

Available online on 15.08.2020 at <http://jddtonline.info>

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

© 2011-18, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited

Open Access

Research Article

Nephroprotective activity of ethanolic extract of *Cinnamomum zeylanicum* bark against acetaminophen induced nephrotoxicity in albino rats

Md Qyamuddin^{1*}, Pawan Kumar¹, Sokindra Kumar², Md Rafiul Haque³¹ School of Pharmacy and Medical Science, Singhania University, Jhunjhunu, Rajasthan, India² Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, UP, 250005, India³ HIMT College of Pharmacy, Department of Pharmacognosy, Knowledge park1, Gr. Noida (U.P), India

ABSTRACT

Objective: To investigate the protective activity of ethanolic extract of *Cinnamomum zeylanicum* bark (EECZB) against acetaminophen induced nephrotoxicity in albino rats.

Methods: Wistar albino rats (150-200 g) were divided into six groups and toxicity was induced by acetaminophen (750 mg/kg) for 10 days. 100 and 200 mg/kg of ethanolic extract of *Cinnamomum zeylanicum* bark and 100 mg/kg of silymarin as a reference standard was treated to rats 2 h before acetaminophen administration. Various biochemical parameters like serum urea, serum creatinine, uric acid and total protein levels and antioxidant activity were determined. Histopathological analyses of kidney injury were also determined.

Result: Treatment with ethanolic extract of *Cinnamomum zeylanicum* bark (100, 200 mg/kg, bw) significantly ($p<0.001$, $p<0.01$) decreased serum urea and serum creatinine as compared with acetaminophen rats. Decreased levels of uric acid and total protein were also significantly restored with extract of *Cinnamomum zeylanicum* bark treatment. Silymarin significantly ($p<0.001$) decreased serum urea and serum creatinine as compared with acetaminophen rats. It is also significantly restored the altered levels of SOD, CAT and GSH in kidney tissue. Apart from these, extract of *Cinnamomum zeylanicum* bark treatment also reduced histopathological alteration induced by acetaminophen in kidney.

Conclusion: It was observed that ethanolic extract of *Cinnamomum zeylanicum* bark has a significant nephroprotective activity against acetaminophen induced nephrotoxicity in albino rats.

Keywords: *Cinnamomum zeylanicum*, acetaminophen, nephroprotective activity.

Article Info: Received 10 June 2020; Review Completed 17 July 2020; Accepted 26 July 2020; Available online 15 August 2020

Cite this article as:

Qyamuddin M, Kumar P, Kumar S, Haque MR, Nephroprotective activity of ethanolic extract of *Cinnamomum zeylanicum* bark against acetaminophen induced nephrotoxicity in albino rats, Journal of Drug Delivery and Therapeutics. 2020; 10(4-s):80-86 <http://dx.doi.org/10.22270/jddt.v10i4-s.4292>

*Address for Correspondence:

Md Qyamuddin, School of Pharmacy and Medical Science, Singhania University, Pacheribari, Jhunjhunu, Rajasthan-333515 India

INTRODUCTION

Acetaminophen (N-acetyl-p-aminophenol; APAP) is one of safest and most frequently used, non-prescription, over the counter, analgesic & antipyretic drug^{1, 2, 3}. A study conducted in USA stated that acetaminophen was found to be associated with more than 10, 00, 00 cases of poisoning, 56000 visited to emergency department, 26000 hospitalization and 450 deaths a year³. The drug is safe at therapeutic doses⁴. However over dose may result to potentially fatal hepatic and renal damage in human and experimental animals^{5, 6, 7}. Initially APAP exerts its toxicity by forming a reactive intermediate N-acetyl-p-benzoquinonimine (NAPQI) by cytochrome P-450, which at therapeutic dose gets eliminated by conjugation with glutathione sulfhydryl (GSH). Acetaminophen overdosing may result in the depletion of cellular GSH, leading to

binding of NAPQI to cellular protein and thus initiating the lipid peroxidation, both of which can contribute to hepatic and renal damage^{8, 9}. This cascade further provokes inflammatory signals and extends the injury, resulting in tubular cell death/ acute renal failure¹⁰. The presence of excess NAPQI also leads to oxidative stress leading to liver damage¹¹. A similar mechanism was proposed to be nephrotoxicity of acetaminophen^{6, 12, 13}. Nephrotoxicity due to acetaminophen overdose is found to be relatively less common than hepatotoxicity. Also acute renal failure can be seen even in the absence of liver injury¹⁴. The acetaminophen induced kidney damage may include acute tubular necrosis, increase creatinine levels, and decrease in glomerular filtration rate (GFR). Tubular cell injury is found to one of the main feature in acetaminophen induced renal failure along with phosphaturia and low molecular-weight

proteinuria is represented as the functional evidence of proximal tubular injury¹⁵.

Cinnamomum zeylanicum (family Lauraceae) bark is commonly known as cinnamon, widely used as spice, condiment and flavouring agent. It is a tropical evergreen tree, native to Srilanka East and Middle Asia called differently in different languages such as dalchini in Hindi, carnelle in French, kaneel in German, canela in Spanish and yook gway in Chinese^{16, 17}. The bark is bitter, sweet, aromatic, astringent, aphrodisiac, deodorant, stimulant, expectorant and diuretic and carminative¹⁸. Cinnamon bar is a very common culinary spice and used in candy, toothpaste and perfumes. The cinnamon barks contains volatile oils (14%) of cinnamaldehyde (60%), eugenol (10%) and trans-cinnamic acid (51%), phenolic compounds, tannin, catechins and proanthocyanidins: monoterpenes and sesquiterpenes, mucilage; starch, resin, sugar and trace of Coumadin¹⁹. The principal constituents are cinnamaldehyde²⁰. Traditional medicine reports its uses as antitussive, antiarthritis, antimicrobial, antifungal, antioxidant, anti-inflammatory and antidiabetic²¹, also as component of various compounds used in Indian Ayurvedic medicine¹⁹. In the present study we investigate the protective activity of ethanolic extract of *Cinnamomum zeylanicum* bark on acetaminophen induced nephrotoxicity in albino rats.

MATERIAL AND METHODS

Chemical

Acetaminophen was obtained from gift sample from Arbro pharmaceutical company. Assay for kidney marker enzyme such as urea, creatinine, uric acid and total protein were purchase from Erba diagnostic Mannheim, Germany. All other reagents used in this experimental study were according to analytical grade.

Plant material

The *Cinnamomum zeylanicum* bark was procured from local market in old Delhi. The bar was identified and authenticated by Dr. Sunita Garg, CSIR-NISCAIR New Delhi. A voucher specimen (Ref. No. NISCAIR/RHMD/CONSULT/2018/3261-62) has been deposited in herbarium of CSIR-NISCAIR, New Delhi.

Preparation of extract

The *Cinnamomum zeylanicum* bark was first dried then powdered and the extract was obtained using ethanol in Soxhlet apparatus for 8 hours. The extract was then filtered and evaporated to dryness at 50°C in a water bath and the final dry extract was stored in dark at -20 °C until used for the experiments. The percentage yield of extract was 43%.

Preliminary phytochemical study

Ethanolic extract of cinnamomum bark were analysed for their chemical constituents. A preliminary phytochemical analysis was carried out to determine the phytochemical constituents which were responsible for the nephroprotective activity. Some of these methods are as follow^{22,23}.

Animals

Adult albino wistar rats (150-200 g) of either sex were obtained from All India Institute of Medical Science (AIIMS), New Delhi, India. The animals were isolated in cages which was maintained at 24±2°C temperature and a relative humidity of 45-55% with 12:12 h light/dark cycle. The animals were provided with standard pellet feed with *ad libitum* drinking water. The experimental protocol was

approved by the institutional animal ethical committee (IAEC) of HIMT College of Pharmacy (Reg. No. 1377/PO/Re/S/10/CPCSEA), Gautam Budh Nagar, Uttar Pradesh, India and performed in accordance with the guideline of committee for the purpose of control and supervision of animals (CPCSEA), New Delhi.

Acute oral toxicity

An acute oral toxicity of ethanolic extract of *Cinnamomum zeylanicum* bark was determined in albino rats according to OECD Guideline No. 423²⁴. The animals were provided with access to water but not food overnight, after which the ethanolic extract of *Cinnamomum zeylanicum* bark was administered orally in 1% carboxy methyl cellulose (CMC) at a dose of 500, 1000 and 2000 mg/kg body weight. Rats were observed for initially 4 h after the administration of drug after that once daily during the following day. The behavioural change observed for hyperactivity, ataxia, tremors, convulsion, salivation, diarrhoea, sleep and coma. The total observation period for eventual mortality was 14 days. No mortality was observed upto 2000 mg/kg. One tenth and one twentieth of the maximum tolerated dose (2000 mg/kg) of extract was selected for the study.

Acetaminophen induced toxicity and drug treatment schedule

The selection of dose of acetaminophen was based on studies carried out by previous^{25,26,27,28}. Silymarin was administered to a rat orally at a dose of 100 mg/kg²⁹. Fasted rats were randomly divided into seven groups of six animals in each group. Group I served as control group and treated with 1% CMC (1ml/kg, p.o) daily for 10 days. Group II served as toxic and treated with acetaminophen (750 mg/kg, p.o) suspended in 1% CMC three alternative days for 10 days. Group III served as perse and was given only *Cinnamomum zeylanicum* bark extract (100 mg/kg b.w) daily for 10 days. Group IV and Group V served as treatment group and were treated with *Cinnamomum zeylanicum* bark extract (100, 200 mg/kg, p.o) daily for 10 days. Group VI served as standard group and was treated as silymarin (100 mg/kg) orally for 10 days. Group II, IV, V and VI was administered with acetaminophen suspension (750 mg/kg, p.o) after 2 h administered of *Cinnamomum zeylanicum* bark extract for three alternative days for 10 days.

After completion of treatment all the animals were kept fasted for 12 h, followed by collection of blood samples from retro orbital plexus under ether anaesthesia. The animals were then sacrificed and collection of their kidney was done precisely. The analysis for biochemical parameter was performed with blood samples whereas estimation of antioxidants and histopathological studies were done using the kidney samples.

Biochemical Analysis

Blood was drawn by puncturing the retro-orbital plexus under diethyl ether anaesthesia using heparin coated capillaries. Serum was separated by centrifugation at 3000 rpm for 15 min, stored at -20 °C until analysis. Serum sample were used to determine urea, creatinine, uric acid, and total protein using commercially available assay kits (Erba diagnostic Mannheim, Germany).

Preparation of kidney homogenate

Kidney tissues were homogenized in 10% w/v 0.1 M phosphate buffer and centrifuged at 10000 rpm for 15 min in homogenizer. The supernatant was used to estimate superoxide dismutase, catalase and reduced glutathione.

Determination of superoxide dismutase (SOD, catalase (CAT) and reduced glutathione (GSH).

The enzymatic antioxidant was determined by estimating superoxide dismutase³⁰, Catalase³¹ and non-enzymatic antioxidant by reduced glutathione³².

Histopathological studies

After experimental period animals were sacrificed, kidney removed immediately, sliced and washed in saline and transfer into 10% formalin solution, after one week tissue were dehydrated with ethanol solutions, embedded in paraffin, cut into 5 μ m section, stained with haematoxylin and eosin (H & E) and then observed under microscope.

Statistical analysis

All data is expressed as Mean \pm Standard Error of the mean (SEM) and statistical analysis was performed using Graphpad prism-5 software (Graphpad Software). The statistical assessment was done using one-way analysis of variance (ANOVA) followed by Tukey multiple compare tests considering p<0.05 as statistically significant.

RESULTS

Preliminary Phytochemical analysis

Preliminary phytochemical studies revealed the presence of alkaloid, saponin, tannin, terpanoid, flavonoids and phenol

Acute oral toxicity

The ethanolic extract of *Cinnamomum zeylanicum* was subjected to acute toxicity testing in albino rats and was monitored for 24 h. The ethanolic extract of *Cinnamomum zeylanicum* bark has found to be not causing any mortality up to 2000 mg/kg and hence 1/10th and 1/20th of the maximum dose i.e 100 and 200 mg/kg were finalised for the present experiment.

Effect of Ethanolic extract of *Cinnamomum zeylanicum* bark (EECZB) on Serum Urea, Uric acid, creatinine, total protein, superoxide dismutase, catalase and reduced glutathione.

Serum blood urea level and creatinine level were significantly (p<0.001) increased whereas serum uric acid and total protein level were significantly(p<0.001) decreased in APAP treated rats as compare to non-experimental rats. The administration of ethanolic extract of *Cinnamomum zeylanicum* bark (EECZB) at different dose 100mg/kg and 200 mg/kg, orally for 10 days were significantly (p<0.01,p<0.001) decreased in serum urea and creatinine levels whereas serum uric acid levels and total protein were significantly(p<0.01,p<0.001) decreased as compared with APAP rats. When compared with APAP treated rats the serum blood urea and creatinine levels were significantly (p<0.001) decreased in silymarin (100 mg/kg, b.w) treated rats whereas the levels of serum uric acid and total protein were significantly (p<0.001) increased. However serum urea, creatinine and uric acid did not differ significantly in normal as well as *per se* treated rats (Table1).

Administration of APAP resulted in significant (p<0.001) decrease in superoxide dismutase, catalase and reduced glutathione level in APAP experimental rats as compared to non experimental rats. Treatment with EECZB at different dose 100, 200 mg/kg, bw, showed significant (p<0.01,p<0.001) decreases in elevated level of superoxide dismutase, catalase and reducedglutathione as compared to APAP treated rats. Administration of silymarin as reference standard showed significant (p<0.001) increased in the level of superoxide dismutase, catalase and reduced glutathione as compared to APAP treated rats. The level of superoxide dismutase, catalase and reduced glutathione do not significantly differ in *per se* group as compare to normal group (Table:2).

Table 1: Effect of ethanolic extract of *Cinnamomum zeylanicum* bark (EECZB) on serum urea, creatinine, uric acid and total protein.

Treatment	Urea(mg/dl)	Creatinine(mg/dl)	Uric acid(mg/dl)	Total protein P(mg/dl)
Normal control	34.1 \pm 1.43	0.79 \pm 0.01	3.01 \pm 0.02	7.79 \pm 0.01
APAP Toxic	78.5 \pm 0.96 **	1.88 \pm 0.01 **	1.04 \pm 0.02 **	5.87 \pm 0.02 **
EECZB(100 mg/kg)	38.6 \pm 1.86	0.80 \pm 0.01	2.94 \pm 0.02	7.74 \pm 0.01
EECZB((100 mg/kg)+APAP	68 \pm 0.5 ***	1.77 \pm 0.02 **	1.16 \pm 0.02 ***	5.75 \pm 0.02 **
EECZB(200 mg/kg)+APAP	59.7 \pm 0.96 ***	1.44 \pm 0.01 ***	1.96 \pm 0.01 ***	6.31 \pm 0.02 ***
Silymarin((100)+APAP	51.1 \pm 1.04 ***	1.26 \pm 0.02 ***	2.34 \pm 0.02 ***	6.65 \pm 0.03 ***

All values were expressed as mean \pm SEM for six rats in each group. ** p < 0.001 as compared to control groups, *** p < 0.001, *p < 0.05, ** p < 0.01 as compared to APAP groups

Table 2: Effect of ethanolic extract of *Cinnamomum zeylanicum* bark (EECZB) on kidney antioxidant status.

Treatment	Superoxide dismutase (U/mg)	Catalase(U/mg)	Reduced glutathione (ug/mg protein)
Normal control	9.83 \pm 0.10	39 \pm 0.44	33.3 \pm 0.42
APAP Toxic	5.25 \pm 0.05 **	20.2 \pm 0.40 **	22.6 \pm 0.34 **
EECZB(100 mg/kg)	10.2 \pm 1.15	39.6 \pm 0.42	33.7 \pm 0.45
EECZB((100 mg/kg)+APAP	6.03 \pm 0.07 **	23.7 \pm 0.21 ***	24.7 \pm 0.23 **
EECZB(200 mg/kg)+APAP	7.36 \pm 0.06 ***	28.9 \pm 0.31 ***	27.1 \pm 0.21 ***
Silymarin((100)+APAP	8.01 \pm 0.11 ***	35.2 \pm 0.30 ***	29.3 \pm 0.23 ***

All values were expressed as mean \pm SEM for six rats in each group. ** p < 0.001 as compared to control groups, *** p < 0.001, *p < 0.05, ** p < 0.01 as compared to APAP groups

Histopathological studies

The Histopathological examination revealed that the normal control rats and those treated with EECZB only showed normal renal tubule and glomeruli (figure: 1A, 1C). However the rats treated with APAP only showed severe dilation of renal tubule, infiltration of bowman space and damage of

podocyte (figure: 1B). In contrast the rat treated with APAP and EECZB (100, 200 mg/kg b.w) show less neutrophil infiltration in glomeruli and less bowman space (figure: 1D), mild dilation, very less infiltration in bowman space and mild podocyte damage (figure: 1E) compared to APAP treated rats. The rats treated with Silymarin show normal distal & proximal tubules, glomeruli and bowman space (figure: 1F)

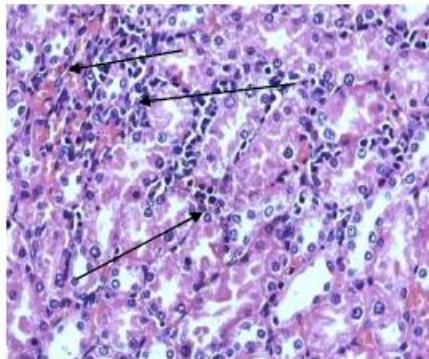


Fig: 1A(Normal Control,1%CMC)

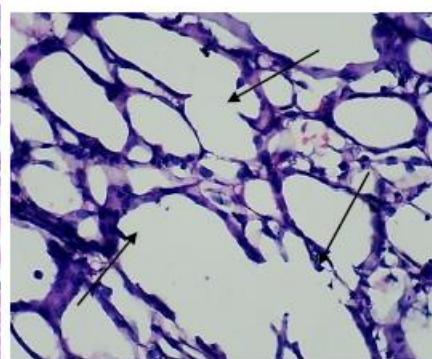


Fig: 1B(APAP, 750 mg/kg)

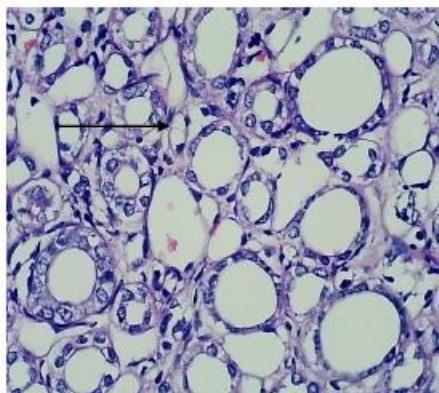


Fig:1C(EECZB 100 mg/kg, bw)

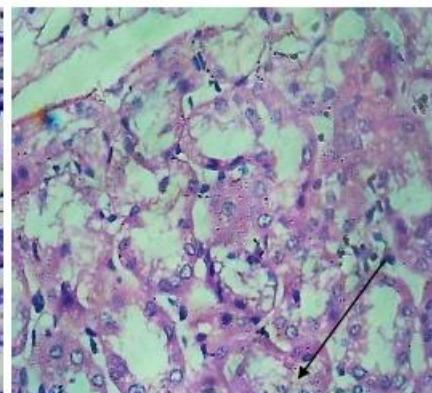


Fig: 1D(EECZB 100 mg/kg +APAP)

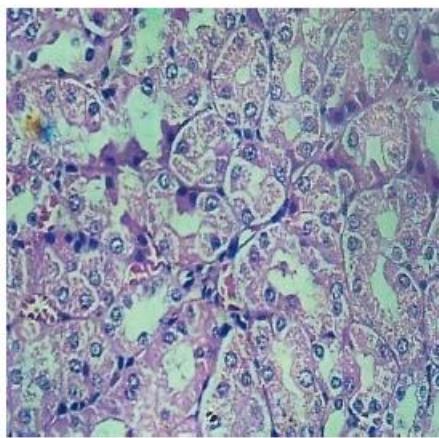


Fig:1E (EECZB (200 mg/kg) + APAP)

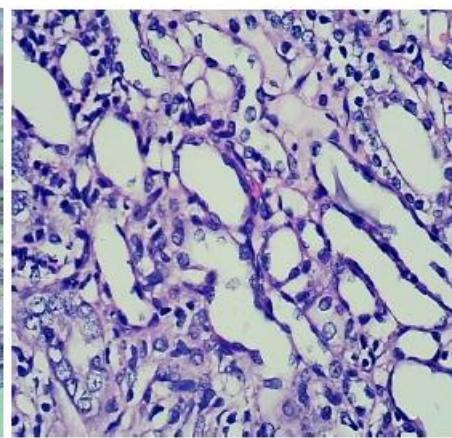


Fig: 1F(Silymarin(100 mg/kg) + APAP)

Figure 1: Histopathology of kidney showing normal PCT, DCT and Glomeruli (1A), acetaminophen induced Dilatation of tubules, infiltration in bowman space , damage of podocytes, and infiltration of cells (1B), Normal renal architecture(1C), less neutrophil infiltration and less bowman space(1D), mild dilation, very less infiltration and mild podocyte damage(1E),Normal distal and proximal tubules, Bowmam space, Glomeruli and infiltration of cells (1F)

DISCUSSION

Acetaminophen (APAP) is an effective, conventional, regularly used, universally accepted, over the counter, analgesic and antipyretic alternative to aspirin³³, but consumption of large dose or chronic use may cause hepatotoxicity and nephrotoxicity³⁴. Drug induced

nephrotoxicity can be assessed with alteration levels of serum urea and creatinine, also necrosis, thus the biochemical parameter serum creatinine and urea are used to explore and inspect nephrotoxicity caused by the drug in animals and man³⁵. Since creatinine is most derived endogenous source due to breakdown of tissue creatinine²⁸. Thus serum urea concentration is considered as a better,

stable and reliable renal function predictor than creatinine concentration in serum.

The possible protective role seen with EECZB regarding oxidative damage generated due to APAP induced nephrotoxicity were verified by histopathological examination of kidney. The substantial production of reactive NAPQI in presence of APAP over dose can cause covalent binding of macromolecules with cellular protein, leading to the interruption of homeostasis, apoptosis, tissue necrosis and finally organ dysfunction³⁶. In present study the treatment with APAP alone resulted in changes of serum urea, creatinine and uric acid levels that were indicative of decrease glomerular filtration and disrupted kidney function^{37,38}. In renal diseases, the serum urea accumulate causes uraemia as the serum urea formation outpace the rate of clearance³⁹. The high blood urea level due to presence of APAP alone suggests kidney injury. In this study APAP induced nephrotoxicity showed a significant ($p<0.001$) increase in levels of urea and creatinine concentration whereas significant ($p<0.001$) decrease of uric acid and total protein levels in APAP treated rats group as compared to the rats who were not treated. Administration of EECZB at different dose 100 mg/kg, 200 mg/kg, led to significantly ($p<0.001$, $p<0.01$) decline in levels of urea and creatinine levels whereas uric acid and total protein significantly ($p<0.001$, $p<0.01$) increased as compared to APAP treated group. Silymarin treated group showed significantly decrease in serum urea and creatinine levels but significantly increase in uric acid and total protein was seen in comparison to APAP treated group. However the urea, creatinine, uric acid and total protein did not differ significantly in normal as well as per se treated group (Table:1). As reported by Azami et al. elevation in urea and creatinine levels is due to potentially strong correlation between nephrotoxicity and oxidative stress. The increase in H_2O_2 and O_2 production changes the filtration surface area and thus an altered filtration coefficient; both these factors may decrease the glomerular filtration ultimately leading to accumulation of urea and creatinine in blood⁴⁰. Thus oxidative stress and lipid oxidation are primary events leading to radicals generation during hepatic metabolism of APAP. Also a mechanism of formation of reactive oxygen species has been proposed by which many chemicals can induce nephrotoxicity⁶. In hepatotoxic conditions there is a decrease in total protein levels seen due to faulty protein biosynthesis in liver, similarly the acetaminophen induced nephrotoxic condition in rats also creates similar situations and that gets normalized after treated with EECZB, advocating its nephroprotective activity⁴¹. Previous studies reported that overdose of acetaminophen may lead to increase in the lipid peroxidation and suppress the antioxidant defence mechanism in renal tissue⁴². In current study show that the administration of APAP dose resulted in significant ($p<0.01$, $p<0.001$) decreased in superoxide dismutase, catalase and reduced glutathione activity when compared to normal control rats, due to inactivation of antioxidative enzymes. When rats were treated with EECZB (100 mg/kg) the reduction of superoxide dismutase, catalase and reduced glutathione activity were significantly ($p<0.01$, $p<0.001$, $p<0.01$) increased when compared with APAP treated rats. When rats were treated with EECZB (200 mg/kg) the reduction of superoxide dismutase, catalase and reduced glutathione activity were also significantly ($p<0.001$, $p<0.001$, $p<0.001$) increased when compared with APAP treated rats. When compared with APAP treated group the superoxide dismutase, catalase and reduced glutathione were significantly ($p<0.001$) decrease in silymarin treated rats. However there was no significant difference in superoxide dismutase, catalase and

reduced glutathione in normal as well as per se treated group (Table:2). Demirbag et al. has previously observed in their study a significant decrease in level of superoxide dismutase, catalase and reduced glutathione after acetaminophen overdose but increased lipid peroxidation and inactivation of the antioxidant enzymes⁴³. In addition during kidney damage superoxide radicals are produced at site of damage and modulation of superoxide dismutase and catalase takes place resulting in loss of activity and accumulation of superoxide radical which causes kidney damage⁴⁴. In a previous study, it has been reported that acetaminophen overdose caused a significant decrease in serum glutathione concentration. Intracellular glutathione play a crucial role in detoxification of acetaminophen and prevention of acetaminophen induced toxicity in liver and kidney^{45,46}. Acetaminophen metabolism pathway during toxicity is dependent on cytochrome-450 due to saturation of glucuronidation and sulfation pathways thus forming an intermediate NAPQI in excess which leads to its conjugated with glutathione to detoxify this product with consequent exhaustion of cellular glutathione reverse. At sufficient high doses glutathione is reduced leaving NAPQI free and bind covalently and irreversibly to critical cellular protein ultimately causing cellular necrosis⁴⁷. The histopathological findings were also in accordance with biochemical results demonstrating well preserved glomeruli, surrounded by Bowman capsule with mild swollen tubules (Figure:1). Most of the drug induced renal injuries affect the proximal tubules, glomerulus and distal part of the nephron⁴⁸. The administration of APAP alone caused severe dilation of tubules, infiltration in Bowman space, damage of podocytes, and infiltration of cells whereas Ethanolic extract of *Cinnamomum zeylanicum* bark treatment at different dose 100 mg/kg, 200 mg/kg, result in dose dependent nephroprotective against APAP induced nephrotoxicity. The results of the present study summarizes that EECZB has the ability to protect kidney damage caused by acetaminophen and might have a potential therapeutic effect for acetaminophen induced nephrotoxicity. The previous phytochemical studies showed the presence of different phytochemicals such as alkaloid, flavonoids, saponin and triterpenoid which are supposed to be responsible for its protective activity^{49,25}.

CONCLUSION

In conclusion the administration of acetaminophen resulted in impairment of renal functional marker and histopathological alterations in rats kidney. Treatment with ethanolic extract of *Cinnamomum zeylanicum* bark (EECZB) lead to significant restoration of biochemical parameter in acetaminophen treated rats. This beneficial effects of *Cinnamomum zeylanicum* bark may be attributed to the amelioration of the renal function. The findings of the present study suggests that *Cinnamomum zeylanicum* bark might be a potential nephroprotective agent against renal toxicity caused by acetaminophen.

REFERENCES

1. Afroz, R. Tanvir EM, Hossain MF et al. Protective effect of Sundarban honey against acetaminophen-induced acute hepatonephrotoxicity in rats. Evidence-Based Complementary and Alternative Medicine 2014; 1-10.
2. Elkarib Abbas O. Impact of dehydroepiandrosterone in prevention of paracetamol induced nephrotoxicity in rats. American Medical Journal 2014; 5(1):16-27
3. Sharma Anjali, Makwana Mukesh, Rathore HS. Will herbal paracetamol combination drug prevent both liver and kidney disease? Result and possibilities. Ethanobotanical Leaflets 2008; 12:286-298

4. Ozkaya O, G Genc, K Bek and Y Sullu. A case of acetaminophen renal failure without liver damage in child. *Renal failre* 2010; 32:1125-1127
5. Frouad AA, Yacoubi MT, Bidawy HE. Therapeutic potential of hemin in acetaminophen nephrotoxicity in rats. *Environmental Toxicology and Pharmacology* 2009; 27:277-282
6. Palani S, Raja S, Kumar RP, Parameswaran P, Kumar BS. Therapeutic efficacy of *Acorus calamus* on acetaminophen induced nephrotoxicity and oxidative stress in male albino rats. *Acta Pharmaceutica sciencia* 2010; 52:89-100.
7. Bonkovsky HL, Kane RE, Jones DP, Galinsky RE, and Banner B. Acute hepatic and renal toxicity from low doses of acetaminophen in the absence of alcohol abuse or malnutrition: evidence for increased susceptibility to drug toxicity due to cardiopulmonary and renal insufficiency. *Hepatology* 1994; 19: 1141-1148.
8. Karthivashan Govindaran, Kura Aminu Umar, Arulselvan Palanisamy, Isa Norhaszalina Md and Fakurazi Sharida. The modulatory effect of *moringa oleifera* leaf extract on endogenous antioxidant system and inflammatory marker in an acetaminophen induced nephrotoxic mice model. *Peer J* 2016; 1:18.
9. Jones AF and Vale JA. Paracetamol poisoning and the kidney. *Journal of Clinical Pharmacy and Therapeutics* 1993; 18(1):5-8.
10. Moller-hartmann W, Siegers CP. Nephrotoxicity of paracetamol in rat- mechanism and therapeutic aspects. *Journal of applied Toxicology* 1991; 11: 141-146.
11. Nelson SD. Molecular mechanisms of hepatotoxicity caused by acetaminophen. *Seminars in Liver Diseases* 1990; 10:267-78.
12. Newton J, Hoefle D, Gemborys M, Mugede G, and Hook J. Metabolism and excretion of a glutathione conjugate of acetaminophen in the isolated rat kidney. *Journal of Pharmacology and Experimental Therapeutics* 1986; 237:519-24.
13. Richie Jr, J.P., C.A. Long, and T.S. Chen. Acetaminophen-induced depletion of glutathione and cysteine in aging mouse kidney. *Biochemical Pharmacology* 1992; 44:129-35.
14. Eguia I, Materson B. acetaminophen related acute renal failure without fulminant liver failure. *Pharmacotherapy* 1997; 17:363-370
15. Jones AL and Prescott LF. Unusual com placation of paracetamol poisoning. *Quarterly journal of Medicine* 1997; 90:161-168
16. Mollazadeh Hamid, Hosseinzadeh Hossein. Cinnamon effect on metabolic syndrome: A review based on its mechanism. *Iranian journal of basic medical science* 2016; 19:1258-1270
17. Kamal Rai Aneja, Radhika Joshi, Chetan Sharma. Antimicrobial activities of dalchini (*Cinnamomum Zeylanicum*) bark extract on some dental caries pathogens. *Journal of Pharmacy research* 2009; 2(9):1387-1390.
18. Marriapan PM, Sabesan G, Koilpillai B, Janakiraman S, Sharma NK. Chemical characterization and antigulgal activity of methanolic extract of *cinnamomum verum* J. presl against malassezia spp. *Pharmacognosy Journal* 2013; 5:17-204
19. Uma B, Prabhkar K, Rajendran S, Lakshmi Sarayu. Studies on GC/MS spectroscopic analysis of some bioactive antimicrobial compounds from *cinnamomum zeylanicum*. *Journal of medicinal plants* 2009; 8((31):125-131
20. Vyas P, Suthar A, Patel D, Dayma P, Raval J and Joshi DK. Antimicrobial activity of extract of *Cinnamomum zeylanicum* bark and its combination with antibiotics against various microorganisms. *Journal of Chemical and Pharmaceutical Researchch*, 2005; 7(4):68-70
21. Rajendran A, Khan MR, Selvam D and Thangaraj V. Pharmacognosy profile and phytochemical analysis of *Cinnamomum zeylanicum* bark extract. *A journal of Nehru art and science college* 2017; 5(1):33-39
22. Parekh J, Karathia N, Chanda S. Evaluation of antibacterial activity and phytochemical analysis of *Bauhinia variegata* L. bar. *African Journal of biomedical and reseach* 2006; 9:53-56
23. Evans MC: Treas and Evans Pharmacognosy, 15th edition, Elsevier Publication, 2005; New Delhi, 191-393
24. OECD (Organization for economic Co-operation and development) Guideline 423. December 2001. Acute Oral Toxicity. Revised document
25. Parameshappa B, Basha MSA, Sen S, Chakraborty R, Kumar GV, Sagar GV, Sowmya L, Raju KK, Kumar PKR, Lakkshmi AVSM. Acetaminophen induced nephrotoxicity in rats: Protective role of *Cardiospermum halicabum*. *Pharmaceutical Biology* 2012; 2:247-253
26. Ezeonwu VU, Dahiru D. Protective Effect of Bi-Herbal Formulation of *Ocimum gratissimum* and *Gongronema latifolium* Aqueous Leaf Extracts on Acetaminophen-induced Hepato-Nephrotoxicity in Rats. *American Journal of Biochemistry* 2013; 3(1):18-23
27. Nwachoo Ndidi, Essien Ea Bassey, Ayalogu Edward Obiozo. Effect of aframomum Chrysanthum Seed aqueous Extract against Acetaminophen induced liver toxicity in rats. *Advances in Biochemistry* 2019; 7(1):1-4.
28. Palani S, Raja S, Kumar RP, Jayamari SP, Kumar BS. Therapeutic efficacy of *Pimpinella tirupatiensis* on acetaminophen induced nephrotoxicity and oxidative stress in male albino rats. *International journal of PharmaTech research* 2009; 1(3):925-934
29. Okokon JE, Joseph OS, Umoh EE. Hepatoprotective activity of the extract of *Homalium letestui* stem against paracetamol induced liver injury. *Avicenna journal of phytomedicine* 2017;7(1):27-36
30. Haque, M.R., Ansari, H.S. Anti-obesity effect of arq zeera and its main components thymol and cumin aldehyde in high fat diet induced obese rats. *Drug Res* 2018; 68, 637-647.
31. Haque, M.R., Ansari, S.H. Aromatic aldehyde compound cuminaldehyde protects nonalcoholic fatty liver disease in rats feeding high fat diet. *Hum. Exp. Toxicol.* 2019; 38, 823-832.
32. Haque, M.R., Ansari, S.H., Najmi, A.K., Ahmad, M.A. Monoterpene phenolic compound thymol prevents high fat diet induced obesity in murine model. *Toxicol. Mech. Methods*. 2014; 24, 116-123.
33. Adeneye AA, Benebo AS. Protective effect of aqueous leaf and seed extract *phyllanthus amarus* on gentamicin and acetaminophen induced nephrotoxic rats. *Journal of Ethnopharmacology* 2008; 118:318-323
34. Vouffou Edwige Y, Donfack Flaure M, Temdie Romeo J, et al. Hepato-nephroprotective and antioxidant effect of stem bark of *Allanblackia gabonensis* aqueous extract against acetaminophen induced liver and kidney disorder in rats. *Journal of experimental and Integrative Medicine* 2012; 2(4):337-344.
35. Adelman RD, Spangler WL, Beasom F, Ishizaki G, Conzelman GM. Furasemide enhancement of neltimicin nephrotoxicity in dogs. *Journal of antimicrobial chemotherapy* 1981; 7:431-435
36. Paul Sudip, Islam Md Ainul, Tanvir EM et al. Satkara (*citrus macroptera*) fruit protest against acetaminophen induced hepatorenal toxicity in rats. *Evidence-Based Complementary and Alternative Medicine* 2016: 1-11.
37. Ali Abeer R. Abd and Ismail Sajida H. the protective effect of honey against amikacin induced nephrotoxicity in rats. *Iraqi Journal of Pharmaceutical science* 2012; 21(2):85-93
38. Ali BH, Ismail TH, Basheer AA. Sex related differences in the susceptibility of rat to gentamicin nephrotoxicity: influence of gonadectomy and hormonal replacement therapy. *Indian journal of Pharmacology* 2001; 33:369-373.
39. Adeneye A, Olagunju J, Benebo AS et al., Nephroprotective effect of the aqueous root extract of *Harungans madagascariensis*(L.) in acute and repeated dose acetaminophen renal injured rats," *international journal of applied research in Natural products* 2008; 1(1):6-14
40. Ajami M, Eghtesadi S, Pazoki-Toroudi H, Habibey R. and Ebrahimi SA. Effect of *Crocus sativus* on gentamicin induced nephrotoxicity. *Biol Res* 2010; 43:83-90.
41. Kumar SS, Kumar BR, Mohan GK. Hepatoprotective effect of *Trichosanthes cucumerina* var.*cucumerina* (L.) on carbon tetrachloride induced liver damage in rats. *Journal of Ethnopharmacology* 2009; 123:347-350.
42. Ghosh A, and Sil PC. Antioxidative effect of protein from *cajamus indicus* L. against acetaminophen induced hepatonephrotoxicity. *Biocem. Mol. Bio* 2007; 40:1039-1049
43. Demirbag S, Uysal B, Guven A, Cayci T, Ozler M, and Ozcan A. effect of medical zone therapy on acetaminophen induced nephrotoxicity in rats. *Renal failure* 2010; 32:493-499.
44. Ramadan BK, Schaal MF. The Renoprotective Effect of Clover Flowers Honey on Paracetamol - Induced

Nephrotoxicity in Adult Male Albino Rats. Life Science Journal 2011; 8(3):589-596

45. Palani, S, Raja S, Kumar NS, Kumar B Senthil. Nephroprotective and antioxidant activity of *salacia oblonga* on acetaminophen induced toxicity in rats. Natural product research 2011; 25(19):1876-1880

46. Roberts D and Buckley N. Pharmacokinetic considerations in clinical toxicology: Clinical Applications. Clinical Pharmacokinetic 2007; 46(11):897-939.

47. James L, McCullough S, Lamps L and Hinson J. effect of N-acetylcysteine on acetaminophen toxicity in mice; relationship to reactive nitrogen and cytokine formation. Toxicological Science 2003; 75(2):458-467

48. Nashar K and Egan B. "Relation between chronic kidney disease and metabolic syndrome: current perspective," Diabetes metabolic syndrome and obesity: Target and Therapy 2014; 7:421-435.

49. Balakumar P, Rohilla A, Thangathirupathi A. Gentamicin induced nephrotoxicity: Do we have a promising therapeutic approach to blunt it? Pharmacol Res 2010; 62:179-186.

