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determine, if within the currently implemented non-
pharmaceutical strategies, taking into account the simulated
stochastic SIR model of transmission dynamics, is effective in
curbing the spread of COVID-19. For this purpose, we made
posterior inference on transmission rate A, recovery rate p,
reproduction number R,, number of initially infected people
Iy, reporting delay D, width of liklihood o between observed
daily infected cases and its best fit estimates, effective
transmission rate A* = A — i, based on data-driven likelihood
updates of prior settings. We determined also the change-
points in disease transmission and investigated the
effectiveness of unlock-3 and unlock-4 measures, with

1. INTRODUCTION

To contain COVID-19 spread in India, strong phasic
lockdowns were implemented leading to reduction of human
contact to a maximum 55%, and 34% at the end of lockdown,
followed by stratified unlock measures with gradual return
to activities, controlling social contacts to 19% reduction, as
on 30 September, 2020 1. India, currently is the world’s
second-worst-hit country with nearly 11.7 million COVID-19
infections including more than 98,000 deaths, as on 30
September 2020 2. Until COVID-19 is completely eradicated,
and effective treatment or vaccine become available, non-

pharmaceutical intervention policies are the key public
health options to control the epidemics 3. During the
evolution of COVID-19, India implemented lockdowns in four
phases from 24 March to 31 May 2020 as containment and
mitigation measure, followed by unlocks in four phases from
1 June to 30 September 2020, featured by conditional
relaxations of restrictions outside containment zones in
graded manner, to minimise the negative economic and social
consequences of strict lockdown measures 4. With the
escalating case numbers and prolonged COVID-19 epidemic
situation in India, the present study is an investigation to
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respect to their strength, timing and duration. We used an
open source probabilistic programming in Python code
PyMC3 with theano to compute gradients via automatic
differentiation variational inference (ADVI), and followed
model interpretation on German COVID-19 data 5, based on
GitHub repository 6, to analyse the recent COVID-19
pandemic situation in India with emphasis on unlock-3 and
unlock-4 measure.
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2. METHODS

2.1. Data sources

The data on ongoing new daily and cumulative COVID-19
cases in India were retrieved from Johns Hopkins University
Centre for Systems Science and Engineering dashboard, up to
September 30, 2020 7. The codes for this research article
pertaining to the analysis of unlock-3 and unlock-4 situation
in India was run on Jupyter notebook using PymC3=3.8 and
was based on GitHub repository [6], by importing python-
based data analysis toolkit (pandas); libraries for working
with arrays (numpy), plotting (matplotlib), scientific and
technical computing (scipy), and multi-dimensional arrays
(theano); modules including Basic date and time types
(datetime), System-specific parameters and functions (sys),
and Python object serialization (pickle); package for
Bayesian statistical modeling and probabilistic machine
learning with Monte Carlo Markov Chain and ADVI
algorithms (Pym(C3) 8.

2.2. SIR model

The SIR model was based on time-varying cumulative
number of COVID-19 cases, where the total population size
(N) was categorized into three mutually exclusive infection
levels, assuming that any infectious person (I), is likely to
contact any susceptible person (S), and later recovered (R),
sothat N = S + I + R. The dynamics of the pandemic in
India was modelled using the following three differential
equations:

§=-2i=_pr=p. (1)
Here, 1 represents the transmission rate of the infected
people to infect susceptible people and p denotes the
recovery rate of the infected people to recover 9. This is
solved by using a forward finite-difference scheme 10:

AS™™ AST™

ST = 57 4 de(— 0, M = 1 de (B
ul™),R™1 = R™ + dt(,u]") )

Here, n is a natural number which divides time t in n discrete
dt time steps, t = ndt.

The fraction of maximum number of infected

1 1 A
people, (Ipax) =1+ R—O(lnR—o - 1), where R, = u and the
fraction of people remaining susceptible to infection (Si,f) is
related to Ry by: Ry = ;nsifl The overall infection attack rate
inf—

(IAR) defined as the fraction of the population that

eventually becomes infected 1is related to R, by:

In(1—-I14R)
Ro =~ 3

2.3. SEIR model

The SEIR model is an extension of the SIR with an added
exposure (E) period due to the reported incubation period of
COVID-19 during which individuals are not yet infectious 11.
The SEIR models the total population size (N) divided into
four mutually exclusive infection stages, N = S + E + I +
R, and is based on following differential equations:

S-Z_EE'_H—JEI—JE ul,R = ul, (4
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where, o is the rate at which individuals in incubation
become infectious. The differential equation is solved as 10:

AST™ AS™™

S = ST 4 dt(—=;

—), EMl =F" + dt(=;

—oE™),
M= 4 dt(z‘rE’1 — ul™), R"*1 = R™ + dt(ul™). (5)
2.4. Model inclusions

A reporting delay D, was incorporated in becoming infected
(I™¢") and being reported, such that the daily reported cases
R, at any time t was given by Dehning et al. 5, R, = I**}). To
examine if there was any weekend effect on dally reported
case numbers, a periodic sine function was assigned to the
reporting fraction f(t) expressed as,

Re =I5 (1 = f(©)), (6)
f®) =0 - fw)(1— Isin%t = 0.5¢y)1) (7)

where, f,, and ¢,, are the weekly modulation amplitude and
phase, respectively 5.

2.5. Bayesian Inference

For a statistical model, p(x|8), that reflects our beliefs about
x given#, with the prior distribution m(6),on an observed

data D,, = {X;, ..., X}, the posterior distribution is expressed
12,13, _ P10 X O)T(0)

as p(0,Xq, ..., Xp) = )

208D o 1,,(0)m(0) )

where, L, (0) = [Ii=, p(X;, ©) is the likelihood function.

The likelihood is a measure of the goodness of fit between
model prediction and the observed data on reported case
numbers, applied hereby using Student-t distribution. The
evidence
o = P(Xy, o0, Xn) = [ p(Xy, o, X, 0)(6)dO = [ L, (6)7(6)dl6.

9)

The Bayesian posterior interval estimate for a and b,

a € (0,1),C = (a, b), is given by,

P(6 € CIDy) = [ p(61Dn)d6 =1 —a (10)
The Bayesian predictive distribution is

p(x,Dn) = [ p(x,0)p(81D,)dO (11
The inferences about a function 7 = g(8), so that cumulative
distribution function for Tis
H(t,Dn) = P(g(6 < t,D,)=[, p(6|Dy)d6 (12)
where, A= (6:g(0) <t); the posterior density is

p(t,Dy) = H'(T, Dy).
2.6. Priors

The prior distribution settings for the model parameter
estimation were made by incorporating LogNormal values of
A, i, and D and half-Cauchy distribution for lo, and ¢ (Table 1
and 2). The priors on change points in transmission rate
were based on announcements of applied intervention
including unlock-3 on 1 August 2020 and unlock-4 on 1
September 2020.

CODEN (USA): JDDTAO



Mandal et al

Journal of Drug Delivery & Therapeutics. 2021; 11(2):76-86

Table 1: Prior distribution settings for India unlock-3 and unlock-4 SIR model parameters with fixed transmission rate

Parameter Variable Prior distribution
Transmission rate A LogNormal[log(0.4),0.5]
Recovery rate U LogNormal[log(0.125),0.2]
Reporting delay D LogNormal[log(8); 0.2]
Initially infected Iy HalfCauchy(100)
Scale factor o HalfCauchy(10)

Table 2: Prior distribution settings for SIR model parameters with changing transmission rates and weekend reporting factor

Parameter Variable Prior distribution
Change points ty 01 August 2020

t, 01 September 2020
Change duration At; LogNormal[log(3),0.3]
Spreading rate Ao LogNormal[log(0.4),0.5]

A LogNormal[log(0.16),0.5]

Ay LogNormal[log(0.15),0.5]
Recovery rate u LogNormal[log(0.125),0.2]
Reporting delay LogNormal[log(8),0.2]
Initially infected Iy HalfCauchy(100)
Scale factor o HalfCauchy(10)
Weekly modulation amplitude fy B(mean = 0.7,standard deviation = 0.17)
Weekly modulation phase dw VonMises(mean = 0,k = 0.01)

2.7. Markov Chain Monte Carlo (MCMC) sampling

This method is essentially a Monte Carlo sampling with
multiple Markov chains, used to approximate the posterior
distribution of model parameters by including ADVI, 1000
tuning steps with NUTS (No U Turn Sampling) algorithm 14,
for each of four chains, and R-hat diagnostics for equilibrated
chain convergence of model parameters 15. A sequence of
random variables{Xj, ..., X,}, on a discrete state apace is
called a Markov chain if

PXe = x0, Xeo1 = Xeoq, 0, X1 = 20) = DX = X0, Xeoq = Xp1)
(13)

We wanted to find a setting of a parameter x € R, such that
the expectation h(x) = E;(H;,x) =0, the updates were
applied as [14]:

VE 1 g

Xevr 1T it Hi; Xpp1 < Nexepr + (1 =10y,

(14)

where t is iteration, 1,is the step size schedule, u is a freely
chosen point that the iterates x; are shrunk towards, y > 0 is
a free parameter that controls the amount of shrinkage
towards y, ty = 0 is a free parameter that stabilizes the initial
iterations of the algorithm, n; =t is a step size schedule
satisfying the conditions, Y;n; = ©; Y n,? < o0. The step
size parameter was set for NUTS using stochastic
optimization with vanishing adaptation of the primal-dual
algorithm. For each iteration we defined the statistic HYYTS
and its expectation when the chain reached equilibrium as 14

ISSN: 2250-1177 [78]

HNUTS = 1 p(6,) }

- i . WNUTS — NUTST.
= lBﬂnallzg'reBtflnalmln {1'p(9t_1rtr0) h = E,[HNUTS];
! ,

(15)
where, B/ is the set of all states explored during the final
doubling of iteration t of the Markov chain; 8¢~1,7%° are the
initial position and sampled momentum for the t" iteration
of the Markov chain; HN¥YTS is the average acceptance
probability. We applied in the above updates equation:
H, = & — HVUTS and x = loge for the step size € to combine
hNUTS = § for any 6 € (0,1).

2.8. Model comparison

For model fit and comparison using MCMC, following
computations were made using LOO (leave one out) package
in PyMC3: the Bayesian LOO estimate of the expected log
pointwise predictive density (ELPD-LOO) for a new point,
standard error (SE) of ELPD-LOO, the difference between
ELPD-LOO and the non-cross-validated log posterior
predictive density (pLOO)interpreted as the effective
number of parameters [16]. Lower LOO scores indicated
better consistency between models. LOO scores with SE < 1
represented model compatibility while LOO scores SE > 1
indicated mismatch between the models.

For data D,, = (X, ..., Xp), ELPD

Yy [ pe(~X)logp(~X;|X)d~X;, where p,(~X;)is the
distribution of the true data generating process for ~X;,
which is approximated by cross-validation with:

LPD = ¥t logp(Xi|X) = ¥i-; log [ p(X:|6)p(61X;)d6
(16)
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The LPD computed with S draws from a posterior
distribution: LPD = computed log pointwise predictive

density = 21, log (5 X3_, p(X;16°)
(17)

The ELPD-LOO, calculated by cross-validation by running
the model n times is 2j-, logp(X;, X_;)d6, where
p(X, X_) = [ p(X;, 0)p(6, X)) d6.

(18)

3. RESULTS

The median posterior distribution of COVID-19
epidemiological parameters using SIR model (from Eqs. 1
and 2) combined with Bayesian inference (generated by Egs.
from 8 to 15) during unlock-3 were A = 0.15(0.11 —
0.22),u = 0.14 (0.10 - 0.21), Ry = 1.07 (1.05 - 1.10),[, =
327139 (220028 — 450505),D = 8days (5.5—-11.8),0 =
18.7 (13.4 —26.1), A* =1(1—2), the values in bracket
indicate 95% confidence-intervals CIs (Fig. 1), according to
Egs. from 16 to 18, ELPD-LOO = —305.07,pLO0 = 3.04,
computed from 2000 by 30 log-likelihood matrix (Table 3).
The corresponding values during unlock-4 wered =
0.15(0.10 — 0.20),u = 0.15(0.10 — 0.20),R, = 1.00,/, =
642500 (455336 — 922684),D = 8.0 days (54—
11.9),0 = 19.1 (13.5 - 26.8),A* = (—1 — 0) (Fig. 2),ELPD-
LOO = —299.14,pLO0 = 2.74, computed from 2000 by 29
log-likelihood matrix (Table 3).

Both daily and cumulative infected cases remain unaltered
until the duration of D and change-point were over, beyond
which both continued to rise, build on the hypothesis that
ongoing unlock phase and its post-effect prevailed, but
continuation of pre-unlock situation caused decline in both,
the effect being more significant in the daily cases (Fig. 3A
and 3D). The daily as well as cumulative case numbers
showed rising trend in post unlock-3 scenario (Fig. 3A),
however, the onset timings of intervention had no effect on
case numbers (Fig. 3B). With declining new cases and rising
cumulative cases (Fig. 3D), during unlock-4, advancing or
delaying change-point onset by five days showed
insignificant difference in cumulative cases (Fig. 3E). The
cumulative cases remained unchanged with the change in
transient duration of intervention, the new cases showed
similar variation as 4 (Fig. 3C and 3F).

The SIR-model parameters with two change-points without
weekend effect showed that the first and second change-
points occurred respectively, around 1 August and 1
September 2020, when unlock-3 and unlock-4 began. The
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first change-point featured A; = 0.17 (0.12 —0.21) that
unfolded over 2.9 days (1.6 —5.4) (Fig. 4). The second
change point had A, = 0.15 (0.10 — 0.19) that unfolded over
3.3 days (1.7 — 6.7) (Fig. 4).

Compared to the two-change-point model without weekend-
correction (ELPD-LOO = —687.67,SE = 8.00,pLO0 =
6.71, computed from 2000 by 68 log-likelihood matrix)
(Table 3), the ELPD-LOO for the SIR-model, also computed
from 2000 by 68 log-likelihood matrix, with two change-
points and weekend-modulation was higher by 30.76 (ELPD-
LOO = —656.91,SE = 6.82,pL0O0 = 7.43) (Table 3),
[Ao =0.16,4, = 0.17,4, = 0.15,4 = 0.15,6 = 10.2,D =
12.8days, A} = A, —u =002, =1, —u=0,f, =

0.8, ¢,, = 2.7] (Fig. 5).

Application of SEIR model based on Eqgs. 4 and 5 with two-
change-points and weekend-modulation as per Egs. 6 and 7
(fw = 0.8, ¢, = 2.7), exhibited greater negativity of the
effective transmission rate with unlock-4 compared to
unlock-3  measure (A]=4; —pu=-003,A;=4,—u=
—0.07) (Fig. 6), and higher transmission and recovery rates
(4o = 036,14, = 030,14, = 0.26,u = 0.33) (Fig. 6)
compared to the SIR model (Fig. 5).

The SIR-model with one change point (Fig. 7) centred around
the implementation of unlock-3 on 1 August 2020 showed
superior goodness of fit with the COVID-19 observed data in
India compared to the model with two change-points
announcement of unlock-3 and unlock-4 on 1 August 2020
and 1 September 2020 respectively (Fig. 5); both models
examined over the period from 25 July 2020 to 30 September
2020, with weekend-modulation. This was evident from the
lower (by 43.14) ELPD-LOO score with one change point
(=700.05,SE = 6.14,pLO0 = 6.24) (Table 3), (1o =
0.17, and A4, = 0.16,u = 0.15,0 = 17.6,f, = 0.8,¢,, =
2.6,D = 8.7days,A] = 4, —u = 0.01) (Fig. 7) that fitted the
observed data better compared to that with two change-
points (Fig. 5) with < 1 SE (= 0.68) lower difference (Table
3).

The India COVID-19 daily infected case numbers using SIR
and SEIR models were estimated to be around 75,000 and
72,000 respectively; the cumulative infected case numbers
using both models were estimated at 8000,000 as of October
18, 2020 (for the period from 25 July 2020 to 30 September
2020); the effective transmission rate stabilized at less than
zero,Ry =1land 0.79using SIR and SEIR models
respectively (Figs. 5 and 6).

Table 3: Bayesian LOO estimate of the ELPD for model comparison

Model ELPD- p-LOO Standard n log-liklihood
LOO Error matrix
SIR during unlock-3 -305.07 3.04 4.39 30
SIR during unlock-4 -299.14 2.70 3.90 29
SIR during unlock-3 and intervention evaluation -305.39 3.45 4.58 30
SIR during unlock-4 and intervention evaluation -299.04 2.75 4.08 29
SIR with 2 change points and without weekend factor -687.67 6.71 8.00 68
SIR with 2 change points and with weekend factor -656.91 7.43 6.82 68
SEIR with 2 change points and with weekend factor -650.94 13.66 7.16 68
SIR with 1 change point and with weekend factor -700.05 6.24 6.14 68
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Figure 1: Bayesian inference of India SIR COVID-19 epidemic model parameters during unlock-3 from 1 to 31 August 2020.
Exponential growth of (A) daily infected cases y = 53694.96e%01050% and (B) cumulative infected cases y =
1702723.32¢%925*with decreasing variation in rate of change of the logarithmic cumulative case, average 0.0108 (0.0104 —
0.0116); (C) difference in daily infected cases between fit and data; priors (red) based posterior (cyan) inference of (D)
transmission rate 4, (E) recovery rate y, (F) number of initially infected people I,, (G) reporting delay D, (H) scale factor of
liklihood o between observed daily infected cases (blue) and its median fit with 95% CI (orange), (I) effective transmission rate
A* = A —; (J) log-likelihood combination of transmission and recovery rates with maximum value (black line) and data non-
convergence (white rectangle). Serial interval (SI) across India during unlock-3 was 27.43 days (26.06 — 29.25); recovery
rate (RR) 71.9 % (76.35 — 79.16); fatality rate (FR) 1.93% (1.91 — 1.97); reproduction number Ry1.07; IAR 14.2% people per
million population, L4, = 0.00218 during unlock-3, and S;,; = 0.9345 after unlock-3, computed from Equation 3.
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Figure 2: Bayesian inference of India SIR COVID-19 epidemic model parameters during unlock-4 from 1 to 30 September 2020.
Implementation of unlock-4 measure was consistent with exponential (A) decay of daily infected cases y = 87133.43¢~0:0004%%
and (B) growth of cumulative infected cases y = 3700990.43¢%18% with diminished rate and continued dwindling in rate of
change of the logarithmic cumulative case, average 0.0080 (0.0075 — 0.0084); (C) difference in daily infected cases between fit
and data, with declining width of liklihood; priors based posterior inference of (D) 4, (E) u, (F) Iy, (G) D, (H) o, (I) 1*; (J) log-
likelihood between A and u. Compared to unlock-3, unlock-4 strategies featured higher S 37.35 days (36.43 — 42.21), enhanced
RR 79.23 % (78.44 — 80.01), reduced FR 1.64% (1.62 — 1.67), decreased R, 1.00, increased /AR at 18.6%, I,,4decreased to
zero during unlock-4; S, increased to 1.075 after unlock-4.
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Figure 3: Effect of strength, timing and duration of unlock-3 and unlock-4 measures on infected case numbers. Each unlock
measure featured re-opening of activities outside containment zones in phased manner and strict lockdown in containment
zones only. Specifically unlock-3 removed night curfews, reopened recreational centres like gymnasiums and yoga centres.
Unlock4 reopened metro rail in graded manner, and permitted limited gatherings. Under the extended relaxations, social
distancing were hypothesized to be ~ 0.9 factor stronger and ~0.9 factor milder respectively, as a pre- and post-effect of unlock
measure. (A) With respect to the strength of unlock-3, the transmission rate remained nearly the same but the daily and
cumulative infected cases increased. Perpetuation of pre-unlock scenario would have caused decline in all. (B) Delaying the
onset timings of unlock-3 measure showed insignificant change in cumulative case numbers: unlock-3 starting on 1 August
2020 (green), 5 days later (magenta), or 5 days earlier (gray). (C) The cumulative cases remained unchanged with change in
transient [immediate (brown), intermediate (green), long (cyan)] duration of unlock-3, the new cases showed similar variation
as A. (D), (E), (F) same effect as (A), (B), (C) but with declining daily infected cases in unlock-4 starting 1 September 2020.
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Figure 4: Identification and quantification of change points in COVID-19 transmission rate of India during unlock-3 and unlock-4 phase
using SIR model without weekend effect. Time-series SIR model fit estimates of the (A) effective transmission rate A*(t), (B) daily
infected cases compared to the observed data, and (C) cumulative infected cases compared to the observed data. Inset shows semi-log
plots. Underreporting factor on 18 October 2020, for daily and cumulative infected cases were and respectively, using SIR model. (D-G)
Priors and posterior distribution of model parameters, values are expressed in median and 95% CIs of the posteriors. The SIR exhibited
5.97 lower LOO score than SEIR, both models with 2 change points and a weekend factor. Thus SIR model represented better
consistency with observed data compared to SEIR model.
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Figure 5: Identification and quantification of change points in COVID-19 transmission rate of India during unlock-3 and unlock-4 phase
using SEIR model with weekend effect. Time-series SIR model fit estimates of the (A) A°(t), (B) daily infected cases compared to the
observed data, and (C) cumulative infected cases compared to the observed data. Inset shows semi-log plots. Underreporting factor on
18 October 2020, for daily infected cases were higher using SEIR model compared to SIR model whereas the underreporting factor for
cumulative infected cases were same as SIR model. (D-G) Priors and posterior distribution of model parameters, values are expressed
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Figure 7: SIR model with one change point with weekend effect. Same as Fig. 4 but with one change point and weekend effect
and lower LOO score. Most favoured model. Underreporting factor on 18 October 2020, for daily infected cases were higher 2.1
(=130,000/61,871) with this model compared to SIR model in Figure 4.
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4. DISCUSSION

The median daily COVID-19 infected cases in India at the end
of unlock-3 reached = 80,000, that increased about 1.09
times, to & 87,500 at the end of unlock-4 (Figs. 1A and 2A),
while the median cumulative infected cases increased 1.8
fold to 6.3 million at the end of unlock-4 from 3.5 million at
the end of unlock-3 (Figs. 1B and 2B). The difference in daily
infected cases showed approximately 1.125 fold change to
5,625 during unlock-4 on 30 September, 2020, from 5000
during unlock-3 on 31 August, 2020 (Figs. 1C and 2C). The
COVID-19 daily cases increased during unlock-3 but
decreased during unlock-4, though with a higher end point
(Figs. 1A and 2A). The real-time daily and cumulative cases
were consistent with SIR-model displaying linear-semi-
logarithmic variation. A decreasing first order differences of
the logarithm of the cumulative cases over time indicated
exponential growth as found for India, whereas a constant
trend indicated logarithmic growth of the epidemic curve as
seen in the US, for the period from 17 September 2020 to 1
October 2020 7.

The median estimates of R, decreased from 1.07 in the
unlock-3 period to 1.00 in the unlock-4 period, with SIR
model, indicating slowing down of the spread of the disease.
The R, was reported as 1.14 at the end of August 2020, and
1.12 in the mid of September 2020 in India, with stationary-
time-series auto regressive integrated moving average model
18, The mathematical models help to determine the effect of
preventive policies against COVID-19, primarily by
maintaining the reproduction number R, < 1 to inhibit
further spread of infection, whereas Ry > 1 indicate
continuation of the epidemics, which fade away when the

transmissibility is reduced by (1 — Ri) 19,20,21,
0

The priors and posteriors exhibited different A, Iy, and o
(Figs. 1D, 1F, 1H, 2D, 2F, and 2H) implicating informative
feature of the observed data; and matched p and D,
indicating dependency of the observed data on prior
informatives (Figs. 1E, 1G, 2E, and 2G), in unlock-3 and
unlock-4 exhibiting exponential transmission rates. The A*
became zero in unlock-4, from 10% in unlock-3 (Figs. 11 and
21), indicating post unlock-4 effect through inhibition of new
infections. The o, a measure of goodness of fit between A and
u, showed equipotential line for the maximum likelihood
(Figs. 1] and 2]), implicating A* as an important and
independent regulator of COVID-19 transmission dynamics.

The SIR-model parameters with two identified change-
points without weekend effect showed that the first change-
point matched with the timelines of publicly announced
strategies around 1 August 2020, when unlock-3 began,
coinciding with continued closure of educational institutions
and banned social gatherings, permission of interstate
transport, besides release of night curfews. The second
change-point was detected around 1 September 2020, which
coincided with the announcement of unlock-4, featured by
lockdown measures remaining in force in containment
zones, some activities permitted outside containment zones
with reopening of metro-rail in graded manner, small
gatherings permitted, continued compulsion of face-masking
in public. With A, = 0.16,6 = 15.6,D = 9.6days,u =
0.15, the change-points were quantified as A]=A;-u = 0.02,
Ry = 1.13 during unlock-3 and A3= A,-u = 0, Ry = 1 during
unlock-4, implying effectiveness of unlock-4 measure
bringing 100% reduction of A” and decline of the COVID-19
epidemic (Fig. 4). Thus the effectiveness of an intervention
modelled as Bayesian change points could help us interpret
the impact of different control measures and to include them
into forecasts. Previously, Bayesian inference of COVID-19
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change points correlating with social distancing restrictions
were applied using the example of Germany 5. Similar model
was used to detect and assess latent events associated with
spreading rates in South Africa 22, and the US 23.

The MCMC sampling for Bayesian inferences of model
parameters were run for 4 chains with 1000 tunes and 500
draw iterations so that a total of 6000 draws occurred. In our
study, comparison between two-change-point SIR-model
without and with weekend-modulation exhibited lower LOO
in the former, differing by 1.18SE, that indicated higher
consistency of the two-change-points SIR model excluding
the weekend-factor implying homogenous reporting of daily
new cases through the entire week irrespective of weekend
effect. However, higher number of COVID-19 daily new cases
was reported during weekdays compared to weekends in
Germany, substantiated by lower LOO score in weekend-
effect model compared to that without weekend-effect
model 5.

Cross-validation of SEIR and SIR models showed the ELPD-
LOO for the SEIR-model (—650.94,SE = 7.16,pLO0 =
13.66, computed from 2000 by 68 log-likelihood matrix) was
slightly greater (by 5.97) than that of the corresponding SIR-
model (—656.91,SE = 6.82,pL00 = 7.43) (Fig. 5), with
1SE(0.34) higher variation (Table 3), indicating considerably
greater evidence for SIR model with respect to SEIR in
explaining current COVID-19 data in Indian context.
Similarly, SIR model displayed superior goodness of fit to the
SEIR on South African data whereas SEIR produced a slightly

better LOO score than the SIR main model on German data 5
22

Estimating the effect of change-points is vital for priors
settings that help to anticipate the effects of any impending
change points and accordingly make future projections. The
SIR-model with one change point (Fig. 7) around unlock-3
exhibited greater consistency than two change-points model
around unlock-3 and 4 (Fig. 5). This was further clear from
the simulation effect of hypothetical inventions on future
COVID-19 cases in India, which showed that continuation of
pre-unlock situation would have caused further decrease in
both daily new and cumulative infected cases (Fig. 3A and
3D), implying that extension of stricter social-distancing
measures would have been advantageous in reducing cases.
Association of COVID-19 transmission in India in the context
of containment measures demonstrated lower ELPD-
LOO = —305.39 (SE = 4.58,pLO0 = 3.45) for unlock-3,
computed from 2000 by 30 log-likelihood matrix, and for the
unlock-4 computed from 2000 by 29 log-likelihood matrix as
-299.04 (SE = 4.08,pL0O0 = 2.75) (Table 3), using Egs. 16
to 18. SIR models with three change-points described the
data better than fewer change points on German data and
SIR model with two change points was the best fit on South
African data, as exhibited by the LOO cross-validation and all
change points coinciding with respective government
interventions 5 22,

Surveillance of COVID-19 pandemic involved a reporting
delay factor (range: 7 — 13 days) that was composed of
testing delay between the incubation period of the virus
(time period for the symptoms to develop following infection
with the virus, with median estimates of 5 — 6 days) and the
testing date (1 —3 days); an additional delay occured
between the testing date and results date (1 — 4 days) 24. The
D extrapolated from SIR-model with two change-points (12.8
days) (Fig. 5F) versus one change point (8.7 days) with
weekend modulation (Fig. 7F), SIR model with two change
points without weekend modulation (10.2days) (Fig. 5F),
SEIR model with two change points with weekend
modulation (reporting plus incubation delay 10.9 days) (Fig.
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6F), indicate consistency with the above mentioned
summated delay factor; the inherent difference within the
obtained values might be due to the experimental conditions
and model types adopted. The median change duration in all
such situations were estimated to be around 3 days that
were necessary to enact interventions, in the form of
continuing and lifting of restrictions based on containment
areas. Thus, the reporting delay combined with the change
duration ranged from 11 to 16 days, which represented the
time gap required to identify any change points in infected
case numbers that in conjunction with the effective COVID-
19 transmission rate, help to determine pertinent
containment measures.

5. CONCLUSION

Overall, the SIR model, including weekend-modulation and
one-change point, with continuation of intervention similar
to the unlock 3 situation was favoured over other models.
However, the finding from the SIR model including weekend-
modulation and two-change points that, u was 0.15, A" was
10% and ‘zero’ during unlock-3 and unlock-4 respectively,
implied unlock-4 measure brought 100% reduction of A",
beginning around 5 September, 2020 (Fig. 5A-G), indicating
new recoveries exceeding the new infections. Therefore, the
epidemic curve is expected to decline to the baseline level,
when the effective transmission rate becomes remarkably
negative leading to sustained dwindling of new infections,
provided no re-infection occurs and non-pharmaceutical
interventions such as voluntary face-masking, physical-
distancing, in addition to government measures including
graded lockdown intervention in containment zones are
maintained.
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