

Available online on 15.05.2019 at <http://jddtonline.info>

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

© 2011-18, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited

Open Access

Research Article

Development and Validation of UV-Visible Spectrophotometric method for simultaneous estimation of Etoposide and Picroside-II in bulk and pharmaceutical formulation

Sachin Bhusari*, Gayatri Borse, Pravin Wakte

University Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India

ABSTRACT

Aim: To develop and validate a simple, precise, accurate, and sensitive UV-visible spectrophotometric method for the simultaneous estimation of Etoposide (ETO) and Picroside-II (PK-II) in a bulk and pharmaceutical formulation according to the ICH guidelines.

Methods: The absorption spectra of ETO and PK-II were carried out over the range of 200-800 nm, and absorption maxima were determined. Multiple calibration standards were prepared of both the drugs separately, and absorbance were recorded at respective λ_{max} . Calibration curve were plotted and the linear responses were studied. Various analytical method validation parameters viz. accuracy, precision, LOD, LOQ, robustness and ruggedness were calculated using QC standards.

Results: The absorption maxima of ETO and PK-II were found to be 208 nm and 265 nm respectively. Linearity range for ETO and PK-II were found to be 1-7 μ g/ml and 1-35 μ g/ml with correlation coefficient 0.999 and 0.999. The intra-day and inter-day study shows percent relative standard deviation in between 0.11 to 1.08 and 0.12 to 1.38. LOD and LOQ were found to be 0.1321 μ g/ml and 0.4003 μ g/ml for ETO whereas 0.1616 μ g/ml and 0.4897 μ g/ml for PK-II. The total percent recovery of ETO and PK-II were found to be 99.09 and 99.68 respectively.

Conclusion: The simple, precise, accurate, and sensitive UV-visible spectrophotometric method for the simultaneous estimation of Etoposide (ETO) and Picroside-II (PK-II) in a bulk and pharmaceutical formulation was developed and validated.

Keywords: UV-visible spectrophotometry, simultaneous estimation, Etoposide and Picroside-II.

Article Info: Received 25 March 2019; Review Completed 05 May 2019; Accepted 08 May 2019; Available online 15 May 2019

Cite this article as:

Bhusari S, Borse G, Wakte P, Development and Validation of UV-Visible Spectrophotometric method for simultaneous estimation of Etoposide and Picroside-II in bulk and pharmaceutical formulation, Journal of Drug Delivery and Therapeutics. 2019; 9(3):257-262 <http://dx.doi.org/10.22270/jddt.v9i3.2868>

*Address for Correspondence:

Dr. Sachin Shiviling Bhusari, Assistant Professor, Pharmaceutical Technology Division, Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431001, Maharashtra, India.

INTRODUCTION

Etoposide [Fig. 1] is a semi-synthetic podophyllotoxin derived from the roots of *Podophyllum peltatum*¹. It is a well-known anti-cancer agent used intravenously or orally²⁻³. Etoposide when administered orally shows poor and variable bioavailability which ranges from 25 to 75%⁴⁻⁶. Several attempts are being made by the researchers across the globe to achieve consistent and improvised oral bioavailability of the Etoposide⁷⁻¹². Recently, a plant based oral bioavailability enhancer has been developed for the Etoposide by the Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad. Briefly, Picroside-II; [Fig. 2] a phytochemical from rhizomes of *Picrorhiza kurroa*¹³, when administered with Etoposide, is found to enhance oral bioavailability of Etoposide consistently by 35%¹⁴. Considering therapeutic and commercial importance of combination of Etoposide and Picroside-II, it was envisaged that development of UV-Visible

spectrophotometric method for simultaneous estimation of Etoposide and Picroside-II will be worth.

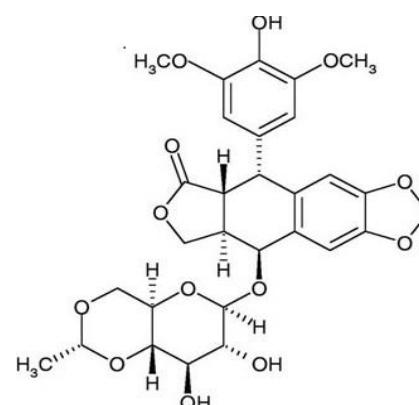


Figure 1: Chemical structure of Etoposide

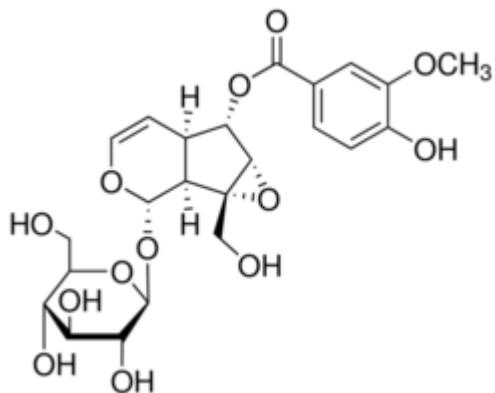


Figure 2: Chemical structure of Picroside-II

MATERIALS AND METHODS

Chemical and Reagents

Picroside-II (purity 98% by HPLC) was obtained as gift sample from Natural Products Chemistry Division of Indian Institute of Integrative Medicine (CSIR), Jammu. Etoposide, was purchased from TCI chemicals, India. Methanol (distilled) was used as solvent for preparation of diluents.

Instruments Used

A UV-visible double beam spectrophotometer with spectra manager software UV-530, Jasco was used for multi component analysis. Quartz cells having 3 cm length along with 1 cm path length were used for spectral measurement. Weighing balance (Vibra HT, Essae) with internal calibration mode was used for the accurate weighing.

Preparation of standard stock solution

The standard stock solution having concentration 1000 $\mu\text{g}/\text{ml}$ (Stock-I) of each ETO and PK-II were prepared separately by dissolving accurately weighed 5 mg of API in 5 ml Methanol. Stock-I solution of both the bulk drug were further suitably diluted with solvent system Methanol to achieve the solution of concentration 100 $\mu\text{g}/\text{ml}$ (Stock-II) and 10 $\mu\text{g}/\text{ml}$ (Stock-III). Similarly, the standard stock solutions of combined dosage form of ETO and PK-II were prepared having the concentrations 1000 $\mu\text{g}/\text{ml}$, 100 $\mu\text{g}/\text{ml}$ and 10 $\mu\text{g}/\text{ml}$.

Determination of wavelength of maximum absorbance (λ_{max})

The standard stock solution of ETO and PK-II having concentration 10 $\mu\text{g}/\text{ml}$ (Stock-III) were scanned separately in UV range from 200-800 nm against reference sample Methanol and spectrum were recorded. The λ_{max} were determined of both bulk drug. In order to achieve accuracy the above process was repeated 4 times.

Preparation of calibration curve

Calibration curve were defined by diluting the stock-II standard solution of both bulk drug i.e. ETO and PK-II to achieve the seven different calibration standards i.e. 1, 2, 3, 4, 5, 6, and 7 $\mu\text{g}/\text{ml}$ for ETO and 1, 5, 10, 15, 20, 25, 30, and 35 $\mu\text{g}/\text{ml}$ for PK-II. Each calibration standard was scanned at pre-defined λ_{max} i.e. 208 nm and 265 nm of ETO and PK-II respectively using fixed wavelength measurement mode. The absorbance at respective wavelength were noted of various calibration standards. The concentration vs. absorbance graph were plotted using Excel program of Microsoft Office 2010 separately. Above mentioned procedure was repeated five times to obtain reproducible results.

Development of Simultaneous Equation

To determine both drugs by the technique of simultaneous equation method (vierordt's method), sample should contain two absorbing drugs each of which absorbs at the λ_{max} different from the other [Table 1].

The concentration of both the can be obtained by formula -

$$C_x = (A_2 a y_1 - A_1 a y_2) / (a x_2 a y_1 - a x_1 a y_2)$$

$$C_y = (A_1 a x_2 - A_2 a x_1) / (a x_2 a y_1 - a x_1 a y_2)$$

Where,

λ_1 : Wavelength maxima for ETO

λ_2 : Wavelength maxima for PK-II

$a x_1$ and $a x_2$: Absorptivity of ETO at 208 nm and 265 nm

$a y_1$ and $a y_2$: Absorptivity of PK-II at 208 nm and 265 nm

A_1 : Absorbance of ETO at 208 nm

A_2 : Absorbance of PK-II at 265 nm

C_x and C_y : the concentration of ETO and PK-II respectively in the diluted sample.

Method Validation

The developed UV method for the estimation of ETO and PK-II in bulk drug and pharmaceutical formulation was validated as per the ICH guidelines. Various parameters like linearity and range, accuracy, precision, robustness, ruggedness, limit of detection (LOD) and limit of quantitation (LOQ) were analysed using pre-defined calibration standards or quality control standards as described below ¹⁵⁻¹⁶.

Linearity and Range

Linearity was evaluated by linear regression analysis and calculated by least square method. The calibration curves shows correlation between absorbance and concentration level within the concentration range of 1-7 $\mu\text{g}/\text{ml}$ for ETO and 1-35 $\mu\text{g}/\text{ml}$ for PK-II. Plots were subjected to linear regression least square analysis. R square value was important factor for establishing linearity. The interval between upper and lower concentration limit with acceptable linearity was reported to be the range of the proposed UV method.

Accuracy

The accuracy was determined by means of recovery studies by evaluating % mean recovery of both the drugs. The known concentrations of drug were added at the different level viz. 80%, 100%, and 120% level. The pentaplicate of three different pre-defined concentration solution of both the drugs i.e. ETO (1.2, 3.4, and 6.8 $\mu\text{g}/\text{ml}$) and PK-II (1, 20, and 35 $\mu\text{g}/\text{ml}$) were prepared. The absorbance was measured at wavelength 208 nm and 265 nm wavelength for ETO and PK-II respectively. The above method was performed three times.

The percent recovery was calculated by formula -

$$\%RC = (SPS - S / SP) \times 100$$

Where,

SPS = Amount found in the spiked sample

S = Amount found in the sample

SP = Amount added to the sample

% RC = Percent recovery

Precision

The repeatability of method was checked by statistical evaluation. Intraday and inter-day variations were studied. Five different solution of both the drug were prepared for ETO (1.2, 3.4, and 6.8 $\mu\text{g}/\text{ml}$) and PK-II (1, 20, and 35 $\mu\text{g}/\text{ml}$) and analysed at morning, afternoon and evening time of three consecutive days. Deviation in the results was calculated in terms of % RSD (% relative standard deviation).

Robustness

Robustness was determined by changing the wavelength $\pm 1\text{nm}$ from 208nm for ETO and 265nm for PK-II. Middle level quality control sample of ETO (3.4 $\mu\text{g}/\text{ml}$) and PK-II (20 $\mu\text{g}/\text{ml}$) was prepared and analyzed at pre-defined wavelength. The results were calculated in terms of % RSD.

Ruggedness

Ruggedness study of the method was carried out by analyzing triplicate samples of ETO (3.4 $\mu\text{g}/\text{ml}$) and PK-II (20 $\mu\text{g}/\text{ml}$) using two different instruments (V-530, Jasco and BA-UV-2600, Bioage). Results were expressed in terms of % RSD.

Limit of Detection (LOD)

The LOD of the developed UV method was determined by formula -

$$\text{LOD} = 3.3 \times \text{SD}/\text{S}$$

Where,

SD= Standard deviation of Y-intercepts

S= Slope of calibration curve

Limit of Quantitation (LOQ)

The LOQ of the developed UV method was determined by formula -

$$\text{LOQ} = 10 \times \text{SD}/\text{S}$$

Where,

SD= Standard deviation of Y-intercepts

S= Slope of calibration curve

Estimation of ETO and PK-II content in pharmaceutical formulation

In-house formulation of ETO was prepared by using bio enhancer PK-II with pharmaceutically accepted excipients. The formulation contain ETO and PK-II in ratio of 2:1. Weighed the quantity of powder equivalent to 2 mg of ETO and 1mg of PK-II and dissolved in 1 ml of methanol using ultra sonication and the solution was filtered using 0.22 μm filter. Filtered solution was suitably diluted to get concentration in ratio 2:1 (ETO: PK-II) and analyzed for drug content using simultaneous equation method.

RESULTS AND DISCUSSION

Determination of wavelength of maximum absorbance (λ_{max})

Identification of maximum absorbance wavelength is prerequisite for quantitative UV analysis. Solution with absorbance value less than 1 were considered to be appropriate for the determination of wavelength having maximum absorbance. Considering the above mentioned point determination of λ_{max} of ETO and PK-II solution of 10 $\mu\text{g}/\text{ml}$ concentration each were carried out by full scan mode of UV-Visible spectrophotometer. The full scan mode was processed by Jasco UV software and λ_{max} were determined. The λ_{max} was found to be 208nm and 265nm for ETO and

PK-II [Fig. 3 and Fig. 4] respectively. The overlain spectra of both drugs shown in Fig. 5.

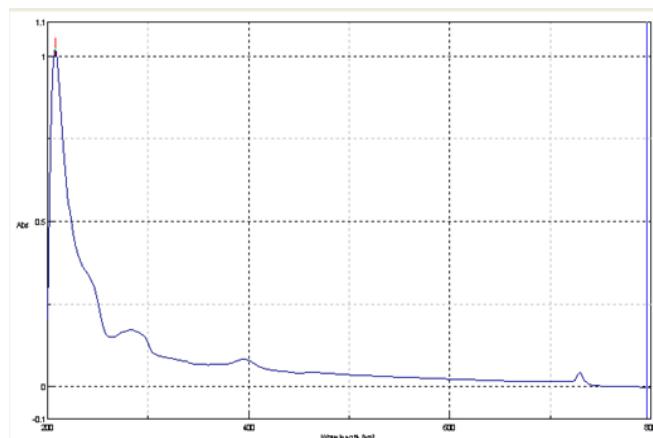


Figure 3: UV-Spectrum of ETO

Figure 4: UV-Spectrum of PK-II

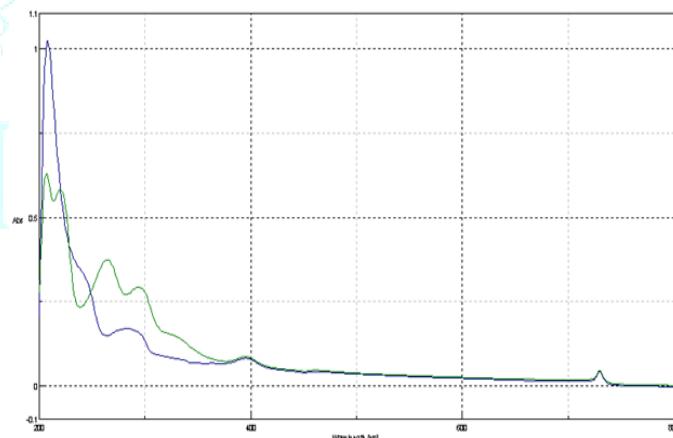
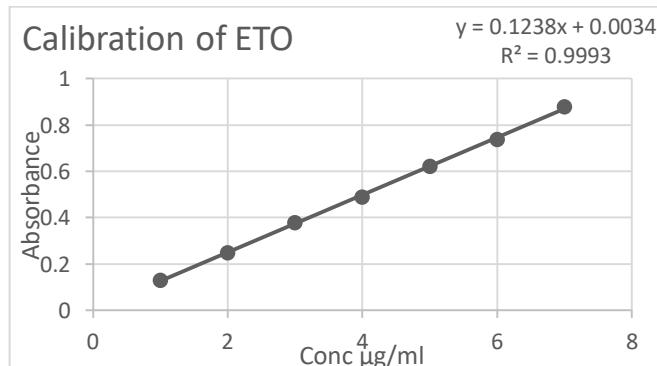


Figure 5: Overlap spectra of ETO and PK-II

Preparation of calibration curve

Quantification of unknown samples by UV-Visible spectrophotometer or any other instrumental method of analysis requires reproducible calibration curve and a mathematical equation representing correlation between concentration and the response. Considering the utility of quantitative analysis of ETO and PK-II, calibration curve for both drug were developed using seven different calibration standards. The absorbance of different calibration standards at wavelength 208 nm and 265 nm for ETO and PK-II respectively were recorded by fixed wavelength mode. Calibration curve was repeated five times.

Method validation


Linearity and Range

Linearity and range are the key parameters of analytical method which demonstrates the limit within the intended method to be used for its optimum performance. Considering the importance of linearity and the range, seven points calibration curve of ETO between the range 1-7 $\mu\text{g/ml}$ and PK-II between the range 1-35 $\mu\text{g/ml}$ were plotted. The

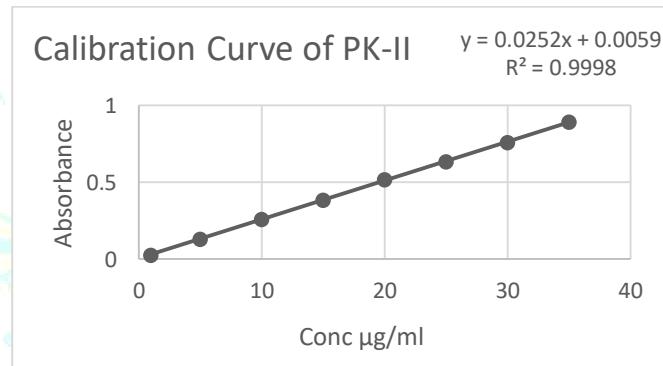

concentrations and the respective mean absorbance values of ETO and PK-II are mentioned in **Table 1**. Calibration curve were subjected to least square regression analysis yielded an equation; $y = 0.1238X + 0.0034$ and $y = 0.0252X + 0.0059$ with correlation coefficient and for ETO and PK-II respectively [**Fig. 6 and Fig. 7**]. The linearity study revealed that the developed UV method was found to be linear adherence to the system of Beers Law over the concentration range of 1 to 7 $\mu\text{g/ml}$ for ETO and 1 to 35 $\mu\text{g/ml}$ for PK-II.

Table 1 – Linearity study for ETO and PK-II

Sr. No.	Conc. ($\mu\text{g/ml}$)	Absorbance of ETO at 208 nm	Conc. ($\mu\text{g/ml}$)	Absorbance of PK-II at 265 nm
1	1	0.1302	1	0.0335
2	2	0.2505	5	0.1326
3	3	0.3803	10	0.2618
4	4	0.4893	20	0.5168
5	5	0.6219	25	0.6344
6	6	0.7378	30	0.757
7	7	0.8802	35	0.8911

Figure 6. Calibration curve for ETO

Figure 7. Calibration curve for PK-II

Accuracy

Accuracy is the measure of closeness of the experimental value to the actual amount of the substance in the matrix. Accuracy is to be established over the entire calibration range of the analytical method so that at any point of determination, results obtained would be reliable. UV method for ETO and PK-II, accuracy was established by

recovery studies. Mean recovery of ETO was found to be 100.09, 98.12, and 99.06 and of PK-II was found to be 100.15, 98.32, and 100.59 at 80 %, 100% and 120% standard addition respectively. % RSD were found to be less than 2% for the ETO and PK-II, recovery studies are shown in **Table 2**. The results of accuracy studies, determined that the developed UV method is highly accurate as the percent recovery was found to be between 97 to 100%.

Table 2 – Recovery studies for ETO and PK-II

Origin level($\mu\text{g/ml}$)	ETO			Origin level ($\mu\text{g/ml}$)	PK-II		
	Concentration (%)	% Recovery	% RSD		Concentration (%)	% Recovery	% RSD
1.2	80	100.09	0.18	1	80	100.15	0.98
3.4	100	98.12	1.90	20	100	98.32	0.14
6.8	120	99.06	1.85	35	120	100.59	1.77

Precision

Precision is a measure of degree of scatter, expresses the reproducibility of the measurements. It is expected that an analytical method should generate reproducible outcomes. Precise analytical method leads to accurate results. Considering the importance of reproducible and accurate results, intra-day and inter-day precision of developed UV

method were established at 1.2, 3.4 and 6.8 $\mu\text{g/ml}$ concentration levels of ETO and at 1, 20, and 35 $\mu\text{g/ml}$ concentration levels of PK-II. The results were expressed in terms of mean absorbance values, percent assay and % RSD for the intra-day and inter-day precision study, demonstrated in **Table 3** and **Table 4** respectively for ETO and PK-II. Percentage RSD values of intra-day precision

study were found to be between 0.23 and 0.70 for ETO and between 0.11 and 1.08 for PK-II whereas those of inter-day precision study were between 0.24 and 1.05 for ETO and

between 0.17 and 1.38 for PK-II. % RSD values were less than 2, demonstrated the precision of developed UV method.

Table 3 - Intra-day precision for ETO and PK-II

Concentration ($\mu\text{g/ml}$)	ETO			Concentration ($\mu\text{g/ml}$)	PK-II		
	Mean	% Assay	% RSD		Mean	% Assay	% RSD
1.2	0.1556	99.76	0.70	1	0.0264	100.30	1.08
3.4	0.4437	100.39	0.25	20	0.5331	99.62	0.13
6.8	0.8718	98.62	0.23	35	0.9321	100.95	0.11

Table 4 - Inter-day precision for ETO and PK-II

Concentration ($\mu\text{g/ml}$)	ETO			Concentration ($\mu\text{g/ml}$)	PK-II		
	Mean	% Assay	% RSD		Mean	% Assay	% RSD
1.2	0.1558	99.87	1.05	1	0.0264	100.17	1.38
3.4	0.4410	99.77	0.62	20	0.5336	100.17	0.12
6.8	0.8701	98.43	0.24	35	0.9333	99.76	0.17

Robustness

Robustness is the ability of a method to resist the change in its performance in spite of small un-intentional change in method parameters like solvent composition, buffer strength, pH, $\pm 1\text{nm}$ wavelength etc. Change may occur and hamper the performance, it is expected that such change should not alter the performance of the analytical method. Hence, robust analytical method is studied. Robustness of

proposed UV method was established by scanning the sample solution for $\pm 1\text{nm}$ wavelength from 208 nm for ETO and 265 nm for PK-II. Change in the wavelength by $\pm 1\text{nm}$ did not affect the performance of developed method. The % RSD values were found to be between 0.88 and 1.48 for ETO and between 0.15 and 0.23 for PK-II, shown in **Table 5** for ETO and PK-II respectively. Percentage RSD values were below 2 depict that the proposed UV method was robust in nature.

Table 5 - Robustness study for ETO and PK-II

Concentration ($\mu\text{g/ml}$)	ETO			Concentration ($\mu\text{g/ml}$)	PK-II		
	λ_{max}	Absorbance	% RSD		λ_{max}	Absorbance	% RSD
3.4	207	0.4379	0.8810	20	264	0.5169	0.233
3.4	209	0.4359	1.4876	20	266	0.5213	0.153

Ruggedness

Ruggedness is the ability to resist the change in method performance in spite of influential environmental factors like temperature, pressure, equipment, etc. Rugged analytical methods are free from environmental/external factors impact. The ruggedness of proposed UV method, for

ETO and PK-II solutions were analysed by using two different UV-Visible spectrophotometers belongs to different laboratories. Sample analysis resulted into % RSD values between 0.63 and 1.81 for ETO and between 0.23 and 0.30 for PK-II. Results showed that the proposed UV method was rugged as % RSD values were less than 2, shown in **Table 6** of ETO and PK-II.

Table 6 - Ruggedness study for ETO and PK-II

Concentration ($\mu\text{g/ml}$)	ETO			Concentration ($\mu\text{g/ml}$)	PK-II		
	Instrument	Absorbance	% RSD		Instrument	Absorbance	% RSD
3.4	Jasco	0.4383	0.63	20	Jasco	0.5169	0.23
3.4	Bioage	0.4467	1.81	20	Bioage	0.5110	0.30

Limit of Quantitation (LOQ) and Limit of Detection (LOD)

Generally, LOQ is the first calibration standard. LOQ represents the lowermost concentration that can be analysed. LOD represents the lowest quantity of substance that can be distinguished from the absence of that substance (a blank value) with a stated confidence level (generally 99%). LOD and LOQ of proposed UV method were found to be 0.1321 and 0.4003 μ g/ml for ETO whereas 0.1616 and 0.4897 μ g/ml for PK-II, as shown in **Table 7** for ETO and PK-II. Lower LOQ values indicated that the proposed method would be sensitive enough to quantify the ETO and PK-II content of samples at its lower level.

Table 7 – LOD and LOQ for ETO and PK-II

Sr. No.	Parameter	ETO	PK-II
1	LOD	0.1321 μ g/ml	0.1616 μ g/ml
2	LOQ	0.4003 μ g/ml	0.4897 μ g/ml

Estimation of Etoposide and Picroside-II content in pharmaceutical formulation

The developed UV method was successfully applied for estimation of ETO and PK-II content in pharmaceutical formulation. The ETO and PK-II content in the pharmaceutical formulation was found to be 101.36% and 100.91% respectively by simultaneous equation method.

CONCLUSION

The simple, precise, accurate, and sensitive UV-visible spectrophotometric method for the simultaneous estimation of ETO and PK-II in a bulk and pharmaceutical formulation was developed and validated. The recovery result confirms the accuracy of method. The proposed method was found to be robust and rugged in nature. Thus, it can be effectively applied for the estimation of ETO and PK-II in bulk and pharmaceutical formulation.

REFERENCES

1. Julian M. Henwood and Rex N. Brogden, A Review of its Pharmacodynamic and Pharmacokinetic Properties, and Therapeutic Potential in Combination Chemotherapy of Cancer. *Drug evaluation*, 1990; 39(3): 438-490.
2. Peter I. Clark, Maurice L. Slevin, The Clinical Pharmacology of Etoposide and Teniposide, *Clinical pharmacokinetics*, 1987; 12(4):223-252.

3. David G. Bailey, Fruit juice inhibition of uptake transport: a new type of food-drug interaction. *British Journal of Clinical Pharmacology*, 2010; 70(5):645-655.
4. Jose Luis Aguilar Ponce, Yolanda Flores-Picazo, Jose Perez-Urizar, Gilberto Castrieda-Hernández, Juan W. et.al. Bioavailability of Etoposide after Oral Administration of the Solution Marketed for Intravenous Use: Therapeutic and Pharmacoeconomic Perspectives, *Archives of Medical Research*, 1999; 3:212-215.
5. V. J. Harvey, M. L. Slevin, S. P. Joel, M. M. Smythe, A. Johnstons and P. F. M. Wrigley. Variable Bioavailability Following Repeated Oral Doses of Etoposide, *European Journal of Cancer and Clinical Oncology*, 1985; 21(2):1315-1319.
6. Desmond N. Carney, MD, The Pharmacology of Intravenous and Oral Etoposide, *Cancer*, 1991; 67(S1):299-302.
7. Ishtiyaq Ahmad Najar, Rakesh Kamal Johri, Pharmaceutical and Pharmacological approaches for Bioavailability Enhancement of Etoposide, *Journal of Biosciences*, 2014; 39(1):139-144.
8. Ayyapan T, Shanmugham S, Vetrichelvan T, Response design optimized polymeric nanoparticles of etoposide for improved oral bioavailability in albino rats, *Research Journal of Pharmacy and Pharmacology*, 2018; 11(6):2538-2540.
9. Parveen Kumar, Lubna Wasim, Madhu Chopra, Aruna Chhikara, Co-delivery of Vorinostat and Etoposide Via Disulfide Cross-Linked Biodegradable Polymeric Nanogels: Synthesis, Characterization, Biodegradation, and Anticancer Activity, *AAPS PharmSciTech*, 2018; 19(2):634-647.
10. Ahmed A. Abdulhussein Al-Alia, Jeffrey Rong Chao Quachb, et.al. Polysorbate 20 alters the oral bioavailability of etoposide in wild type and mdr1a deficient Sprague-Dawley rats, *International Journal of Pharmaceutics*, 2018; 543(1-2):352-360.
11. Nanjwade Basavaraj K, Hiremath, Gurudev M, et.al. Formulation and Evaluation of Etoposide Loaded Aquasomes, *Journal of Nanopharmaceutics and Drug Delivery*, 2013; 1:92-101.
12. Nayab Khalid, Muhammad Sarfraz1, Mosab Arafat et.al. Nano-sized Droplets of Self-Emulsifying System for Enhancing Oral Bioavailability of Chemotherapeutic Agent VP-16 in Rats: A Nano Lipid Carrier for BCS Class IV Drugs, *Journal of Pharmaceutical Sciences*, 2018; 21:398-408.
13. Wakte P., Patil A., Bhusari S., Quazi M., Jabde S., Shinde D., Optimization of microwave-assisted extraction for picroside I and picroside II from Picrorrhizakurroa using Box-Behnken experimental design. *Frontiers of chemical science and engineering*, 2014; 8(4):445-453.
14. Bhusari SS. IND, Patent No. 201721000684(27.Jan.2017).
15. Note for guidance on validation of analytical procedures: text and methodology. European Medicines Agency: 1995; 1-15.
16. Validation of analytical procedures: text and methodology q2 (r1). ICH harmonised tripartite guideline, (1994).