

Available online on 15.12.2020 at <http://jddtonline.info>

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

© 2011-20, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use (CC By-NC), provided the original work is properly cited

Open Access

Research Paper

Links between Leafstalk Biomass of (*Cremastra appendiculata*) and Elevation by Big Data of Long-time Wild Investigation in *Mei-County*

Bing-Hua Liao^{1,2}

1. The Key Laboratory of Ecological Restoration in Hilly Areas, Forestry Department of Henan Province, Institute of chemistry and environmental engineering, Ping-ding-shan University, Ping-ding-shan City, 467000, China
2. Institute of life and science, Henan University, Kai-feng City, He-nan Province, 475004, China

Abstract

(*Cremastra appendiculata*) of treating lumbago and arthritis not only is a vital medicinal material plant, but also it is a widely distributed wide plant species. This plant species is widely distributed elevation from 500m to 3100m in forest landscapes and vegetation ecosystems in *Mei County* of China. However, understanding dynamics of biomass of leafstalk of this species is difficult along elevation. This research explained that the links between biomass of leafstalk of this species and elevation is the significant positive correlation from 500m to 1500m ($P<0.01$) as well as the links between biomass of leafstalk of this species and elevation are the significant negative correlation from 1500m to 3100m($P<0.01$). This study provides six ecosystem types and a series of areas ecological adaptation for finding new medicinal species. Therefore, this study has vital theoretical and practical significance for medicinal plant protection along elevation and environments.

Keywords: biomass of leafstalk; elevation; correlation; areas ecological adaptation; medicinal species.

Article Info: Received 07 Oct 2020; Review Completed 21 Nov 2020; Accepted 29 Dec 2020; Available online 15 Dec 2020

Cite this article as:

Liao BH, Links between Leafstalk Biomass of (*Cremastra appendiculata*) and Elevation by Big Data of Long-time Wild Investigation in *Mei-County*, Journal of Drug Delivery and Therapeutics. 2020; 10(6-s):55-60
<http://dx.doi.org/10.22270/jddt.v10i6-s.4450>

*Address for Correspondence:

Bing-Hua Liao, The Key Laboratory of Ecological Restoration in Hilly Areas, Forestry Department of Henan Province, Institute of chemistry and environmental engineering, Ping-ding-shan University, Ping-ding-shan City, 467000, China

Introduction

More and more research has assessed the correlation among biomass (average height, numbers, biodiversity, structure) of plant species and elevation from biomass (average height, numbers, biodiversity, structure) of the medicinal plant perspective (Table 1)¹⁻¹¹, for better future of human health (ecosystems)⁶⁻¹⁴. However, medicinal species with typical history spanning over 1500 years, as well as areas ecological

adaptation of a lot of fresh biomass weight of medical species are unknown, and cognitive ecological theory of the links between fresh biomass weight of medicinal species and elevation can be unknown along elevation and environments¹²⁻¹⁹.

Thus, understanding these medical values of medicinal plant species, as well as the links between of fresh biomass weight of medical species of different areas ecological adaptation

and elevation is a vital rule along elevation at the spatial-temporal-environmental-disturbance scales (STEDS).

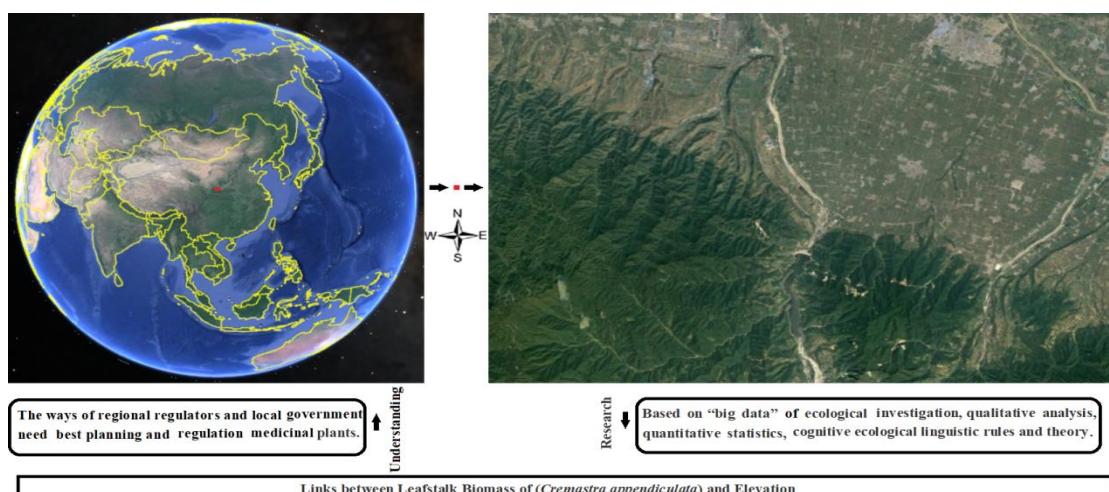
(*Cremastra appendiculata*) not only is vital medicinal material of treating lumbago and arthritis, but also is widely distributed wide specie in *Mei County* of China. This specie is belonging to *Cremastra* genus of Orchidaceae families of Monocotyledoneae in Angiospermae. Understanding dynamics of biomass of leafstalk of this species is unknown, however. Indeed, our research not only explained that there are links between biomass of leafstalk of this species and elevation, but also explained that this species is a key plant of treating lumbago and arthritis by better future

of human health, ecosystem functions, ecosystem services and ecosystem procession.

Therefore, there are vital rules that the links between biomass of leafstalk of (*Cremastra appendiculata*) and elevation along the different elevation and environmental gradient in different vegetation landscapes of *Mei County* of *Shan-xi Province* of China at STEDS.

Abbreviation:

STEDS, the spatial-temporal-environmental-disturbance scales.


Table 1: Links between medicinal plant structure number (biomass, height) and elevation

Links between medicinal plant structure number (biomass, height) and elevation	Authors
Links between elevation environments and numbers of plant species at STEDS.	Liao, et al., 2010 ¹ .
Links between biomass of medicinal herb and elevation in wetland landscape.	Liao, et al., 2011a ² .
Links between plant functional number and elevation in forest landscape.	Liao, et al., 2011b ³ .
Links between plant functional number and elevation in near-natural forests.	Liao, et al., 2014a ⁴ .
Links between herbs number and disturbance of different elevation in wetland.	Chen, et al., 2019 ⁵ .
Links between number of medicinal tree species and elevation in forestation.	Liao, et al., 2019a ⁶ .
Links between number of medicinal tree trunk volume and elevation at STEDS.	Liao, et al., 2019b ⁷ .
Links between height of medicinal tree and elevation in the natural landscape.	Liao, et al., 2019c ⁸ .
Links between number of tree community crown volume and elevation in forest.	Liao, et al., 2019d ⁹ .
Links between number of tree individual specie's crown volume and elevation.	Liao, et al., 2019e ¹⁰ .
Links between herbs number and different disturbance of different elevation.	Liao, 2014 b ¹¹ .

Typical Environmental Condition, Situation of Typical Vegetation and Methods of Research

Typical area is local in three zones: firstly, evergreen vegetation of north subtropical zone; secondly, evergreen and deciduous coniferous and broad-leaved mixed forest of

north subtropical and warm temperate transition; thirdly, deciduous vegetation of warm temperate zone in Earth. Thus, our research area is local in evergreen and deciduous coniferous and broad-leaved mixed forest in the north subtropical and warm temperate transition in *Mei County* (STEDS) (Figure1).

Figure 1: A Digital Cadaster Map and Research Methods of Typical Location in *Mei County* of *Shan-xi Province* of China of Earth at STEDS.

There are long-time investigation of correlations among leafstalk biomass of medicinal plant species and elevation from 2005 to 2019. Investigation of "big data" included that leafstalk biomass of medicinal plant species or other ecological index of medicinal plant species along different elevation and environmental gradient by previous our researches at STEDS²⁻¹².

Thus, there is the links between biomass of (*Cremastra appendiculata*) leafstalk and elevation, as well as there is a series of (good, better, best) natural landscapes areas ecological adaptation of leafstalk biomass of this species by the "big data" of the ecological investigation, qualitative analysis, quantitative statistics, human cognitive ecological linguistic rules, theories, methods and ways along different elevation and environmental gradient at STEDS⁵⁻¹⁷.

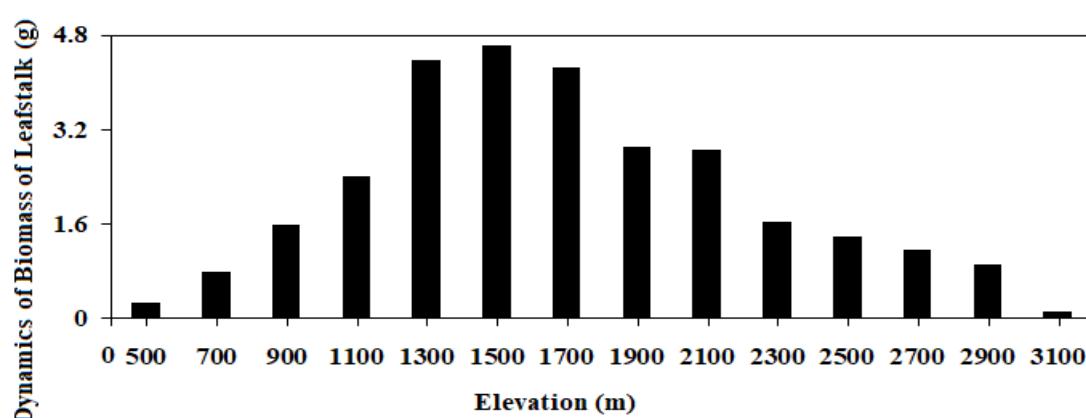
Results and Analysis

Based on "big data" of plant investigation, this species is a widely distributed wide species along elevation from 500m to 3100m. (*Cremastra appendiculata*) is a widely distributed along the different elevation from 500m to 3100m in *Mei County* of China. However, understanding the elevation effect on the links between biomass of leafstalk of this plant species and elevation is very difficult, because elevation effect on biomass of leafstalk of medicinal species^{2-14, 18-26}.

Using the dynamics of "big data" investigation, this research suggested there are four rules:

Firstly, this research suggested that there is not only the increasing of fresh biomass weight of (*Cremastra appendiculata*) with increasing of elevation from 500m to

1500m, as well as there are but also decreasing of biomass of leafstalk of (*Cremastra appendiculata*) with increasing of elevation from 1500m to 3100m at the STEDS in *Mei County* of China (Figure 2).


Table 2: Correlation between Biomass of Leafstalk of this Species and Elevation

Elevation (m)	Elevation From 500m to 1500m	Elevation From 150m to 3100m
Biomass of Leafstalk	0.979**	-0.976**

Note: **, $P<0.01$.

Secondly, this study explained that there is the significant positive correlation between biomass of leafstalk of (*Cremastra appendiculata*) and elevation from 500m to 1500m ($P<0.01$), as well as there is the significant negative correlation between biomass of leafstalk of (*Cremastra appendiculata*) and elevation from 1500m to 3100m in *Mei County* ($P<0.01$)(Table 2).

Thirdly, this research provides a good areas ecological adaptation of (*Cremastra appendiculata*) from 500m to 3100 in *Mei County* in China. Meanwhile, this research proposed that there is not only the better area ecological adaptation of (*Cremastra appendiculata*) from 1000m to 2000m, there is but also the best areas ecological adaptation of (*Cremastra appendiculata*) from 1300m to 1700m; because there are results that there are not only dynamics of different air environmental factors, there are but also dynamics of different soil environmental factors from 500m to 3100m by the dynamics of biomass of leafstalk of this species in *Mei County* at STEDS (Figure 2).

Figure 2: Dynamics of Biomass of Leafstalk of *Cremastra appendiculata* along Elevation

Fourthly, this research proposed that medicinal plant species (*Cremastra appendiculata*) is local in the six typical ecosystem types (forestation ecosystem, mixed ecosystem between forestation and grassland, mixed ecosystem between forestation and wetland, mixed ecosystem between forestation and river, mixed ecosystem between forest and urban, mixed ecosystem between forestation and rural settlement) by the “big data” of biomass of leafstalk of medicinal plant species investing along elevation, because there may be results that there are not only dynamics of air environments, there are but also dynamics of soil environmental factors from 500m to 3100m along environmental factors of different elevation at STEDS in *Mei County* of China.

Thus, this research found a series of typical (good, better, best) areas ecological adaptation of (*Cremastra appendiculata*) of treating lumbago and arthritis along elevation gradient, as well as there is links between fresh leafstalk biomass of this medical plant species and elevation gradient. Indeed, better regional regulators and local government need better planning and regulation a lot of medicinal plant management sustainability of ecosystems by the researches on biomass of leafstalk along elevation and environments with dynamics of biodiversity in the global, local, regional natural ecosystem types with the ways “big data” investigation, quantitative statistics, scientific analysis for better future of vegetation ecosystems and human health at the STEDS²⁷⁻⁴⁰.

Conclusion and Discussion

Understanding medicinal plant species is difficult in key landscapes^{1-8, 27-31,41-47}. This research suggested three linkages between leafstalk biomass of (*Cremastra appendiculata*) and elevation:

1. This research suggested that there is increasing of biomass of leafstalk of (*Cremastra appendiculata*) with increasing of elevation from 500m to 1500m, as well as there is decreasing of biomass of leafstalk of (*Cremastra appendiculata*) with increasing of elevation from 1500m to 3100m (Figure 2). There is the significant positive correlation between biomass of leafstalk of (*Cremastra appendiculata*) and elevation from 500m to 1500m ($P<0.01$) as well as there is the significant negative correlation between biomass of leafstalk of (*Cremastra appendiculata*) and elevation from 1500m to 3100m along elevation in *Mei County* of China ($P<0.01$) (Table 2).

2. This research provides six vegetation types (forestation vegetation, mixed vegetation between forestation and grassland, mixed vegetation between forestation and wetland, mixed vegetation between forestation and river, mixed vegetation between forest and urban, mixed vegetation between forestation and rural settlement), as well as there is a series of areas ecological adaptation (a good areas ecological adaptation of *Cremastra appendiculata* from 500m to 3100, the better area ecological adaptation of *Cremastra appendiculata* from 1000m to 2000m, the best areas ecological adaptation of *Cremastra appendiculata* from 1300m to 1700m) for finding (*Cremastra appendiculata*) by dynamics of biomass of leafstalk of (*Cremastra appendiculata*) at STEDS.

3. (*Cremastra appendiculata*) not only is a vital medicinal material of treating lumbago and arthritis, but also it is belonging to *Cremastra* genus of Orchidaceae families of Monocotyledoneae in Angiospermae, as well as it is widely distributed wide specie by the “big data” investigation of biomass of leafstalk of (*Cremastra appendiculata*) in *Mei County* of China at STEDS.

Therefore, this research has a vital theoretical and practical significance for the reasonable protection of (*Cremastra appendiculata*) along different elevation gradient in the different ecosystems, because this plant species not only is an important widely distributed wide medicinal material plant by treating lumbago and arthritis, but also there are three rules by the links between biomass of leafstalk of (*Cremastra appendiculata*) and elevation in *Mei County* of China.

Acknowledgement

This work was supported by A Grade of Key Disciplines of Environmental Science Foundation, B Grade of Key Disciplines of Mistrials Science of *Ping-Ding-shan University* in China; Science and Technology Department of *He'nan Province* Foundation (KJT-17202310242; 092102110165); Subprojects by Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES); and better ideas of researchers of “1st Biotechnology World Congress” in 2011, “2st Biotechnology World Congress” in 2012, “3st Biotechnology World Congress” in 2013 is appreciated.

References

1. Liao BH, Wang XH. Plant functional group classifications and a generalized hierarchical framework of plant functional traits. *African Journal of Biotechnology*, 2010; 9:9208-9213.
2. Liao BH, Ding SY, Liang GF, et al. Dynamics of plant functional groups composition along environmental gradients in the typical area of *Yi-Luo River* watershed. *African Journal of Biotechnology*, 2011a; 10:14485- 14492.
3. Liao BH, Ding SY, Hu N, et al. Dynamics of environmental gradients on plant functional groups composition on the northern slope of the *Fu-Niu* Mountain Nature Reserve. *African Journal of Biotechnology*, 2011b; 10:18939-18947.
4. Liao BH, Liu QF, Lu D, et al. Dynamics of environmental gradients on plant functional groups composition species in near-natural community ecological restoration on the southern slope of the *Fu-Niu* Mountain Nature Reserve. *Journal of Science*, 2014a; 4:306-312.
5. Chen HS, Liao BH, Hang CZ, et al. Research on risk assessment and early warning mechanism of agricultural non-point source pollution in *Bai-gui Lake* watershed by GIS. *International Journal of Pharmacognosy and Pharmaceutical Sciences*, 2019; 1:25-29.
6. Liao BH, Liu M., Huang CZ., et al. Dynamics of (*Sophora japonica*)Community's Tree Individual Number along Elevation Gradient in *Ye County*. *International Journal of Pharmacognosy and Pharmaceutical Sciences*, 2019a; 1:1-4.
7. Liao BH, Liu YP, Zuo H, et al. Dynamics of 18 (*Sophora japonica*) Tree Community's Total Trunk Volume along Elevation Gradient in *Ye County*. *International Journal of Current Advanced Research*, 2019c; 8:19063-19066.
8. Liao BH, Liu YP, Zuo H, et al. Elevation Dynamics of (*Sophora japonica*) Community's Height in *Ye County*. *International Journal of Research Pharmaceutical and Nano Sciences*, 2019b; 8:48 -54.
9. Liao BH, Liu YP, et al. Dynamics Crown Volume of 18 (*Sophora japonica*) Tree Communities along Elevation Gradient in *Ye County*. *Open Journal of Ecology*, 2019d; 9:209 -215.
10. Liao BH, Liu YP, Zuo H, et al. Dynamics of 18 (*Sophora japonica*) Tree Individual Specie's Crown Volume along Elevation Gradient in *Ye County*. *International Journal of Research Pharmaceutical and Nano Sciences*, 2019e; 8:62-68.
11. Liao BH. A new model of dynamic of plant diversity in changing farmlands, implications for the management of plant biodiversity along differential environmental gradient in the spring. *African Journal of Environmental Science and Technology*, 2014b; 8:171- 177.
12. Zhu DM, Liao BH. A dynamical system of human cognitive linguistic theory in learning and teaching of the typical university in *Henan Province*. *International Journal of Pharmacy & Therapeutics*, 2015; 6:4-6.
13. Yang Y, Sun M, et al. *Germplasm* resources and genetic breeding of *Paeonia*: a systematic review. *Horticulture Research*, 2020; 7:1-19.
14. Jin D, Dai KP, et al. Secondary Metabolites Profiled in Cannabis Inflorescences, Leaves, Stem Barks, and Roots for Medicinal Purposes. *Scientific Reports*, 2020; 10:1-14.
15. Kozuharova E, Matkowski A, et al. *Amorpha fruticosa* - A Noxious Invasive Alien Plant in Europe or a Medicinal Plant against Metabolic Disease? *Front Pharmacol*. 2017; 8: 333.
16. Giovannini P, Howes MJ, Edwards SE. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review. *J Ethnopharmacol*. 2016; 184:58-71.
17. Szopa A, Klimek-Szczykutowicz M, Kokotkiewicz A, et al. Phenolic acid and flavonoid production in agar, agitated and bioreactor-grown microshoot cultures of *Schisandra chinensis* cv. *Sadova* No.1 - a valuable medicinal plant. *J Biotechnol*. 2019; 305: 61-70.
18. Mesfin F, Demissew S, Teklehaymanot T. An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia. *J Ethnobiol Ethnomed*. 2009; 5: 28.
19. Elkins AC, Deseo MA, Rochfort S, et al. Development of a validated method for the qualitative and quantitative analysis of cannabinoids in plant biomass and medicinal cannabis resin extracts obtained by super-critical fluid extraction. *J Chromatogr B Analyt Technol Biomed Life Sci*. 2019; 109:76-83.
20. Baque MA, Moh SH, Lee EJ, et al. Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. *Biotechnol Adv*. 2012; 30:1255-1267.
21. Saeed S, Ali H, Khan T, et al. Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of *Ajuga bracteosa* Wall ex Benth., a high valued endangered medicinal plant. *Physiol Mol Biol Plants*. 2017; 23:229- 237.
22. Prasad R, Kamal S, Sharma PK, et al. *Root endophyte Piriformospora indica* DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant *Bacopa monnieri*. *J Basic Microbiol*. 2013; 53:1016-1024.
23. Fuentes P, Zhou F, Erban A, et al. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop. *Elife*. 2016; 5:e1360-1364.
24. Rukh G, Ahmad N, et al. Photodependent somatic embryogenesis from non-embryogenic calli and its polyphenolics content in

high-valued medicinal plant of *Ajuga bracteosa*. *J Photochem Photobiol B*. 2019; 190:59-65.

25. Das A, Kamal S, Shakil NA, et al. The root endophyte fungus *Piriformospora indica* leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, *Coleus forskohlii*. *Plant Signal Behav*, 2012; 7:103-112.

26. Schafhauser T, Jahn L, Kirchner N, et al. Antitumor astins originate from the fungal endophyte *Cyanodermella asteris* living within the medicinal plant *Aster tataricus*. *Proc Natl Acad Sci USA*. 2019; 116:26909-26917.

27. Singh SP, Gaur R. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against *Sclerotium rolfsii* in chickpea. *J Appl Microbiol*. 2016; 121:506-518.

28. Das K, Dang R, Shivananda TN, Sur P. Interaction between phosphorus and zinc on the biomass yield and yield attributes of the medicinal plant stevia (*Stevia rebaudiana*). *Scientific World Journal*. 2005; 5:390-395.

29. Zubek S, Mielcarek S, Turnau K. Hypericin and pseudohypericin concentrations of a valuable medicinal plant *Hypericum perforatum* L. are enhanced by arbuscular mycorrhizal fungi. *Mycorrhiza*. 2012; 22:149-156.

30. Takshak S, Agrawal SB. Defence strategies adopted by the medicinal plant *Coleus forskohlii* against supplemental ultraviolet-B radiation: Augmentation of secondary metabolites and antioxidants. *Plant Physiol Biochem*. 2015; 97:124-138.

31. Larsen HO. Commercial medicinal plant extraction in the hills of Nepal: local management system and ecological sustainability. *Environ Manage*. 2002; 29:88-101.

32. Bojić M, Maleš Ž, Antolić A, et al. Antithrombotic activity of flavonoids and polyphenols rich plant species. *Acta Pharm*. 2019; 69:483-495.

33. Maleš Ž, Drvar DL, et al. Application of medicinal plants in several dermatovenerological entities. *Acta Pharm*. 2019; 69:525-531.

34. Wyk BEV. A review of commercially important African medicinal plants. *J Ethnopharmacol*. 2015; 176:118-134.

35. Ali H, Khan MA, Kayani WK, et al. Production of biomass and medicinal metabolites through adventitious roots in *Ajuga bracteosa* under different spectral lights. *J Photochem Photobiol B*. 2019; 193:109-117.

36. Song H, Payne S, et al. Spatiotemporal modulation of biodiversity in a synthetic chemical- mediated ecosystem. *Nature Chemical Biology*, 2009; 5:929-935.

37. Opgenoorth L, Hotes S, Mooney H. IPEPS: Biodiversity panel should play by rules. *Nature*, 2014; 506:159.

38. Cardinale BJ, Duffy JE, et al. Corrigendum: Biodiversity loss and its impact on humanity. *Nature*, 2012; 489:326.

39. Mooers AO. Biodiversity: Supply and demand. *Nature*, 2014; 509:171-172.

40. Liao, Mace GM, Ekins P. Limits to agricultural land for retaining acceptable levels of local biodiversity. *Nature Sustainability*, 2019; 2:491-498.

41. Clough Y, Krishna VV, et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. *Nature Communications*, 2016; 7:1-12.

42. Hanski I, Schulz T, et al. Ecological and genetic basis of metapopulation persistence of the Glanville fritillary butterfly in fragmented landscapes. *Nature Communications*, 2017; 8:1-11.

43. Marlier ME, DeFries RS, et al. El Niño and health risks from landscape fire emissions in southeast Asia. *Nature Climate Chang*, 2012; 3:131-136.

44. Battin TJ, Sloan WT, et al. Microbial landscapes: new paths to biofilm research. *Nature Reviews Microbiology*, 2007; 5:76-81.

45. Cámara-Leret R, Dennehy Z. Information gaps in indigenous and local knowledge for science-policy assessments. *Nature Sustainability*, 2019; 2:736-741.

46. Ji BW, Sheth RU, et al. Quantifying spatiotemporal variability and noise in absolute microbiota abundances using replicate sampling. *Nature Methods*, 2019; 16:731-736.

47. Oehri J, Schmid B, et al. Terrestrial land-cover type richness is positively linked to landscape-level functioning. *Nature Communications*, 2020; 11:1-10.