
range of pharmaceutical and biomedical applications,
including FDA  approved products Proliposomes,
Microparticles, Solid lipid Nanoparticles, Nanoparticles, 41-43.
Several in-vitro and in-vivo studies have shown that
PEGT/PBT copolymers are biocompatible and can be made
biodegradable 44-48. Quantitative in-vitro release of fully
active lysozyme has been reported from these multiblock
copolymers for Nanoemulsion, Nanocrystals, Nanowires,
Self-nano emulsifying drug delivery system (SNEDDS) 49-52,
The controlled release of proteins for a longer period can be
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obtained by combining diffusion and degradation
mechanisms. Additionally, various copolymer compositions
could precisely modulate the release.

3. Biodegradable multiblock copolymers for
protein delivery applications

The primary drawback of nucleic acids for pharmaceutical
application is their inclination to enzymatic degradation in
biological fluids. When mixed with plasma, naturally
occurring nucleic acids get digest immediately and various
strategies have been applied since the beginning to
overcome the aforesaid issue. These are majorly divided into
two approaches; one is a chemical modification of nucleotide
backbone. A variety of chemically modified nucleotide
backbones, including phosphorothioate, 2'-Omethylated
ribose, and “locked (or bridged)” nucleotides, have been
prepared to enhance the stability of nucleic acids, and some
of them are used are clinically approved. The details in
chemical modification approaches are elaborated by several
researchers using Chitosan, Alginate, PLGA,
Polyvinylpyrrolidone (PVP), Zein, Okra, 53-58. Another
approach is the encapsulation of nucleic acids within
nanoparticulate formulations, such as PIC micelles. With this
approach, nucleic acids can be protected from external
stimuli as well as enzymatic degradation, leading to their
longevity in biological fluids. Certainly, several cationic lipids
and polymers have been employed for the preparation of
PICs, polyplex, and termed lipoplex respectively, especially
with negative charged nucleic acids. Predominantly, PIC
micelles have been measured as one of the most capable
systems for systemic oligonucleotide delivery because of the
above-mentioned properties suitable for stable circulation in
the bloodstream 59-62. Oligonucleotide delivery further needs
cautious design criteria for block copolymers and their
assembly, owing to their inefficient cellular uptake and
fragility of naked oligonucleotides.

Oligonucleotide delivery needs contradictory functions such
as stable encapsulation and stealthiness in the systemic
circulation for translocation into cytoplasm and endosome. A
classy approach for the merging of these conflicting
necessities is the creation of smart PIC micelles that use the
desired function in the response to specific biological
signals. The consecutive sections describe the prominent
strategies to develop such PIC micelles directed to successful
delivery using Hyaluronic Acid 63-65. Stabilizing the systems
can be done by using reversible cross-linking of the micellar
core. Disulfide crosslinking has been considered as the most
extensively explored mechanism, because of preferable
diffusion into reductive cytoplasm having higher
concentrations of glutathione. Accordingly, disulfide cross-
linked PIC micelles loading siRNA showed a certain level of
stability in serum having media and capable of enhancing
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gene silencing in the cultured cells. On the other hand, still,
their half-life was not considerably prolonged in comparison
to non-cross-linked control micelles, probably due to
leakage of siRNA payloads from the cross-linking network in
the systemic circulation. The cross-linking approach can be
combined with the hydrophobic stabilization using
cholesterol-modified  siRNA  (Chol-siRNA), that s,
CholsiRNA-loaded/disulfide cross-linked PIC micelles, which
extensively improved the blood circulation 66-68. In the
meantime, all these results suggest the direct covalent
conjugation of siRNA with catiomer segment via reversible
bonds. Thiol functionality to both siRNA and catiomer
segment can be done by disulfide bond. Alternatively,
another approach is using natural siRNA structure for
covalent conjugation with catiomer segments. Therefore,
natural siRNA loaded in these micelles works as a cross-
linker between PBA-functionalized segments 69-70. Potential
triggers for siRNA release from PIC micelles can happen
through ligand exchange reaction and fluids containing cis-
diol compounds. PBA-micelles were stable at blood levels of
glucose (5 mM) and ATP (0.5 mM). They will release siRNA
in the presence of intracellular levels of ATP, thus allowing
the selective cytosolic release of siRNA 71-74, These outcomes
also suggest that the negative charges derived from
triphosphate of ATP may be critical for the trigger release of
siRNA from micelles and micelle destabilization.

4., Conclusion

Unique properties of peptide block copolymers make them
unique carriers when compared to synthetic block
copolymers. To bring these materials into the application, an
in-depth understanding of the interplay between
composition, assembly behavior and other physicochemical
properties is essential. In this review, concise trends in
protein building block design approach for preparation,
characterization techniques, and potential applications were
discussed. Recombinant technology has become a functional
approach to engineer protein-based block polymers, as it
provides advantages to various fields of biomaterials.
Conjugation of a peptide block with a synthetic block results
in the formation of novel biomaterials with advanced
functions. Furthermore, the formulation of several novel
biomaterials has become possible by applying the concept of
polymer engineering. Biological peptides possess admirable
building blocks from which materials desired functionality,
structure, and architecture can be constructed. Biomaterials
with programmed structures and functions can be made
with the conjugation of peptide blocks with synthetic or
biological blocks. Despite many thriving examples discussed
here, functionality has begun receiving attention and the
roles remain to be explored. Still, there are many challenges
and opportunities to employ the concepts from nature and
polymer science to adopt several suitable functional
materials for a wide range of applications.
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