

Available online on 15.03.2021 at <http://jddtonline.info>

# Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

© 2011-21, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use(CC By-NC), provided the original work is properly cited



Open Access Full Text Article



Review Article

## Highlights on the alternatives to antibiotic therapy against bacterial infection

Bijayanta Sircar, Shyamapada Mandal\*

Laboratory of Microbiology and Experimental Medicine, Department of Zoology, University of Gour Banga, Malda-732103, India

## Article Info:



## Article History:

Received 11 Feb 2021;  
Review Completed 21 Feb 2021  
Accepted 04 March 2021;  
Available online 15 March 2021

## Cite this article as:

Sircar B, Mandal S, Highlights on the alternatives to antibiotic therapy against bacterial infection, Journal of Drug Delivery and Therapeutics. 2021; 11(2):194-203  
DOI: <http://dx.doi.org/10.22270/jddt.v11i2.4596>

## \*Address for Correspondence:

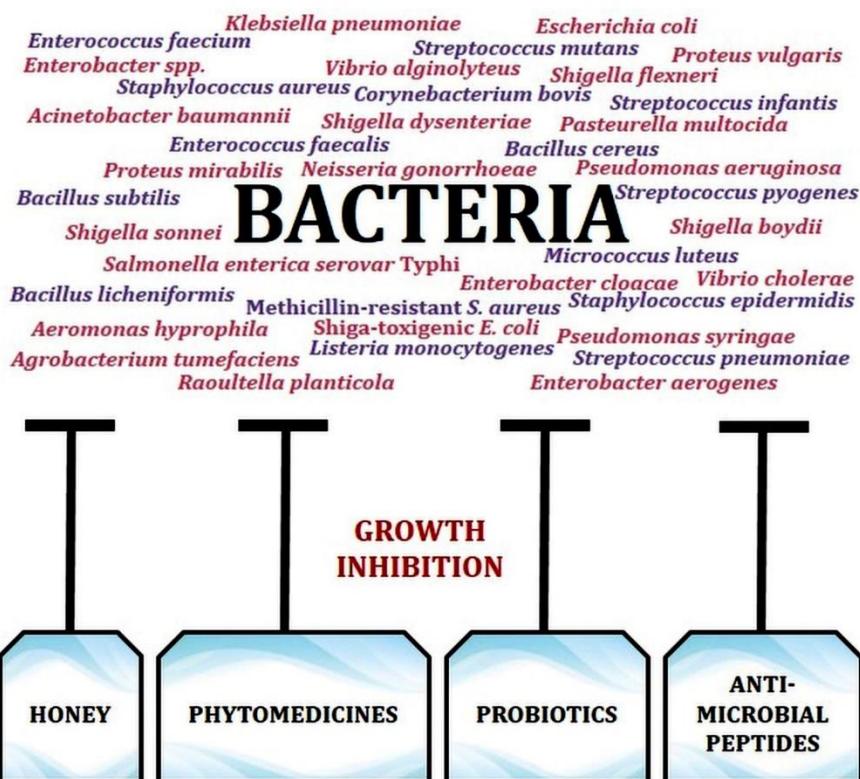
Dr. Shyamapada Mandal, Professor, Department of Zoology, University of Gour Banga, Malda-732103, India E-mail: samtropmed@gmail.com

## Abstract

The antibiotic resistance among gram-positive and gram-negative pathogenic bacteria is of global health concern. This has prompted the development of new effective drugs. But the discovery and development of new drugs is slow, and the emergence of resistance to such new drugs, on the other hand, is rapid as well as continuous among the bacteria. Therefore, in tackling the emergence of antibiotic resistant pathogenic bacteria finding alternative ways is vital. This communication, based on the published scientific data, summarizes the antibacterial capacity of some naturally derived agents such as honey, phytocomponents, probiotics, and antimicrobial peptides that might bring new essence in biomedicine.

**Keywords:** Bacterial resistance, alternative therapeutics, honey, phytomedicine, probiotics, antimicrobial peptides.

## 1. Introduction


Emergence of bacterial antibiotic resistance developed through an array of mechanisms is a severe threat to humans, and such phenomenon has been marked as an global alarming problem, which in developing countries including India, as recognised by the WHO, is reaching critical levels<sup>1</sup>. The multidrug resistant (MDR) ESKAPE (gram-positive: *Enterococcus faecium* and *Staphylococcus aureus*, and gram-negative: *Klebsiella pneumoniae*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Enterobacter* spp.) bacteria are among the most notorious to cause life threatening nosocomial infections<sup>2</sup>. The continuous antibiotic therapy as well as the lack of effective antibiotics in the existing global treatment regimen has directed to a major upsurge in antibiotic resistance<sup>3</sup>. The increasing trend of development of antibiotic resistance among pathogenic bacteria has been associated with a marked economic cost worldwide. As the consequences there are great mortality and morbidity, high treatment costs, diagnostic doubts, and deficiency of trusted conventional medicine<sup>2</sup>. Of the six notorious ESKAPE pathogens, the four gram-negative bacteria, have been associated with four main types of multi-drug resistance, specifically the extended-spectrum  $\beta$ -lactamase-producing *K. pneumoniae* and *Enterobacter* spp., carbapenemase-producing *A. baumannii* and metallo- $\beta$ -lactamase producing *Ps. aeruginosa* limiting the therapeutic choices<sup>4</sup>. *K. pneumoniae* is presently developing as a noticeable opportunistic pathogen and the most challenging agent of nosocomial infections<sup>5</sup>.

Exposure of the pathogenic bacteria to antibiotics surges the risk of the emergence of carbapenem resistant

Enterobactericeae, too. Carbapenems and cephalosporins are cause of resistance that increased the risk up to 15-fold and 6 - 29 folds, respectively<sup>1</sup>. The widespread antibiotic usage in communities and hospitals cause severe multidrug resistance among gram-negative bacteria. The ESBL-mediated MDR gram-negative ESKAPE pathogens are progressively associated with several conditions that are difficult to treat in both developed and developing nations<sup>4</sup>. Current researches have shown pronounced interest in the use of alternative agents including honey, phytomedicine, probiotics, and antimicrobial peptides, in targeting the bacterial resistance corroborating their potential in the treatment of diseases caused by a large number of bacteria displaying resistance to almost all the antibiotics. This study thus provides a highlight on the antibacterial capacity of some naturally available agents, based on the scientific information published in the field.

## 2. Antibacterial activity

The indiscriminate use of antibiotics causes the development of antibiotic resistance among pathogenic bacteria leading to high morbidity and mortality from infections caused by such pathogens<sup>6</sup>. In the current times, there has been an increasing interest in exploring and evolving new antimicrobial biotherapeutics from various sources to fight bacterial resistances<sup>7</sup>. Along with the growing incidence of antibacterial resistance, complete and effective investigation is needed to look for the natural antibacterial sources, such as honey, plants, probiotics providing several active compounds having antibacterial activity that could inhibit life threatening bacterial diseases (Figure 1).



**Figure 1:** Schematic representation of different alternative antibacterials against human pathogenic bacteria.

## 2.1. Honey

Recently it has been proved experimentally that honey display antibacterial, anti-inflammatory and antioxidant activities, which may be useful in opposing MDR bacteria as well as in inhibiting many prolonged inflammatory processes<sup>8</sup>. The antibacterial activity of honey against clinical isolates of *Escherichia coli*, *Pseudomonas aeruginosa* and *Salmonella enterica* serovar Typhi has been reported previously<sup>9</sup>. Some factors that present in the

honey as antimicrobials include hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and inhibin, and also the osmotic effect of honey, its low pH (3.2 – 4.5), defensin-1, as well as the presence of phytochemical components display antibacterial activity<sup>10</sup>.

Most of the researchers performed the disc diffusion or well diffusion method to study the antibacterial activity of honey. Several articles on antibacterial activity of different honey samples from diverse region of the world that has been published are summarised in Table 1.

**Table 1: Antibacterial activity of honey**

| Honey type                                  | Geographical location | Using condition  | Activity against bacteria                                                                                                                                                                                                                                                                                      | Antibacterial activity |         | Ref |
|---------------------------------------------|-----------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|-----|
|                                             |                       |                  |                                                                                                                                                                                                                                                                                                                | ZDI (mm)               | MIC (%) |     |
| Commercial grade honey                      | Malda, India          | Aqueous honey    | <b>Gram negative:</b> <i>Escherichia coli</i> , <i>Pseudomonas aeruginosa</i> , <i>Proteus vulgaris</i> , and <i>E. coli</i> ATCC 25922<br><b>Gram positive:</b> <i>Staphylococcus aureus</i>                                                                                                                  | 6 – 30                 | ND      | 8   |
| Natural jujube honey                        | Saudi Arabia          | Methanol extract | <b>Gram negative:</b> <i>E. coli</i> ATCC 35218, <i>Klebsiella pneumoniae</i> ATCC 700603, and <i>K. pneumoniae</i> ATCC 27736<br><b>Gram positive:</b> <i>S. aureus</i> ATCC 25923, <i>Staphylococcus epidermidis</i> ATCC 12228, <i>Enterococcus faecalis</i> ATCC 29212, <i>Bacillus cereus</i> ATCC 10876, | 6 – 17                 | ND      | 11  |
| Eucalyptus honey and commercial grade honey | Mauritius             | Undiluted        | <b>Gram negative:</b> <i>Proteus</i> sp., <i>Klebsiella</i> sp., <i>Pseudomonas</i> 161 sp., and <i>E. coli</i> , <i>E. coli</i> ATCC 25922, and <i>Ps. aeruginosa</i> ATCC 27853<br><b>Gram positive:</b> <i>Streptococcus</i> sp., <i>S. epidermidis</i> ATCC 35984, and <i>S. epidermidis</i> ATCC 14990    | 6 – 28                 | ND      | 12  |

Table 1: (Continued)

| Honey type                                                      | Geographical location      | Using condition                       | Activity against bacteria                                                                                                                                                                                                                                                                                                                                                         | Antibacterial activity |             | Ref |
|-----------------------------------------------------------------|----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|-----|
|                                                                 |                            |                                       |                                                                                                                                                                                                                                                                                                                                                                                   | ZDI (mm)               | MIC (%)     |     |
| Blossoms honey                                                  | Slovakia                   | 50% honey solution                    | <b>Gram negative:</b> <i>Ps. aeruginosa</i> CCM1960<br><b>Gram positive:</b> <i>S. aureus</i> CCM4223                                                                                                                                                                                                                                                                             | ND                     | 3 – 27      | 13  |
| Wildflower and bitter leaf honey                                | Nigeria                    | Raw honey                             | <b>Gram negative:</b> <i>Salmonella typhimurium</i> ATCC 14028, <i>Sal. typhimurium</i> clinical, <i>Shigella dysenteriae</i> ATCC 11836, <i>Sh. dysenteriae</i> (clinical), <i>E. coli</i> ATCC 700728, <i>E. coli</i> (clinical)<br><b>Gram positive:</b> <i>B. cereus</i> ATCC 14579, <i>B. cereus</i> (clinical), <i>S. aureus</i> ATCC 29213 and <i>S. aureus</i> (clinical) | 6 – 26                 | ND          | 14  |
| Natural honey                                                   | Ethiopia                   | Aqueous honey                         | <b>Gram positive:</b> Methicillin-resistant <i>S. aureus</i>                                                                                                                                                                                                                                                                                                                      | 6 – 39                 | 9.38 – 37.5 | 15  |
| Citrus honey and mango honey                                    | Malda, India               | Aqueous honey                         | <b>Gram negative:</b> <i>Salmonella enterica</i> serovar Typhi, <i>Ps. aeruginosa</i> and <i>E. coli</i> ATCC 25922<br><b>Gram positive:</b> <i>S. aureus</i>                                                                                                                                                                                                                     | 15 – 35                | ND          | 16  |
| Local honey                                                     | Pakistan                   | Aqueous honey                         | <b>Gram negative:</b> <i>E. coli</i> ATCC 25922, <i>Ps. aeruginosa</i> ATCC 27853, <i>S. typhi</i> ATCC 19943 and <i>K. pneumoniae</i> ATCC 27736<br><b>Gram positive:</b> <i>S. aureus</i> ATCC 6538, <i>En. faecalis</i> ATCC 19433                                                                                                                                             | 14 – 37                | ND          | 17  |
| Natural (Kombu and Vembu) and commercial grade honey            | Vellore, India             | Honey diluted with dimethyl sulfoxide | <b>Gram negative:</b> <i>E. coli</i> , <i>S. typhi</i> , <i>Proteus mirabilis</i> , <i>K. pneumoniae</i> , <i>Shigella flexneri</i> and <i>Ps. aeruginosa</i><br><b>Gram positive:</b> <i>S. aureus</i> , <i>B. cereus</i> and <i>Enterococcus casseliflavus</i>                                                                                                                  | 6 – 38                 | ND          | 18  |
| Acacia, abies, sideritis, herbs, polyfloral and conifers honeys | Mount Olympus area, Greece | Raw honey                             | <b>Gram negative:</b> <i>A. baumannii</i> , <i>Citrobacter freundii</i> , <i>K. pneumoniae</i> , and <i>Salmonella typhimurium</i><br><b>Gram positive:</b> <i>Streptococcus infantis</i>                                                                                                                                                                                         | ND                     | 6.25 – 12.5 | 19  |

MIC: minimum inhibitory concentration, ND: not done, ZDI: zone diameter of inhibition

## 2.2. Phytomedicines

Roots, leaves, seeds, bark or other part of medicinal plants possess therapeutic, tonic, purgative or other pharmacologic activity under *in vitro* as well as *in vivo* conditions. Several plants are used in various countries as the source of potent and powerful medicines<sup>20</sup>. Alkaloids, norsecurinines, phyllanthine, phyllochrysine, saponins, quercetin, quercetol, rutin, quercitrin, astragalin, gallocatechins, niruretin, nirurin, brevifolin, ellagic acid ellagittannins, repandusinic acids, geraniin, carboxylic acids, corilagin, cymene, lupeols, phyllanthenol, lignans, hypophyllanthin, niranthin, nirtetralin, lintetralins, methyl salicylate, niruriside, triacontanal, tricontanol etc. type of bioactive compounds are present in various plants as the source of therapeutic components<sup>21</sup>.

The innovation of medicinal plants in different parts of the globe is vital to the agriculture and medicine sectors, in defining the new guidelines towards spread of

unconventional medicinal crops that offer improved commercial welfares<sup>22</sup>. Some tribal communities are mostly dependent upon the natural resources for their traditional food habits as well as for treating common illnesses such as diarrhoea, dysentery, vomiting, headache, cold, and fever<sup>23</sup>.

Indian flora deals countless possibilities for the detection of new compounds with important medicinal uses in opposing infection. The antimicrobial compounds found in plants may inhibit bacterial toxicities by alternative mechanisms than the conventional one<sup>24</sup>. Phytomedicine, prepared from different plant materials, such as Ayurvedic traditional medicine, are relatively safe, cost effective and have less or no side effects<sup>25</sup>.

Most of the current *in vitro* study on different medicinal plants with their experimental particulars, in terms of the antibacterial activity, are summarized in Table 2, where some research on bioactive fruit plants and spice herbs are also included.

Table 2: Antibacterial activity of different plant extracts

| Plants                                      | Plant parts              | Extracting solvent                                                    | Activity against Bacteria                                                                                                                                                                                                                                                                                                                                                               | Antibacterial activity |             | Ref    |
|---------------------------------------------|--------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|--------|
|                                             |                          |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                         | ZDI (mm)               | MIC (µg/ml) |        |
| <b>Medicinal plants</b>                     |                          |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                         |                        |             |        |
| <i>Aegle marmelos</i> (Bael)                | Leaves                   | Hexane, acetone, ethanol, and aqueous                                 | <b>Gram negative:</b> <i>E. coli</i> , <i>Ps. aeruginosa</i> , <i>Salmonella enterica</i> , <i>Shigella sonnei</i><br><b>Gram positive:</b> <i>Bacillus cereus</i> , <i>Strep. faecalis</i> , <i>Listeria innocua</i> , <i>Micrococcus luteus</i>                                                                                                                                       | ND                     | 297 – 551   | 23     |
| <i>Azardirchata indica</i>                  | Leaves and bark          | Ethanol, chloroform and methanol                                      | <b>Gram negative:</b> <i>Aeromonas hydrophila</i> , <i>A. hydrophila</i> ATCC 7966, <i>Ps. aeruginosa</i> , <i>Proteus mirabilis</i> , Shiga-toxigenic <i>E. coli</i><br><b>Gram positive:</b> <i>S. aureus</i> , <i>S. aureus</i> ATCC 25923, <i>Enterococcus faecalis</i> , Methicillin-resistant <i>S. aureus</i>                                                                    | 6 – 27                 | 500 – 12500 | 26-29  |
| <i>Withania somnifera</i> (Aswagandha)      | Leaves                   | Ethyl acetate and methanol                                            | <b>Gram negative:</b> <i>E. coli</i> ATCC 25922, <i>Proteus mirabilis</i> ATCC 35659, <i>Ps. aeruginosa</i> ATCC 27853, <i>Pseudomonas syringae</i> pv. <i>Phaseolicola</i> and <i>Xanthomonas campestris</i> pv. <i>Phaseoli</i><br><b>Gram positive:</b> <i>S. aureus</i> ATCC 25923, <i>Streptococcus pneumoniae</i> ATCC 49619, <i>En. faecalis</i> ATCC 29212                      | 7 – 13                 | 6.25 – 2500 | 30, 31 |
| <i>Bacopa monnieri</i> (Brahmi)             | Whole plant and leaves   | Methanol, acetone, ethanol and methanol                               | <b>Gram negative:</b> <i>E. coli</i> K 88, <i>Ps. aeruginosa</i> , <i>Salmonella typhi</i> 62, <i>Shigella dysenteriae</i> 3, <i>E. coli</i> , <i>K. pneumoniae</i> and <i>K. pneumoniae</i> MTCC 109<br><b>Gram positive:</b> <i>S. aureus</i> ATCC 6571, <i>Streptococcus faecalis</i> 52, <i>En. faecalis</i> ATCC 29212, <i>S. aureus</i> MTCC 3160 and <i>B. subtilis</i> MTCC 441 | 8 – 22                 | 30 – 25000  | 32, 33 |
| <i>Santalum album</i> (Sandal wood)         | Heartwood                | n-hexane, water chloroform, acetone, butanol ethylacetate and ethanol | <b>Gram negative:</b> <i>E. coli</i> 25922, <i>E. coli</i> 35318 and <i>Shigella sonnei</i> BB-8<br><b>Gram positive:</b> <i>S. aureus</i> 25923, <i>S. aureus</i> 38541, <i>Streptococcus pyogenes</i> Tc-11-2 and <i>Neisseria gonorrhoeae</i> 4c-11                                                                                                                                  | 6 – 17                 | ND          | 34     |
| <i>Ranwolffia serpentina</i> (Sarpa gandha) | Leaves, Roots and leaves | Acetone, methanol and ethanol                                         | <b>Gram negative:</b> <i>E. coli</i> and <i>S. typhi</i><br><b>Gram positive:</b> <i>S. aureus</i> , <i>B. cereus</i> and <i>B. subtilis</i>                                                                                                                                                                                                                                            | 7 – 22                 | 4000 - 9000 | 20, 35 |
| <i>Ocimum sanctum</i> (Tulsi)               | Leaves                   | Aqueous, acetone and ethanol                                          | <b>Gram negative:</b> <i>K. pneumoniae</i> , <i>E. coli</i> , <i>P. vulgaris</i> , <i>Ps. aeruginosa</i> , <i>S. typhi</i> , <i>Acinetobacter baumannii</i> and <i>E. coli</i> MTCC 443<br><b>Gram positive:</b> <i>Streptococcus mitis</i> , <i>Streptococcus viridans</i> , <i>S. aureus</i> , <i>B. cereus</i> and <i>Listeria monocytogenes</i> MTCC 657                            | 6 – 28                 | ND          | 36, 37 |
| <i>Mentha piperita</i> (Pipermint)          | Leaves                   | Ethanol, chloroform and hexane                                        | <b>Gram negative:</b> <i>E. aerogenes</i> and <i>S. typhimurium</i><br><b>Gram positive:</b> <i>S. aureus</i> , <i>B. subtilis</i> and <i>Propioni bacterium acnes</i> MTCC 1951                                                                                                                                                                                                        | 7 – 8                  | 312 – 1150  | 38, 39 |

Table 2: (Continued)

| Plants                                        | Plant parts                                | Extraction solvent                            | Activity against bacteria                                                                                                                                                                                                    | Antibacterial activity |              | Ref    |
|-----------------------------------------------|--------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|--------|
|                                               |                                            |                                               |                                                                                                                                                                                                                              | ZDI (mm)               | MIC (µg/ml)  |        |
| <i>Phyllanthous amarus</i> (Bhumi amla)       | Whole plant and leaves                     | Aqueous, n-hexane, ethyl acetate and methanol | <b>Gram negative:</b> <i>E. coli</i> , <i>Ps. aeruginosa</i> and <i>Pseudomonas spp.</i><br><b>Gram positive:</b> Coagulase positive <i>S. aureus</i> and <i>S. aureus</i>                                                   | 9 – 26                 | ND           | 21, 40 |
| <i>Enhydra fluctuans</i> (helencha)           | Whole aerial parts (stem and leaves)       | Methanol and aqueous                          | <b>Gram negative:</b> <i>A. baumannii</i> , <i>Ps. aeruginosa</i> and <i>E. coli</i> ATCC25922<br><b>Gram positive:</b> <i>B. cereus</i> , <i>Listeria monocytogenes</i> and <i>L. monocytogenes</i> MTCC657                 | 6 – 24                 | 2500 - 10000 | 41     |
| <b>Fruit plants</b>                           |                                            |                                               |                                                                                                                                                                                                                              |                        |              |        |
| <i>Elaeocarpus floribundus</i> (Indian olive) | Seed and mesocarp-epicarp of mature fruits | Ethanol and aqueous                           | <b>Gram negative:</b> <i>E. coli</i> , <i>Pr. vulgaris</i> and <i>Ps. aeruginosa</i> ATCC 27813<br><b>Gram positive:</b> <i>B. cereus</i> , <i>S. aureus</i> and <i>L. monocytogenes</i> MTCC 657                            | 6 – 22                 | ND           | 42     |
| <i>Mimusops elengi</i> (Bakul)                | Seed                                       | Ethanol                                       | <b>Gram negative:</b> <i>E. coli</i> , <i>Pr. vulgaris</i> , <i>K. pneumonia</i> , <i>E. coli</i> ATCC 25922, <i>K. pneumonia</i> MTCC 7407 and <i>Ps. aeruginosa</i> ATCC 27853                                             | 7 – 17                 | ND           | 25     |
| <i>Syzygium cumini</i> (Jamun)                | Seed                                       | Ethanol                                       | <b>Gram negative:</b> <i>E. coli</i> , <i>K. pneumonia</i> and <i>E. coli</i> ATCC 25922<br><b>Gram positive:</b> <i>S. aureus</i> and <i>S. aureus</i> ATCC 29213                                                           | 8 – 15                 | ND           | 43     |
| <i>Mangifera indica</i> (Mango)               | Seed                                       | Ethanol                                       |                                                                                                                                                                                                                              | 10 – 20                | ND           |        |
| <i>Punica granatum</i> (Pomegranate)          | Fruit Peel                                 | Ethanol and aqueous                           | <b>Gram negative:</b> <i>E. coli</i> , <i>Proteus spp.</i> , <i>K. pneumoniae</i> , <i>P. aeruginosa</i> , <i>A. baumannii</i>                                                                                               | 6 – 28                 | 2500 – 20000 | 44     |
| <b>Spices</b>                                 |                                            |                                               |                                                                                                                                                                                                                              |                        |              |        |
| <i>Piper nigrum</i> (Black pepper)            | Corn                                       | Ethanol and chloroform                        | <b>Gram negative:</b> <i>E. coli</i> , <i>Ps. aeruginosa</i> , <i>Klebsiella Sp</i> , <i>Proteus Sp.</i><br><b>Gram positive:</b> <i>Streptococcus mutans</i> , Coagulase negative <i>Staphylococci</i> and <i>S. aureus</i> | 6 – 29                 | ND           | 45, 46 |

KOH: potassium hydroxide, MIC: minimum inhibitory concentration, ND: not done, ZDI: zone diameter of inhibition

### 2.3. Probiotics

Probiotics, in the form of lactic acid bacteria (LAB), generally the lactobacilli, might be crucial in controlling the emerging antibiotic resistant pathogenic bacteria. Probiotics have the inhibition property against bacterial pathogens, including the antibiotic resistant individuals: spoilage, food-borne and pathogenic bacteria, by producing H<sub>2</sub>O<sub>2</sub>, lactic acid and bacteriocin<sup>47</sup>. Sheep and goat milks and their derivatives (cheese and yoghurt) are commercially available as functional foods, which are with nutritional as well as medicinal importance, and can be selected as valid candidates having microbiological and technological qualities<sup>48</sup>. Current studies revealed that some lactic acid

bacteria isolated from non-milk fermented foods act as potential probiotics with huge nutritional as well as medicinal values that might be due to the production of bacteriocins<sup>49,50</sup>. In the intestine, probiotic microorganisms compete with pathogenic bacteria in terms of nutrients and cell-surface for colonization, and can create inhibition against biofilm formation and quorum sensing properties of many pathogens<sup>51 – 53</sup>.

The milk and non-milk food-based probiotics, being isolated and characterised by the scientists from around the world, are summarized, in terms of the effectiveness against bacteria, in Table 3.

Table 3: Antibacterial activity of probiotics

| Source                                            | Geographical location      | Probiotic strain                                                                                                                                           | Activity against bacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Antibacterial activity |     | Ref |
|---------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----|-----|
|                                                   |                            |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ZDI (mm)               | MIC |     |
| <b>Milk-based products</b>                        |                            |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |     |     |
| Local fermented milk products                     | Bangkok region of Thailand | <i>Lactococcus lactis</i> subsp. <i>lactis</i>                                                                                                             | <b>Gram negative:</b> <i>E. coli</i> , <i>Ps. aeruginosa</i> and <i>S. typhimurium</i><br><b>Gram positive:</b> <i>B. cereus</i> and <i>S. aureus</i>                                                                                                                                                                                                                                                                                                                                        | 11 – 27                | ND  | 54  |
| Toraja Belang buffalo milk                        | Indonesia                  | <i>Enterococcus faecalis</i>                                                                                                                               | <b>Gram negative:</b> Enteropathogenic <i>E. coli</i> ATCC 25922, and <i>S. typhi</i> ATCC 58105535<br><b>Gram positive:</b> <i>S. aureus</i> 134-P                                                                                                                                                                                                                                                                                                                                          | 6 – 13                 | ND  | 55  |
| Home-made cow milk curd, commercial curd          | Malda district, India      | <i>Lactobacillus animalis</i> LMEM6, <i>Lactobacillus plantarum</i> LMEM7, <i>Lactobacillus acidophilus</i> LMEM8 and <i>Lactobacillus rhamnosus</i> LMEM9 | <b>Gram negative:</b> <i>S. enterica</i> serovar Typhi, <i>E. coli</i> , <i>P. vulgaris</i> and <i>A. baumannii</i>                                                                                                                                                                                                                                                                                                                                                                          | 11 – 35                | ND  | 56  |
| Commercially available curd                       | Malda district, India      | <i>Lactobacillus fermentum</i>                                                                                                                             | <b>Gram negative:</b> <i>A. baumannii</i> , <i>Ps. aeruginosa</i> , <i>E. coli</i> , <i>Pr. vulgaris</i> , <i>K. pneumoniae</i> , <i>S. enterica</i> serovar Typhi<br><b>Gram positive:</b> <i>S. aureus</i> , <i>B. cereus</i> , <i>E. faecalis</i> , <i>L. monocytogenes</i>                                                                                                                                                                                                               | 10 – 20                | ND  | 57  |
| Sheep and goat raw milk                           | Tunisia                    | <i>L. plantarum</i> and <i>L. pentosus</i>                                                                                                                 | <b>Gram negative:</b> <i>S. typhimurium</i> ATCC 25922 and <i>E. coli</i><br><b>Gram positive:</b> <i>S. aureus</i> ATCC 25923, <i>L. monocytogenes</i> ATCC 070 101 121                                                                                                                                                                                                                                                                                                                     | 6 – 12                 | ND  | 48  |
| <b>Non milk-based products</b>                    |                            |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |     |     |
| Home-made fermented vegetables                    | Malaysia                   | <i>Lactobacillus</i> sp                                                                                                                                    | <b>Gram negative:</b> <i>Yersinia enterocolitica</i> and <i>E. coli</i><br><b>Gram positive:</b> <i>S. aureus</i> ATCC 25923, <i>B. cereus</i>                                                                                                                                                                                                                                                                                                                                               | 6 – 20                 | ND  | 49  |
| Fermented plant beverages and pickles             | Thailand                   | <i>Lactobacillus casei</i> and <i>L. plantarum</i>                                                                                                         | <b>Gram negative:</b> <i>S. typhimurium</i> PSSCM10035, <i>S. typhi</i> PSSCM10034, <i>E. coli</i> O157:H7, <i>E. coli</i> ATCC 25922, <i>Shigella sonnei</i> PSSCM10032, <i>Shigella flexneri</i> PSSCM10035, <i>Pr. vulgaris</i> PSSCM10041, <i>Providencia rettgeri</i> psscm10044, <i>Enterobacter cloacae</i> PSSCM10040, <i>Enterobacter aerogenes</i> PSSCM10039, <i>Vibrio parahaemolyticus</i> VP4<br><b>Gram positive:</b> <i>S. aureus</i> ATCC 25923, <i>B. cereus</i> ATCC11778 | 7 – 10                 | ND  | 50  |
| Vegetables and traditional Indian fermented foods | India                      | <i>L. fermentum</i> , <i>L. plantarum</i> <i>Weissella confusa</i> , <i>Weissella cibaria</i> and <i>Pediococcus parvulus</i>                              | <b>Gram negative:</b> <i>E. coli</i> K12                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 – 23                | ND  | 58  |

MIC: minimum inhibitory concentration, ND: not done, ZDI: zone diameter of inhibition

## 2.4. Antimicrobial peptides

Several authors reported that antimicrobial peptides (AMPs) can be administered as typical candidates effective against different MDR bacterial strains. Biofilms formation by the bacterial cells causes more resistant to antibiotic managements than the planktonic forms of the same bacterial strains<sup>59</sup>. Food protein hydrolysates and fermented food products serves as promising source of bioactive AMPs. The caseins and whey proteins are major milk precursors proteins found in cow milk. Caseins derived bioactive peptides consists of about thirty different constituents comprising with genomic variations, mainly of  $\alpha$ - (  $\alpha$ 1-,  $\alpha$ 2-),  $\beta$ , and  $\kappa$ -casein<sup>60</sup>. Most of the potential AMPs are cationic as well as amphipathic in nature consisting of a minimum five to maximum hundred amino acids. Current studies have shown that some probiotics can synthesise AMPs that contribute significantly to host survivability, exclusively against pathogenic bacteria. Although scientists are facing some difficulties in obtaining significant and economically sustainable quantities of AMPs, and thus they are trying to manufacture heterologous endogenous AMPs using cloning technique<sup>61</sup>.

Recently, a number of anionic antimicrobial peptides have been identified in vertebrates, invertebrates and plants<sup>62</sup>. The vast source of antimicrobial peptides is marine organisms because of their close contact with microbes<sup>59</sup>. Some antimicrobial peptides derived from plants are mostly composed of cystine-rich peptides. Insects is one of the major sources of antimicrobial peptides that show inhibition against bacteria, fungi, viruses as well as some parasites. These can be classified into four families: the  $\alpha$ -helical peptides (cecropin and moricin), glycine-rich peptides (gloverin and attacin), proline-rich peptides (drosocin, apidaecin and lebocin) and cysteine-rich peptides (insect drosomycin and defensin)<sup>63</sup>.

Recent studies showed antimicrobial peptides can potentially serve as novel antimicrobial agents. Different AMPs can be utilized by innate immune cells and proteins to counterbalance microbial infections, and contribute more to other cellular and/or biomolecular pathways<sup>64</sup>. Table 4 summarizes the antibacterial activities of AMPs with molecular weight ranging from 1.55 to 41.44 kDa.

**Table 4: Antibacterial activity of different bioactive peptides**

| Source                                                                                              | Amino acid number in peptides | Molecular weight (kDa) | Activity against bacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Antibacterial activity |                   |         | Ref |
|-----------------------------------------------------------------------------------------------------|-------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|---------|-----|
|                                                                                                     |                               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ZDI (mm)               | MIC ( $\mu$ g/ml) | AU/ml   |     |
| Sea Cucumber, <i>Holothuria tubulosa</i>                                                            | 14 – 36                       | 1.55 – 4.09            | <b>Gram positive:</b> <i>Listeria monocytogenes</i>                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                     | 1200 – 5000       | ND      | 59  |
| Bacteriocin from <i>Lactococcus lactis</i> MMFII (from a Tunisian dairy product)                    | ~40                           | 25 – 41.44             | <b>Gram positive:</b> <i>Enterococcus faecalis</i> JH22 <i>E. faecalis</i> V583 <i>Listeria ivanovi</i> BUG 496                                                                                                                                                                                                                                                                                                                                                                      | ND                     | 0.05 – 0.1        | 20 – 60 | 65  |
| Bacteriocin produced by <i>Lactobacillus plantarum</i> KLDS1.0391 (from fermented cream from China) | ND                            | 21.80 – 29.70          | <b>Gram negative:</b> <i>Salmonella typhimurium</i>                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                     | ND                | 80      | 66  |
| Marine Ascidian <i>Didemnum</i> sp.                                                                 | ND                            | < 40                   | <b>Gram negative:</b> <i>Ps. aeruginosa</i> ATCC 27853, <i>Salmonella typhimurium</i> ATCC 202165<br><b>Gram positive:</b> <i>Staphylococcus aureus</i> ATCC 6538, <i>Serratia marcescens</i> ATCC 14756 and <i>E. faecalis</i> ATCC 29212                                                                                                                                                                                                                                           | 7 – 11                 | 1.83 – 2.30       | ND      | 67  |
| Soybean, <i>Glycine max</i>                                                                         | ND                            | <10                    | <b>Gram negative:</b> <i>Acinetobacter</i> <i>genomospecies</i> , <i>Aeromonas hydrophila</i> FDA110-36, <i>A. hydrophila</i> ATCC7966, <i>Escherichia coli</i> DH5 $\alpha$ f, <i>E. coli</i> ATCC43895, <i>E. coli</i> NCTC8959, <i>Salmonella enterica</i> ATCC12325, <i>S. enterica</i> ATCC29934, <i>Vibrio parahaemolyticus</i> ATCC17802<br><b>Gram positive:</b> <i>S. aureus</i> ATCC14458, coagulase-negative <i>S. saprophyticus</i> KT955005, <i>S. aureus</i> ATCC13150 | ND                     | 72 – 1050         | ND      | 68  |

Table 4: (Continued)

| Source                                                                        | Amino acid number in peptide | Molecular weight (kDa) | Activity against bacteria                                                                                                                                                          | Antibacterial activity |             |       | Ref |
|-------------------------------------------------------------------------------|------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|-------|-----|
|                                                                               |                              |                        |                                                                                                                                                                                    | ZDI (mm)               | MIC (µg/ml) | AU/ml |     |
| Laba garlic                                                                   | 5 – 6                        | 4 – 6                  | <b>Gram negative:</b> <i>E. coli</i> , ATCC 25922, <i>S. enteritidis</i> BNCC103134,<br><b>Gram positive:</b> <i>B. subtilis</i> ATCC 6633, and <i>S. aureus</i> ATCC 25923        | 9 – 27                 | 100 – 450   | ND    | 69  |
| Skin Secretion of the Fujian Large Headed Frog, <i>Limnonectes fujianensi</i> | 33                           | ND                     | <b>Gram negative:</b> <i>E. coli</i> NCTC 10418<br><b>Gram positive:</b> <i>S. aureus</i> NCTC 10788                                                                               | ND                     | 16 – 32     | ND    | 70  |
| Moss <i>Physcomitrella patens</i>                                             | 14 – 18                      | ND                     | <b>Gram negative:</b> <i>E. coli</i> K-12 substr. MG1655<br><b>Gram positive:</b> <i>B. subtilis</i> 168HT                                                                         | ND                     | 16 – 128    | ND    | 71  |
| <i>Trianthema portulacastrum</i> Leaves                                       | ND                           | 5.57 – 23.44           | <b>Gram negative:</b> <i>E. coli</i><br><b>Gram positive:</b> <i>B. subtilis</i> and <i>S. aureus</i>                                                                              | 6 - 14                 | ND          | ND    | 72  |
| Rumen microbiome                                                              | <25                          | ND                     | <b>Gram negative:</b> <i>A. baumannii</i>                                                                                                                                          | ND                     | 64 – 128    | ND    | 73  |
| <i>Rana arvalis</i>                                                           | 13 – 32                      | ND                     | <b>Gram negative:</b> <i>E. coli</i> ATCC 25922, <i>Acinetobacter baumannii</i> ATCC 19606<br><b>Gram positive:</b> <i>S. aureus</i> ATCC 29213 and <i>En. faecalis</i> ATCC 29212 | ND                     | 16 - >64 µM | ND    | 74  |

AU/ml: arbitrary unit per millilitre, MIC: Minimum inhibitory concentration, ND: not done, ZDI: zone diameter of inhibition

### 3. Concluding remarks

Due to the problem of antibiotic inactivity, exploration of alternative new antibacterial agents is needed to combat several life-threatening infections caused by MDR bacteria. Honey, plant extracts, probiotics and AMPs can inhibit the growth of infectious bacterial pathogens, as non-antibiotic antibacterials. Although, more specific experiments are required to know the effective dose dependent pharmacokinetic nature of the explored agents.

### References

- De AS, Baveja S, D'Souza D et al. Antimicrobial resistance among commonly encountered bacteria isolated in 2013 – The ESKAPE Menace, Internal Medicine, 2015; 5(193):1-6. DOI:10.4172/2165-8048.1000193
- Rice LB, Progress and challenges in implementing the research on ESKAPE pathogens, Infection Control & Hospital Epidemiology, 2010; 31(1):S7-S10. DOI: 10.1086/655995
- Santajit S, Indrawattana N, Mechanisms of antimicrobial resistance in ESKAPE pathogens, BioMed Research International, 2016; Article ID 2475067, 8 pages. DOI: 10.1155/2016/2475067
- Founou RC, Founou LL, Essack SY, Extended spectrum beta-lactamase mediated resistance in carriage and clinical gram-negative ESKAPE bacteria: a comparative study between a district and tertiary hospital in South Africa, Antimicrobial Resistance & Infection Control, 2018; 7(134):1-11. DOI: 10.1186/s13756-018-0423-0
- Blin C, Passet V, Touchon M et al, Metabolic diversity of the emerging pathogenic lineages of *Klebsiella pneumoniae*, Wiley-Blackwell and Society for Applied Microbiology, 2017; 19(5):1881-98. DOI: 10.1111/1462-2920.13689
- Azzahra S, Parisa N, Fatmawati et al., Antibacterial efficacy of Aloe vera sap against *Staphylococcus aureus* and *Escherichia coli*, Bioscientia Medicina 2019; 3(2):29-37.
- Haque SD , Saha SK, Salma U et al, Antibacterial effect of *Aloe vera* (*Aloe barbadensis*) leaf gel against *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Escherichia coli* and *Klebsiella pneumoniae*, Mymensingh Medical Journal, 2019; 28(3):490-496.
- Saha A, Mandal S, In vitro Assessment of two commercial honey samples for antibacterial and antioxidant activities, Austin Journal of Tropical Medicine & Hygiene, 2015; 1(1):1-5.
- Mandal S, Mandal MD, Pal NK et al., Antibacterial activity of honey against clinical isolates of *Escherichia coli*, *Pseudomonas aeruginosa* and *Salmonella enteric* serovar Typhi. Asian Pacific Journal of Tropical Medicine, 2010; 3(12):961-964. DOI: 10.1016/S1995-7645(11)60009-6
- Hegazi AG, Abd Allah FM, Antimicrobial activity of different Saudi Arabia honeys, Global Veterinaria, 2012; 9(1):53-59. DOI: 10.14202/vetworld.2017.233-237
- Abdallah EM, Hamed AE, Screening for antibacterial activity of two jujube honey samples collected from Saudi Arabia, Journal of Apitherapy, 2019; 5(1):6-9. DOI: 10.5455/ja.20190120035814
- Aumeeruddy MZ, Aumeeruddy-Elalfi Z, Neetoo H et al., Pharmacological activities, chemical profile, and physico-chemical properties of raw and commercial honey, Biocatalysis and Agricultural Biotechnology, 2019; 18:101005. DOI: 10.1016/j.bcab.2019.01.043.
- Bucekova M, Jardekova L, Juricova V et al, Antibacterial activity of different blossom Honeys: New findings. Molecules, 2019; 24(1573):1-20. DOI: 10.3390/molecules24081573
- John-Isa JF, Adebola TT, Oyetayo VO, Antibacterial effects of Honey in Nigeria on selected Diarrhoeagenic bacteria, South Asian Journal of Research in Microbiology, 2019; 3(2):1-11. DOI: 10.9734/sajrm/2019/v3i230083

15. Mama M, Teshome T, Detamo J, Antibacterial activity of Honey against Methicillin-Resistant *Staphylococcus aureus*: A laboratory-based experimental study, International Journal of Microbiology, 2019; Article ID 7686130, 9 pages, DOI: 10.1155/2019/7686130

16. Roy S, Mandal M, Pal NK et al, Exploration of antibacterial and antioxidative property of two natural Honey samples from Malda District, India, Translational Medicine (Sunnyvale) 2016; 6(4): DOI: 10.4172/2161-1025.1000187

17. Shah T, Ali N, Shah Z et al, Antibacterial activity of Pakistani Honey, Pakistan Journal of Scientific and Industrial Research Series B: Biological Sciences, 2019; 62B(2):97-100.

18. Suganthi K, Saranraj P, Antibacterial and anticandidal activity of Natural and Commercial Honey - A comparative study, Asian Journal of Applied Research, 2018; 4(3):37-41. DOI: 10.20468/ajar.2018.02.06

19. Tsavva E, Mossialos D, Antibacterial activity of honeys produced in Mount Olympus area against nosocomial and foodborne pathogens is mainly attributed to hydrogen peroxide and proteinaceous compounds, Journal of Apicultural Research, 2019; 58(5):756-63. DOI: 10.1080/00218839.2019.1649570

20. Deshmukh SR, Ashrit DS, Patil BA, Extraction and evaluation of indole alkaloids from *Rauvolfia Serpentina* for their antimicrobial and antiproliferative activities, International Journal of Pharmacy and Pharmaceutical Sciences, 2012; 4(5):329-334.

21. Shrivastav A, Shrivastav N, Antibacterial activity of Bhui amla (*Phyllanthus niruri*), Pharma Science Monitor, 2017; 8(4):222-228.

22. Zaidan MRS, Noor Rain A, Badrul AR et al, In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method, Tropical Biomedicine, 2005; 22(2):165-170.

23. Panda SK, Mohanta YK, Padhi L et al, Antimicrobial activity of select edible plants from Odisha, India against food-borne pathogens, LWT - Food Science and Technology, 2019; 9(4): 435. DOI: 10.1016/j.lwt.2019.06.013

24. Yadav SS, Dahiya K, Ganie SA et al, Antibacterial activity of *Aegle marmelos* (L) Correa, International Journal of Pharmacy and Pharmaceutical Sciences, 2015; 7(3):462-464.

25. Sircar B, Mandal S, Antibacterial activity of *Mimusops elengi* leaf, seed and bark extracts Alone and in combination with antibiotics against human pathogenic bacteria, Translational Medicine (Sunnyvale), 2016; 6(4):188. DOI: 10.4172/2161-1025.1000188

26. Devi NP, Das SK, Sanjukta RK et al, A comparative study on antibacterial activity of integumentary extract of selected freshwater fish Species and Neem extracts against gram-positive and gram-negative bacteria, Journal of Entomology and Zoology Studies, 2019; 7(2):1352-1355.

27. Senapati S, Bagchi A, Raha A et al, Evaluation of antimicrobial activity of *Azadirachta indica* bark extract, The Pharma Innovation Journal, 2019; 8(6):691-694.

28. Singaravelu S, Sankarapillai J, Chandrakumari AS et al, Effect of *Azadirachta indica* crude bark extracts concentrations against gram-positive and gram-negative bacterial pathogens. Journal of Pharmacy and Bioallied Sciences, 2019; 11(1):33-37. DOI: 10.4103/jpbs.JPBS\_150\_18

29. Zihadi MAH, Rahman M, Talukder S et al, Antibacterial efficacy of ethanolic extract of *Camellia sinensis* and *Azadirachta indica* leaves on methicillin-resistant *Staphylococcus aureus* and shiga-toxigenic *Escherichia coli*. Journal of Advanced Veterinary and Animal Research, 2019; 6(2):247-52. DOI: 10.5455/javar.2019.f340

30. Rezaie Keikhaie K, Fazeli-Nasab B, Jahantigh HR et al, Antibacterial activity of ethyl acetate and methanol extracts of *Securigera Securidaca*, *Withania Sominefra*, *Rosmarinus Officinalis* and *Aloe vera* plants against important human pathogens, Journal of Medical Bacteriology, 2018; 7 (1, 2):13-21.

31. Chepkorir R, Matasyoh JC, Wagara IN, Two withanolides from *Withania somnifera* (solanaceae) and activity of methanolic extracts against fungal and bacterial pathogens that affects food crops, African Journal of Food Science, 2018; 12(5):115- 125. DOI: 10.5897/AJFS2016.1503

32. Verma M, Kumar A, Antimicrobial and antioxidant activity of whole plant extracts of *Bacopa monnieri* (L.) Pennell, International Journal of Applied Biology and Pharmaceutical Technology, 2017; 8(2):74-79. DOI: 10.21276/Ijabpt

33. Haque SKM, Chakraborty A, Dey D et al, Improved micropagation of *Bacopa monnieri* (L.) Wettst. (Plantaginaceae) and antimicrobial activity of in vitro and ex vitro raised plants against multidrug-resistant clinical isolates of urinary tract infecting (UTI) and respiratory tract infecting (RTI) bacteria, Clinical Phytoscience 2017; 3(17):1-10. DOI: 10.1186/s40816-017-0055-6

34. Mehmood S, Gull S, Mushtaq A et al, In vitro antibacterial and antioxidant activities of *Santalum album* and *cymbopogon* by sequential extraction, The Professional Medical Journal, 2019; 26(5):717-722. DOI: 10.29309/TPMJ/2019.26.05.3462

35. Singh HK, Charan AA, Charan AI et al, Antifungal and antibacterial activity of methanolic, ethanolic and acetonic leaf extracts of sarpagandha (*Rauwolfia serpentine*), Journal of Pharmacognosy and Phytochemistry, 2017; 6(5):152-156.

36. Kalita C, Saikia A, Sarma A et al, Antibacterial and antifungal property of three plants against oral microbes, Journal of Mahatma Gandhi Institute of Medical Sciences, 2018; 23:73-6. DOI: 10.4103/jmgims.jmgims\_4\_16

37. Das MK, Mandal M, Mandal S, Assessment of bacterial growth inhibition property and phytochemical analysis of *Ocimum sanctum* L. leaf extract, International Research Journal of Pharmacy, 2017; 8(7):46-51. DOI: 10.7897/2230-8407.087116

38. Külcü DB, Gökşik CD, Aydin S, An Investigation of Antibacterial and Antioxidant Activity of Nettle (*Urtica dioica* L.), Mint (*Mentha piperita*), Thyme (*Thyme serpyllum*) and *Chenopodium album* L. Plants from Yaylaci Plateau, Giresun, Turkey, Turkish Journal of Agriculture - Food Science and Technology, 2019; 7(1):73-80. DOI: 10.24925/turjaf.v7i1.73-80.2123

39. Qidwai A, Pandey M, Shukla SK et al, Antibacterial activity of *Mentha piperita* and *Citrus limetta* against Propionibacterium acnes (anaerobic bacteria), International Journal of Pharmaceutical Sciences and Research, 2016; 7(7):2917-24. DOI: 10.13040/IJPSR.0975-8232.7 (7).2917- 24.

40. Zubair MF, Atolani O, Ibrahim SO et al, Chemical constituents and antimicrobial properties of *Phyllanthus amarus* (Schum & Thonn), Bayero Journal of Pure and Applied Sciences, 2017; 10(1):238 - 246. DOI: 10.4314/bajopas.v10i1.35

41. Sikdar S, Roy S, Banu TN, Phytochemical analysis and antibacterial property assessment of helencha (*Enhydra fluctuans*; Family: Asteraceae) extracts, GSC Biological and Pharmaceutical Sciences, 2020; 12(02):136-142. DOI: 10.30574/gscbps.2020.12.2.0252

42. Sircar B, Mandal S, Screening of *Elaeocarpus floribundus* fruit extracts for bioactive phytocomponents and antibacterial activity against food-borne bacteria. International Journal of Research in Medical Sciences, 2017; 5(8):3665-3671. DOI: 10.18203/2320-6012.ijrms20173582

43. Das MK, Mandal S, *Syzygium cumini* and *Mangifera indica* seed extracts: In Vitro assessment for antibacterial activity alone and in combination with antibiotics against clinical bacteria. Journal of Infectious Diseases & Preventive Medicine, 2016; 4(1):129. DOI: 10.4172/2329-8731.1000129

44. Banu TN, Mandal S, Antibacterial activity of Pomegranate (*Punica granatum*) fruit peel extracts against antibiotic resistant gram-negative pathogenic bacteria, Bioscience Biotechnology Research Communications, 2019; 12(4):1141-1149. DOI: 10.21786/bbrc.12.4/38

45. Kaho ZM, Kadum AR, Hadi AA. Evalution of antibacterial activity of *Piper nigrum* extract against *Streptococcus mutans* and *Escherichia coli*. Journal of Pharmaceutical Sciences and Research, 2019; 11(2):367-370.

46. Sreejai R, Raju A, Benchamin D et al, Comparative study of antimicrobial and phytochemical analysis of *Piper longum* and *Piper nigrum*, The Pharma Innovation Journal, 2019; 8(3):224-226.

47. Mandal M, Mandal S, Can Bacteriocins Curb the Emergence of Antibiotic Resistant Pathogenic Bacteria in the Globe?, Current Trends in Biomedical Engineering & Biosciences, 2018; 17(3):555964. DOI: 10.19080/CTBEB.2018.17.555964.

48. Mahmoudi et al, Adhesion Properties of Probiotic *Lactobacillus* Strains Isolated from Tunisian Sheep and Goat Milk, Journal of Agriculture, Science and Technolog, 2019; 21(3):587-600

49. Kazemipoor et al, Screening of antibacterial activity of lactic acid bacteria isolated from fermented vegetables against food borne pathogens, Archives Des Sciences, 2012; 65(6):192-201.

50. Duangjitcharoen Y, Kantachote D, Ongsakul M, et al, Selection of Probiotic Lactic Acid Bacteria Isolated from Fermented Plant Beverages. Pakistan Journal of Biological Sciences, 2008;11:652-655. DOI: 10.3923/pjbs.2008.652.655

51. Cotar et al., Quantitative real-time PCR study of the influence of probiotic culture soluble fraction on the expression of *Pseudomonas aeruginosa* quorum sensing genes, 2010; 69(4).

52. Chu et al., isolation and characterization of new potential probiotic bacteria based on quorum-sensing system, Journal of Applied Microbiology, DOI: 10.1111/j.1365-2672.2010.04872.x

53. Besser et al., Impact of probiotics on pathogen survival in an innovative human plasma biofilm model (hpBIOM), Journal of Translational Medicine, 2019; 7:243, DOI: 10.1186/s12967-019-1990-4

54. Akbar A, Sadiq MB, Ali I, et al., *Lactococcus lactis* subsp. *lactis* isolated from fermented milk products and its antimicrobial potential, CyTA - Journal of Food, 2019; 17(1):214-220, DOI:10.1080/19476337.2019.1575474

55. Alang et al., Identification of lactic acid bacteria as antimicrobial from milk Toraja Belang buffalo, International Conference on Green Agro-industry and Bioeconomy, DOI:10.1088/1755-1315/230/1/012092

56. Halder et al., Indigenous Probiotic *Lactobacillus* Isolates Presenting Antibiotic like Activity against Human Pathogenic Bacteria, Biomedicines, 2017; 5(31) DOI: 10.3390/biomedicines5020031

57. Halder D, Mandal S, Insights into the antagonism of *Lactobacillus fermentum* curd isolate against Gram-positive and Gram-negative pathogenic bacteria, Bioscience Biotechnology Research Communications, 2018; 11(3):461-468.

58. Patel A, Lindström C, Patel A, Prajapati J, Holst O, Probiotic properties of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented foods. International Journal of Fermented Foods, 2012; 1(1):87-101.

59. Cusimano MG, Spinello A, Barone G et al., A Synthetic derivative of antimicrobial peptide Holothuridin 2 from Mediterranean Sea Cucumber (*Holothuria tubulosa*) in the control of *Listeria monocytogenes*, Marine Drugs, 2019; 17(159):1-11. DOI: 10.3390/md17030159

60. El-Sayed M, Awad S, Milk Bioactive Peptides: Antioxidant, Antimicrobial and Anti- Diabetic Activities, Advances in Biochemistry, 2019; 7(1):22-33. DOI: 10.11648/j.ab.20190701.15

61. Mandal SM, Silva ON, Franco OL, Recombinant probiotics with antimicrobial peptides: a dual strategy to improve immune response in immunocompromised patients, Drug Discovery Today, 2014; 19(8):1045-1050. DOI: 10.1016/j.drudis.2014.05.019

62. Ahmed TAE, Hammami R, Recent insights into structure-function relationships of antimicrobial peptides, Journal of Food Biochemistry, 2019; 43:e12546. DOI: 10.1111/jfbc.12546

63. Farhana et al., Isolation of Antimicrobial Peptide from Food Protein Hydrolysates: An Overview, Key Engineering Materials, 2019; 797:168-176.

64. Pottanat et al., Analysis of the Ribonuclease A Superfamily of Antimicrobial Peptides in Patients Undergoing Chronic Peritoneal Dialysis, Scientific reports, 2019; 9:7753 DOI: 10.1038/s41598-019-44219-x

65. Ferchichi M, Frere J, Mabrouk K et al. Lactococcin MMFII, a novel class IIa bacteriocin produced by *Lactococcus lactis* MMFII, isolated from a Tunisian dairy product. FEMS Microbiology Letters, 2001; 205:49-55.

66. Gong HS, Meng XC, Wang H, Mode of action of plantaricin MG, a bacteriocin active against *Salmonella typhimurium*, Journal of Basic Microbiology, 2010; 50(1):37-45. DOI 10.1002/jobm.201000130

67. Arumugam V, Venkatesan M, Ramachandran K et al., Purification, characterization and antibacterial properties of peptide from marine *Ascidian Didemnum* sp. International Journal of Peptide Research and Therapeutics, 2019; 26:201-208. DOI: 10.1007/s10989-019-09829-z

68. Freitas et al., Encrypted antimicrobial and antitumoral peptides recovered from a protein rich soybean (*Glycine max*) by-product, Journal of Functional Foods, 2019; 54:187-198.

69. Gao et al., Identification and antimicrobial activity evaluation of three peptides from laba garlic and the related mechanism, Food & Function, DOI:10.1039/c9fo00236g

70. Li B, Lyu P, Xie S et al, LFB: A Novel Antimicrobial Brevinin-Like Peptide from the Skin Secretion of the Fujian Large Headed Frog, *Limnonectes fujianensi*, Biomolecules, 2019; 9(242):1-13. DOI: 10.3390/biom9060242

71. Fesenko I, Azarkina R, Kirov I et al., Phytohormone treatment induces generation of cryptic peptides with antimicrobial activity in the Moss *Physcomitrella patens*, BMC Plant Biology, 2019; 19(9):1-16. DOI: 10.1186/s12870-018-1611-z

72. Samrithi, Biswas R, Biswas K, Antibacterial activity of antimicrobial peptide extracted from *Trianthema portulacastrum* Leaves, The Pharma Innovation Journal, 2019; 8(3):81-86.

73. Alexander P, Oyama L, Huws S, Utilising novel antimicrobial peptides isolated from the rumen microbiome as a treatment method for *Acinetobacter baumannii*, Queen's University Belfast. Access Microbiology, 2019; 1(1A):1. DOI: 10.1099/acmi.ac2019.po0043

74. Rončević T, Krce L, Gerdol M et al., Membrane-active antimicrobial peptide identified in *Rana arvalis* by targeted DNA sequencing, Biochimica et Biophysica Acta (BBA) – Biomembranes, 2018; 1861(3):651-659. DOI: 10.1016/j.bbamem.2018.12.014