

Available online on 15.08.2020 at <http://jddtonline.info>

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

© 2011-18, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited

Open Access

Review Article

Adolescent brain and nicotine

Luiz Antonio Del Ciampo*¹, Ieda Regina Lopes Del Ciampo ²

¹ Department of Puericulture and Pediatrics - Faculty of Medicine of Ribeirão Preto - University of São Paulo - Brazil

² Department of Medicine - Federal University of São Carlos - Brazil

ABSTRACT

Adolescence is a period of transition between childhood and adulthood that involves major changes in development in the physical, psychological, social and neurobiological domains. During this phase of life, multiple physical and emotional events occur throughout the body, markedly in the central nervous system, regulated by neurohormones, which are fundamental for human development, responsible for changes in thoughts, attitudes and behaviors that culminate in complete maturity for a laborious and reproductive life. Due to the lability of the neurological tissue in this period, external aggressions by means of chemical substances can cause serious and lasting effects. Nicotine is one of the substances considered legal and that more easily the adolescent comes into contact early, and can cause many harm to current and future health. This article presents some characteristics of the development of the adolescent's nervous system and the deleterious actions that can be caused by nicotine in its various forms of social presentation.

Keywords: Adolescence – nicotine – smoking – nicotine addiction

Article Info: Received 23 June 2020; Review Completed 20 July 2020; Accepted 28 July 2020; Available online 15 August 2020

Cite this article as:

Del Ciampo LA, Del Ciampo IRL, Adolescent brain and nicotine, Journal of Drug Delivery and Therapeutics. 2020; 10(4-s):232-234 <http://dx.doi.org/10.22270/jddt.v10i4-s.4237>

*Address for Correspondence:

Luiz Antonio Del Ciampo, Avenida Bandeirantes, 3900, CEP. 14049900, Ribeirão Preto – São Paulo – Brazil

INTRODUCTION

Adolescence is a period of physical, emotional, and social changes, with significant increases in body size, physical appearance and the development of interpersonal skills necessary for successful integration into society ¹. Adolescence is also characterized by high expression of risk, exploration, search for novelties and sensations, social interaction, and playful behavior ^{2,3}. This period of great vulnerability, associated with impulsive actions and decisions, is linked to transformations and maturation of the central nervous system (CNS), sensitive to new experiences of plasticity that occurred in the regions of executive control and decision-making ^{4,5}.

Among the main experiences related to the use of legal or illegal substances, smoking and the new emerging tobacco and nicotine products are those that start earlier, reinforced by stimulation and cultural acceptance, ease of access, low cost and ignorance of the negative effects that can cause health ^{6,7}.

NICOTINE

Although nicotine is a psychotropic substance, with a high addictive power and widely used worldwide, its use is not considered illegal. Nicotine is a potent

parasympathomimetic alkaloid produced in the roots of *Nicotiana tabacum*, a plant found in the American continent from whose leaves it was extracted in 1828 ^{6,8,9}. In its pure state, nicotine is a colorless, volatile, water-soluble, bioactive alkaloid ⁹, absorbed by the skin, mucous membranes in the mouth and nose and pulmonary alveoli ¹⁰. Its greatest consumption is through cigarettes that contain, on average, 14 mg, resulting in 1 to 2 mg absorbed per cigarette, although the amount provided by smoking is highly variable and dependent on the type of cigarette and the individual topography of the smoke ¹¹. The large surface area of the small airways and the alveoli, associated with a pH of 7.4 in the lungs, allow rapid absorption of inhaled nicotine and the transition to the brain in 7 seconds, exerting its pharmacological effects on nicotine acetylcholine receptors and triggering the release of dopamine and other neurotransmitters. The cerebral half-life of nicotine is 52 minutes ^{6,9,12,13}.

Nicotine is a neuroteratogenic substance that alters cell proliferation and differentiation, can induce epigenetic changes in the neural genome and interfere with communication systems between neurons ^{5,14,15}. Nicotinic cholinergic transmission is a vital process for the functioning of the living organism, but vulnerable to the involvement of nicotine ^{8,14}. As nicotine exerts complex actions involving

different circuits and structures, even brief exposure can produce lasting changes in the adolescent brain, causing effects on the structure, function, learning and memory of the hippocampus ^{5,14,16}.

The pharmacological action of nicotine occurs by binding to presynaptic cholinergic receptors (nAChRs) located at the terminals of neurons present in the CNS and in the peripheral nervous system ^{6,17}. When stimulated, these receptors increase the release of several neurotransmitters, such as acetylcholine, norepinephrine, serotonin, dopamine, opioids, glutamate, beta endorphins and gamma-aminobutyric acid, involved in the induction and modulation of neuroplasticity ¹⁸⁻²⁰. The neuronal receptor subtype the most abundant is alpha4 beta 2 nAChR, which has a high affinity for nicotine ^{5,9} and is found in the shell of the nucleus accumbens, in the ventral tegmental area and in the basolateral amygdala ^{21,22}. With repeated exposure to nicotine, there is an increase in the number of nAChRs. The activation of the mesolimbic dopaminergic system provides better attention and mood, stimulates memory capacity and reduces muscle tone, which is pleasant for the user, allowing him to continue using this substance and critical to the drug-induced reward system ^{6,9,23}.

ADOLESCENT BRAIN AND NICOTINE

Adolescence is a critical period when drug administration can induce some effects and negatively influence neural, behavioral, and cognitive functions even long after early life exposure ²⁴, because there are physiological, evolutionary, structural, and neurochemical changes, especially in the dopaminergic system, that accompanying the maturing process that occurs in this phase of life. The most important developmental changes in the adolescents' brain are: non-linear reduction in cortical and subcortical grey volume, synaptic pruning, directional organization of white matter, maturation of axons, and myelination resulting in increased efficiency of impulse transduction ^{5,24,25}.

The sensitivity of the CNS to the aggressions of environmental agents depends on their state of development and nicotine use has been associated with deleterious effects in the prefrontal cortex and hippocampal structure, can lead to irreversible decreased cognitive functions, mainly attention, memory and hyperactivity ^{9,26}. Adolescent smokers demonstrate cognitive and behavioral impairments such as decrease of working memory, impaired serial pattern learning, deficit in attentional performance, increased anxiety and depressive-like behaviors, wake time and reduces both total sleep time and rapid eye movement sleep, inhibits prolactin secretion from the anterior pituitary and increase cortisol concentration ^{6,24,27-30}.

Nicotine during adolescence causes acute and lasting changes in the developing brain, which in addition to the effects on the various systems and functions of the body, can lead to subsequent nicotine dependence. The rapid neuronal response to nicotine positively reinforces smoking behavior because is associated with expectation of increased well-being, and pleasure activities ⁹. When dopamine levels fall, the adolescent is bound to seek more nicotine, leading to a vicious cycle that has just turned into addiction ^{9,31-33}.

The age of first cigarette use is critical determinant of nicotine dependence since the earlier it starts, the more difficult is to quitting ^{5,34}. Also, the early use of nicotine through smoking can act as the gateway to experiment with other illicit drugs such as marijuana, cocaine, opiates, etc. ²⁴.

CONCLUSIONS

Tobacco use is a significant public health concern because it has great potential for the development of addiction ⁶. Despite all the knowledge about the damage caused by smoking, prevention and smoking cessation actions in the adolescent care environment are still few, and the damage and dependence on nicotine are a reality for adolescents with the onset of addiction occurring shortly after smoking started ³⁵⁻³⁷. It is essential to increase educational actions on the damage caused by smoking, facilitating access to information and making exposure to cigarettes and their derivatives more difficult.

Conflict of interest: none

REFERENCES

1. Sharma E, Seshadri SP. Adolescence: contemporary issues in the clinic and beyond. *Asian J Psychiatry* 2020; 47:101-103.
2. Crews F, He J, Hodge C. Adolescent cortical development: a critical period of vulnerability for addiction. *Pharmacol Biochem Behav* 2007; 86:189-199.
3. Leshem R. Brain development, impulsivity, risky decision making, and cognitive control: integrating cognitive and socioemotional process during adolescence - an introduction to the special issue. *Develop Neuropsychol* 2016; 41:1-5.
4. Bernheim A, Halfon O, Boutrel B. Controversies about the enhanced vulnerability of the adolescent brain to develop addiction. *Front Pharmacol* 2013; 4:118:121.
5. Yuan M, Cross SJ, Loughlin SE, Leslie FM. Nicotine and the adolescent brain. *J Physiol* 2015; 16:3397-3412.
6. Siqueira LM. Nicotine and tobacco as substances of abuse in children and adolescents. *Pediatrics*. 2017; 139:1-15.
7. Kalkhoran S, Benowitz NL, Rigotti NA. Prevention and treatment of tobacco use: JACC health promotion series. *J Am Coll Cardiol* 2018; 72:1030-1045.
8. Sieber M. Neuroprotective properties of nicotine. *Curr Med Chem* 2012; 19:292-297.
9. Zarrindasta M, Khakpae F. The modulatory role of nicotine on cognitive and non-cognitive functions. *Brain Research* 2019; 1710:92-101.
10. Baraona LK, Lovelace D, Daniels JL, McDaniel L. Tobacco harms, nicotine pharmacology, and pharmacologic tobacco cessation interventions for women. *J Midwifery Womens Health* 2017; 62:253-269.
11. Valentine G, Sofuooglu M. Cognitive effects of nicotine: recent progress. *Cur Neuropharmacol* 2018; 16:403-414.
12. Alkam T, Nabeshima T. Molecular mechanisms for nicotine intoxication. *Neuroch Int* 2019; 125:117-126.
13. Marso A, Simon N. Nicotine and cotinine levels with electronic cigarette: a review. *Int J Toxicol* 2016; 35:179-185.
14. Ginzel KH, Maritz GS, Marks DF, Neuberger M, Pauly JR, Polito JR et al. Critical review: nicotine for the fetus, the infant and the adolescent? *J Health Psychol* 2007; 12:215-224.
15. Abreu-Villaça Y, Seidler FJ, Tate CA, Slotkin TA. Nicotine is a neurotoxin in the adolescent brain: critical periods, patterns of exposure, regional selectivity, and dose thresholds for macromolecular alterations. *Brain Res* 2003; 979:114-128.
16. Ferrea S, Winterer G. Neuroprotective and neurotoxic effects of nicotine. *Pharmacopsych* 2009; 42:255-265.
17. Franken RA, Nitrini G, Franken M, Fonseca AJ, Leite JCT. Nicotine. Actions and interactions. *Arq Bras Cardiol* 1996; 66:371-373.
18. Grudey J, Barlay J, Batsikadze G, Kuo MF, Paulus W, Nitsche M. Nicotine modulates human brain plasticity via calcium-dependent mechanisms. *J Physiol* 2018; 596:5429-5441.

19. Silva MTB, Araujo FLO, Felix FHC, Simão AFL, Lobato RFG, Sousa FCF et al. Alcohol and nicotine: mechanisms of dependence. *Rev Neurocienc* 2010; 18:531-537.

20. Planeta CS, Cruz FC. Neurophysiological basis of tobacco dependence. *Arch Clin Psych* 2005; 32:25125-8.

21. Dao JM, McQuown SC, Loughlin SE, Belluzzi JD, Leslie FM. Nicotine alters limbic function in adolescent rat by a 5-HT1A receptor mechanism. *Neuropsychopharmacol* 2011; 36:1319-1331.

22. Ziedonis D, Das S, Larkin C. Tobacco use disorder and treatment: new challenges and opportunities. *Dialogues Clin Neurosci*. 2017; 19:271-280.

23. Mahase E. Half of smokers think nicotine vaping products are at least as harmful as smoking. *BMJ* 2020; 368:1.

24. Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T et al. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. *Brain Res Bull* 2020; 156:105-117.

25. Paus T. Growth of white matter in the adolescent brain: Myelin or axon? *Brain Cogn* 2010; 72:26-35.

26. England LJ, Bunnell RE, Pechacek TF, Tong VT, McAfee TA. Nicotine and the developing human: a neglected element in the electronic cigarette debate. *Am J Prev Med* 2015; 49:286-293.

27. Holliday ED, Nucero P, Kutlu MG, Oliver C, Connelly KL, Gould TJ et al. Long-term effects of chronic nicotine on emotional and cognitive behaviors and hippocampus cell morphology in mice: comparisons of adult and adolescent nicotine exposure. *Eur J Neurosci* 2016; 44:2818-2828.

28. Ehlinger, D.G., Bergstrom, H.C., Burke, J.C., Fernandez, G.M., McDonald, C.G., Smith, R.F. Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent. *Brain Struct. Funct.* 2016; 221:133-145.

29. Portugal GS, Wilkinson DS, Turne, JR, Blendy JA, Gould TJ. Developmental effects of acute, chronic, and withdrawal from chronic nicotine on fear conditioning. *Neurobiol Learn Mem* 2012; 97:482-494.

30. Renaud SM, Pickens LRG, Fountain SB. Paradoxical effects of injection stress and nicotine exposure experienced during adolescence on learning in a serial multiple choice (SMC) task in adult female rats. *Neurotoxicol Teratol* 2015; 48:40-48.

31. Conti AA, McLean L, Tolomeo S, Steele JD, Baldacchino A. Chronic tobacco smoking and neuropsychological impairments: A systematic review and meta-analysis. *Neurosci Biobehav Rev* 2019; 96:143-154.

32. Kutlu MG, Gould TJ. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory. *Physiol Behav* 2016; 155:162-171.

33. Zeid D, Kutlu MG, Gould TJ. Differential effects of nicotine exposure on the hippocampus across lifespan. *Cur Neuropharmacol* 2018; 16:388-402.

34. Kendler KS, Myers J, Damaj MI, Chen X. Early smoking onset and risk for subsequent nicotine dependence: a monozygotic co-twin control study. *Am J Psychiatry* 2014; 170:408-413.

35. Shao XM, Fang ZT. Severe acute toxicity of inhaled nicotine and e-cigarettes. *Chest* 2020; 157:506-508.

36. Prokhorov AV, Calabro KS, Tamí-Maury I. Nicotine and tobacco use prevention among youth and families. *Sem Oncol Nurs* 2016; 32:197-205.

37. Cavallo DA, Krishnan-Sarin S. Nicotine use disorders in adolescents. *Pediatr Clin N Am* 2019; 66:1053-1062.