

Available online on 15.05.2019 at <http://jddtonline.info>

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

© 2011-18, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited

Open Access

Research Article

Development of sustained release hydrophobic emulgel for oral care

Om Shelke* and Maya Sharma

Faculty of Pharmacy, Pacific Academy of Higher Education and Research, Udaipur, Rajasthan 313003, INDIA

ABSTRACT

The objective of the study is to formulate the emulgel of Doxycycline hydiate and Eugenol for sustained or controlled release gel for oral care. Doxycycline hydiate is an antibiotic which belongs to chemical class tetracyclines and widely used in treatment of oral care bacterial infections. Eugenol oil is extracted from the clove and act as good analgesic and anti-inflammatory. The combination of Doxycycline hydiate and eugenol can be formulated for better oral care treatment. The compatibility study performed of drug and drug-polymer by IR spectra indicates good compatibility. The simple manufacturing method is employed as hot emulsification. The formulations were evaluated for description, pH, viscosity, spreadability, extrudability, % drug content and content uniformity. Optimized formulations were evaluated for In-vitro release, antibacterial activity, and stability study. Formulated formulations were complying with all the evaluation parameters. The highest drug release found with the formulation OFEG 01 and OFEG 06. The formulations OFEG 06 is the most stable formulation in stability at accelerated, intermediate and room temperature storage condition for 3months.

Keywords: Emulgel, Oral Care, Doxycycline and Eugenol

Article Info: Received 31 March 2019; Review Completed 10 May 2019; Accepted 13 May 2019; Available online 15 May 2019

Cite this article as:

Shelke O, Sharma M, Development of sustained release hydrophobic emulgel for oral care, Journal of Drug Delivery and Therapeutics. 2019; 9(3):447-454 <http://dx.doi.org/10.22270/jddt.v9i3.2702>

*Address for Correspondence:

Om Shelke, Faculty of Pharmacy, Pacific Academy of Higher Education and Research, Udaipur, Rajasthan 313003, INDIA.

INTRODUCTION

Doxycycline hydiate belongs to the class of tetracycline antibiotics which is widely used to treat adult gum disease (periodontitis). Doxycycline is broad spectrum antibacterial drug widely effective in treatment of gram positive as well as gram negative bacteria. Doxycycline is indicated for use in respiratory tract infections caused by *Mycoplasma pneumoniae*, *Haemophilus influenzae*, *Streptococcus pneumoniae*, *Legionella spp.*, or *lebsiella spp.* It is also used for prophylaxis of malaria.¹⁻⁴

Clove and clove oil are used anciently in Ayurveda as analgesic and anti-inflammatory. Eugenol is major component of clove oil. Eugenol is used in perfumeries, flavourings, essential oils and in medicine as an analgesic, anti-inflammatory, antimicrobial, and aesthetic. Eugenol is a member of the phenylpropanoids class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, basil and bay leaf.⁵⁻⁸

Periodontitis is disease condition which is characterized by inflammation of the gums and supporting structures of the teeth. Periodontitis is most widely occurring human disease. Oral drug delivery is used for sustained release and

controlled release drug for better absorption and therapeutic efficacy. The sustained and controlled release of doxycycline and eugenol formulation for local application can be formulated for better treatment for longer duration. The hydrophobic formulation will remain intact in mouth for longer time due to less aqueous solubility.⁹⁻¹²

Combination of Doxycycline and eugenol will be the good therapeutic combination in same dosage form for oral care. Doxycycline will help in treatment of periodontitis and eugenol will act as an analgesic, anti-inflammatory, antimicrobial, and aesthetic. The Doxycycline will be in aqueous layer of formulation and Eugenol will be in oil phase.

MATERIAL AND METHOD

Material:

Doxycycline hydiate (Changzhou Pharmaceutical Factory, China), Eugenol (Symrise, USA), Isopropyl Myristate (BASF India), Mineral Oil (Croda, India), Butylatedhydroxytoluene (Merck Germany) Sorbitan Stearate (Croda, India), Polysorbate 20 (Seppic, France), Emulsifying wax (Connel brothers, India), Cetyl alcohol (Fine organics, India), Carbopol 974P (Lubrizol, India), Disodium EDTA (Merck,

Germany), Benzyl alcohol (Avantor, India) and Purified water (inhouse).

Method:

Compatibility study by IR:

The IR spectra of previously dried samples of solid excipients were recorded by potassium bromide dispersion technique using 2-3 mg sample of each polymer as described for solids. For lecithin, the IR absorption spectrum was recorded with FTIR instrument (with diffused reflectance) in liquid sample cell.¹³⁻¹⁵

Preparation of Emulgel:

Oil Phase: Melt and mix Isopropyl myristate, Mineral oil, Sorbitan stearate, Butyl atedhydroxy toulene, Sorbitan Stearate, Emulsifying wax, Cetyl alcohol and Eugenol under stirring. Maintain the temperature at 60°C. **Aqueous Phase:** Dissolve Disodium EDTA in mixture of Purified water and Polysorbate 20 under stirring. **Drug Phase:** Dissolve Doxycycline hyclate in Aqueous phase. Heat and Maintain the temperature at 60°C. **Emulsification:** Homogenise the oil phase and drug phase for 10min at temperature at 60°C. **Cooling under Homogenization:** Cool the bulk under homogenization till temperature of bulk reached to 32-35°C. **Mixing:** Mix the bulk under stirring till temperature of the bulk reaches 28-32°C.¹⁶⁻¹⁸

Table 1: Formulation composition for Emulgel

Sr. No.	Ingredients	Formulation Number					
		EMG 01	EMG 02	EMG 03	EMG 04	EMG 05	EMG 06
1	Doxycycline hyclate	2.00	2.00	2.00	2.00	2.00	2.00
2	Eugenol	2.00	2.00	2.00	2.00	2.00	2.00
3	Isopropyl Myristate	10.00	10.00	10.00	10.00	10.00	10.00
4	Mineral Oil	10.00	10.00	10.00	10.00	10.00	10.00
5	Butylatedhydroxytoluene	0.10	0.10	0.10	0.10	0.10	0.10
6	Sorbitan Stearate	1.00	2.00	3.00	1.00	1.00	1.00
7	Polysorbate 20	3.00	2.00	1.00	3.00	3.00	3.00
8	Emulsifying wax	5.00	5.00	5.00	5.00	6.00	7.00
9	Cetyl alcohol	5.00	5.00	5.00	7.00	6.00	5.00
10	Carbopol 974P	0.50	0.50	0.50	0.50	0.50	0.50
11	Disodium EDTA	0.10	0.10	0.10	0.10	0.10	0.10
12	Benzyl alcohol	1.00	1.00	1.00	1.00	1.00	1.00
13	Purified water	60.30	60.30	60.30	58.30	58.30	58.30

Evaluation Parameter:

The emulgel formulation will be evaluated for the physical, chemical and microbiological properties. Physical properties such as color, appearance, phase separation, homogeneity, smell, taste, pH, viscosity, spreadability and extrudability. Chemical properties such as % drug content and content uniformity. Microbiological properties such as microbial limit test for aerobic and anaerobic bacterial strains.¹⁹⁻²¹

Description:

The formulated formulations were evaluated for colour, appearance, homogeneity, phase separation, smell and taste.²²⁻²³

pH:

pH of the formulation was measured with digital pH meter. The formulation was diluted with purified water to make 10% Aqueous solution. The solution was made in triplicate and was measured. Mean of all the formulation results were recorded.²⁴⁻²⁵

Viscosity:

The Viscosity of the formulation were measured by cone and plate Brookfield viscometer, model Cap 2000+. The sample of 100mg volume approximately were added on plate of viscometer. The method was loaded of 100rpm for 1min at temperature 30°C. The samples were run for three times and average of all three results were recorded.²⁶⁻²⁸

Spreadability:

The spreadability of the formulations were measured by the spreading diameter of 1 g of formulations between 2 horizontal glass plates after one minute. The standard weight applied to the upper plate was 25 g. Each formulation was measured in triplicates.²⁹⁻³²

Extrudability:

The all formulated formulations were filled laminated aluminium tube. The tubes were sealed with the help of laminated tube sealing machine by applying heat at temperature 70-80°C. The measured quantity of bulk is filled in each tube laminated aluminium tube. The filled tube was placed between two glass slides and clamped together. A specified quantity of fixed weight (500g) kept on glass slides and then cap of the tube was opened. The amount of bulk formulation was collected and weighed. The % of bulk formulation extruded was calculated and grades are allotted (++ Excellent, ++Very Good, +Good).³³⁻³⁶

% Drug Content (Assay):

The emulgel formulation containing 50 mg of Doxycycline hyclate and 12 mg of eugenol was dissolved in 25 ml of methanol (AR). The solution was sonicated for 15 minutes to complete the dissolution of the drug. The solution was filtered using Whatman filter paper (No. 41) and final volume was made up to 100 ml using distilled water. Appropriate dilutions were made using distilled water to give the solutions containing 50 µg/ml of Doxycycline

hydride and 12 $\mu\text{g}/\text{ml}$ of Eugenol (n=3). The absorbances of these solutions were recorded at 354.0 nm (λ max) for Doxycycline hydride and 280 nm (λ max) for Eugenol by UV spectrophotometer in spectrum mode. % Drug content of the solution was calculated.³⁷⁻⁴⁰

In-vitro Evaluation:

The in vitro drug release study from the gel formulations was studied using a modified USP paddle method on Modified USP tablet dissolution test apparatus I. A glass cylinder (2.5 cm diameter), with a cellophane membrane (M.wt. cutoff 12,000) tied to one end, was attached to the metallic drive shaft of the dissolution apparatus and immersed in 250 of saline phosphate buffer pH 7.4 maintained at temperature of 37 °C. An accurately measured volume of formulations (1gm), was transferred to the glass tube. The shaft could rotate at constant speed of 100 rpm. Aliquots of 5 ml were withdrawn at regular time intervals of 30 minutes for 8 hours, at 24 hours and at 48 hours and replaced by an equal volume of fresh buffer. The drug content in the withdrawn samples were analysed UV spectrophotometrically at λ max of 354 nm and 280 nm for Doxycycline hydride and Eugenol respectively. The concentration of Doxycycline hydride and Eugenol in samples was determined from a calibration curve.⁴¹⁻⁴⁵

Content Uniformity

The formulation filled in 30g aluminium laminated tube and samples were analysed from Top, Middle and Bottom for the % drug content. The samples were analysed in duplicate and mean is recorded. The mean and standard deviation calculated for top, middle and bottom readings.⁴⁶⁻⁴⁸

Microbial Limit Test:

The microbial limit test was performed as per the USP test. The test performed for anaerobic and aerobic bacterial count.⁴⁹⁻⁵¹

Antimicrobial testing

The optimized formulation was studied for Zone of inhibition by cup plate diffusion method. *Staphylococcus aureus* was incubated in Nutrient agar medium for 24 hours under aerobic conditions.⁵²⁻⁵⁴

The cup plate diffusion method involves sterilization of Petri plates, seeding of medium, inoculation and incubation. The plates were sterilized in autoclave. The nutrient broth for each bacterial agar was prepared in volumetric flask and sterilized by autoclaving. Molten agar (20ml) was poured in each Petri plate. The Petri plates were cooled up to 40°C and kept solidifying. Standard cultures of microbes were poured on top of the agar in the plates. After solidifying, wells of 8mm were bored aseptically using sterile cork borer. The agar plugs were taken out carefully so as not to disturb the surrounding medium. The holes were filled with 0.1ml different gel formulations and drug solution. The plates were kept in an incubator at 37°C for specified time. After this Petri plates were observed for the antibacterial activity by measuring the zone of inhibition using scale.

RESULTS AND DISCUSSIONS

Compatibility study by IR:

The IR Spectra shows that the functional groups of Doxycycline hydride and Eugenol were intact in mixture of Doxycycline hydride and Eugenol, Doxycycline hydride and polymer, and eugenol and polymer. The Doxycycline hydride and Eugenol are compatible with each other as well as with polymers.

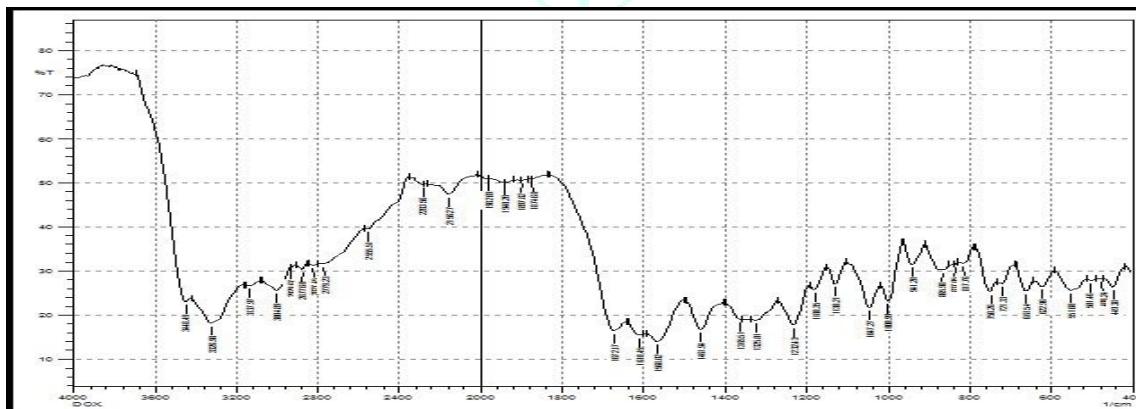


Figure 1: IR spectrum of Doxycycline hydride

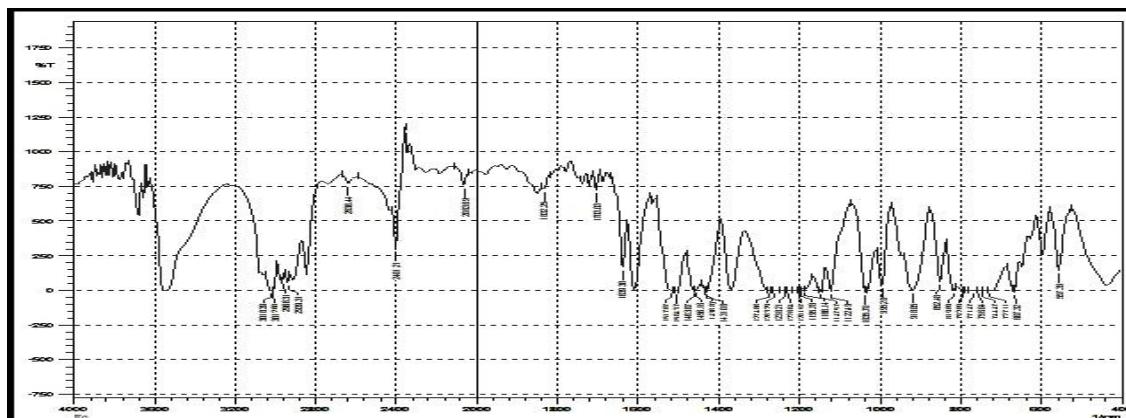


Figure 2: IR spectrum of Eugenol

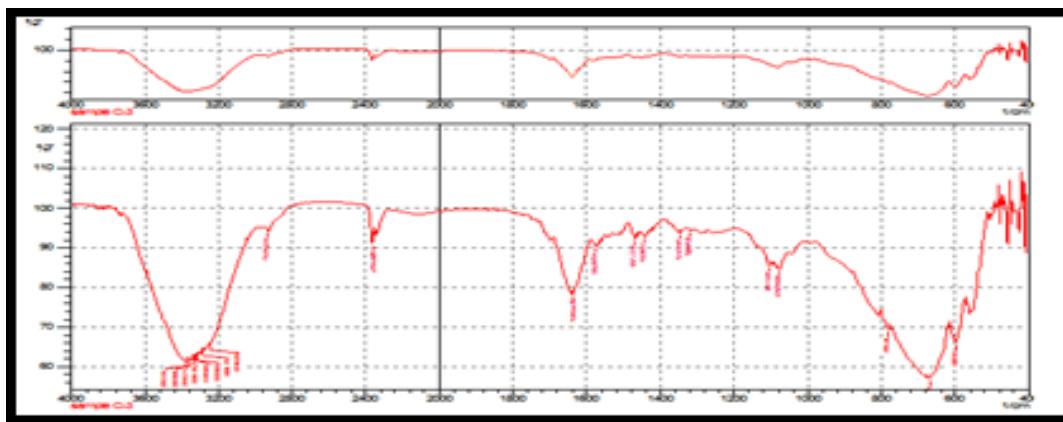


Figure 3: IR spectrum of Doxycycline hydiate and Eugenol

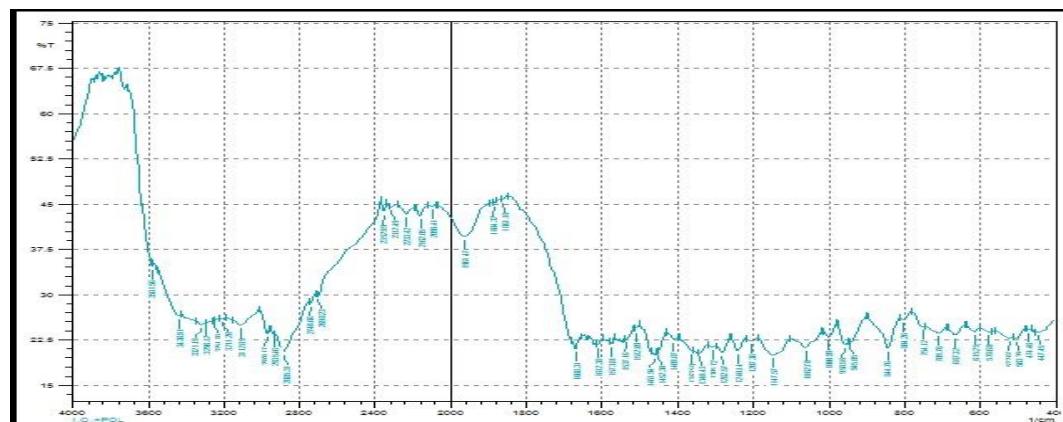


Figure 4: IR spectrum of physical mixture of Doxycycline hydiate and polymers

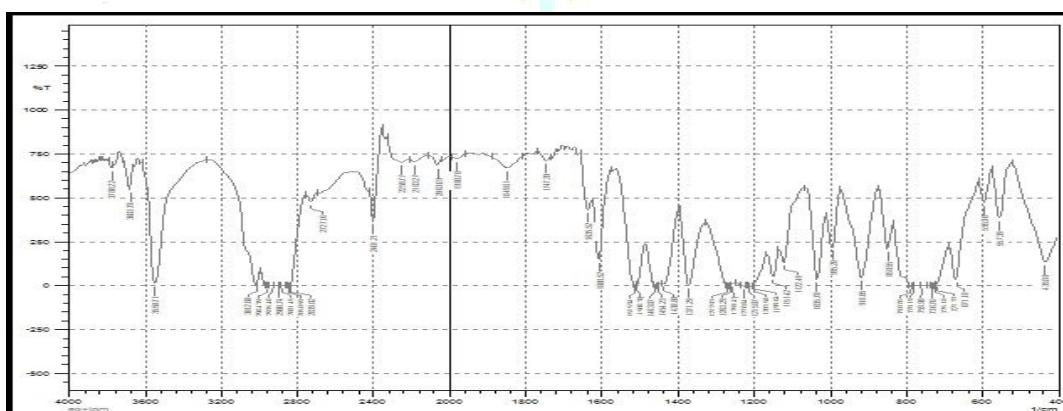


Figure 5: IR spectrum of physical mixture of Eugenol and polymers

Evaluation Parameter:

Description:

The observations were recorded for colour, appearance, homogeneity, phase separation, smell and taste in Table 2. Description of the formulation is like white smooth homogenous cream without phase separation with acceptable smell and taste.

Table 2: Results for the description of the formulations

Batch No.	Colour	Appearance	Homogeneity	Phase Separation	Smell	Taste
OFEG 01	White	Smooth shiny	Yes	No	Acceptable	Acceptable
OFEG 02	White	Smooth shiny	Yes	Yes	Acceptable	Acceptable
OFEG 03	White	Smooth shiny	Yes	Yes	Acceptable	Acceptable
OFEG 04	White	Smooth shiny	Yes	No	Acceptable	Acceptable
OFEG 05	White	Smooth shiny	Yes	No	Acceptable	Acceptable
OFEG 06	White	Smooth shiny	Yes	No	Acceptable	Acceptable

pH:

The pH of all the formulations were stable and in the range of 6.0 to 7.0. pH of the final formulation adjusted with Sodium hydroxide solution. The results are tabulated in table 3.

Table 3: Results for the pH, Viscosity, spreadability, extrudability and % drug content

Batch No.	pH	Viscosity	Spreadability	Extrudability	% Drug content
OFEG 01	6.50	4.56	14.89	+++	98.9
OFEG 02	6.67	4.13	15.11	++	86.8
OFEG 03	6.89	4.66	14.97	++	90.6
OFEG 04	6.45	6.67	12.67	+++	99.6
OFEG 05	6.47	6.01	13.56	+++	98.7
OFEG 06	6.52	5.89	14.45	+++	97.7

Viscosity:

The viscosity of the formulation was found in the range of 4.13-6.67 Cps. The results are tabulated in table 3. The viscosity of the formulation is dependant on the concentration of polymer and the concentration of solid emulsifiers in formulation. The increase in the polymer concentration and solid emulsifiers concentration viscosity of the formulation increases. The solid emulsifiers are also contributing to the formation of viscosity.

Spreadability:

The spreadability of the formulation was found in the range of 12.67-15.11 g/cm⁻¹. The results are tabulated in table 3. The spreadability of the formulation is dependant on the viscosity of the formulation. Higher the viscosity of the formulation, lower will be the spreadability of the formulation.

Extrudability:

The extrudability of the formulation will be dependant on the viscosity of the formulation and smooth texture of the

formulations. The extrudability of the formulation was acceptable. The results were tabulated in the Table 3. (+++ Excellent, ++Very Good, +Good).

% Drug Content (Assay):

The drug content of the formulations was found in the range 86.8-99.6%. The % drug content of all the formulation were acceptable and tabulated in table 3. The assay of the formulation OFEG 02 and OFEG 03 was found to be less, this may be due to separation of phases which lead to show variation in assay.

Content Uniformity

The content uniformity of all the formulations complies with USP specifications except formulations OFEG 02 and OFEG 03. The results are tabulated in Table 4. The container uniformity results for the formulation batch number OFEG 02 and 03 fails to comply with the specification. This may be due to phase separation of the formulation.

Table 4: Results for the content uniformity and microbial limit test

Batch No.	Content Uniformity					Microbial Limit test
	Top	Middle	Bottom	Mean	SD	
OFEG 01	98.7	99.0	98.6	98.8	0.2	Complies as per USP
OFEG 02	85.8	105.5	80.5	90.6	13.2	Complies as per USP
OFEG 03	88.6	91.5	109.7	96.6	11.4	Complies as per USP
OFEG 04	99.3	99.1	98.8	99.1	0.3	Complies as per USP
OFEG 05	98.6	98.5	98.3	98.5	0.2	Complies as per USP
OFEG 06	97.9	98.2	98.3	98.1	0.2	Complies as per USP

In-vitro Evaluation:

The invitro release of the Doxycycline was found in the range of 63-77% after 48 hrs. The formulation OFEG 01 has highest drug release amongst all the formulation. This may be due to low viscosity of the formulation. The formulation

OFEG 02 has much slower drug release than the other formulation. The drug release pattern of OFEG 06 and OFEG 01 is same but the OFEG 01 has higher drug release than the OFEG 06. The results are tabulated in Table 5 and graphically represented in figure 6.

Table 5: Results for the In-vitro release test for Doxycycline.

Time (min)	Doxycycline hyclate			Eugenol	
	OFEG 01	OFEG 04	OFEG 06	OFEG 01	OFEG 06
0	0.000	0.000	0.000	0.000	0.000
30	13.289±0.81	7.194±0.13	10.373±0.11	9.352±0.04	8.482±0.04
60	19.021±0.13	11.049±0.26	17.805±0.20	15.358±0.04	13.561±0.11
90	25.504±0.05	16.651±0.21	23.656±0.35	20.746±0.03	18.782±0.05
120	30.460±0.15	17.914±0.12	28.463±0.40	26.342±0.05	24.431±0.06
150	35.000±0.12	19.491±0.24	34.384±0.31	31.587±0.05	29.228±0.02
180	39.699±0.21	23.879±0.23	38.383±0.11	37.203±0.05	36.944±0.18
210	43.971±0.65	27.382±0.16	42.718±0.05	42.580±0.04	40.339±0.16
240	48.727±0.17	32.332±0.17	46.588±0.29	47.529±0.04	45.670±0.14
270	52.191±0.08	37.448±0.28	50.496±0.23	51.947±0.06	49.921±0.22
300	56.834±0.00	35.325±0.22	53.559±0.30	55.755±0.08	53.782±0.25
330	60.994±0.32	40.789±0.21	57.167±0.33	58.036±0.09	56.626±0.19
360	63.883±1.52	46.772±0.32	61.925±0.29	60.067±0.10	58.041±0.23
390	66.705±1.12	51.975±0.18	64.637±0.25	63.192±0.10	61.445±0.19
420	70.028±1.09	54.744±0.07	67.341±0.27	66.500±0.09	64.746±0.32
450	74.535±0.41	59.058±0.07	71.946±0.28	69.318±0.08	67.625±0.33
480	77.916±0.71	63.968±0.09	74.529±0.22	72.453±0.08	70.102±0.25

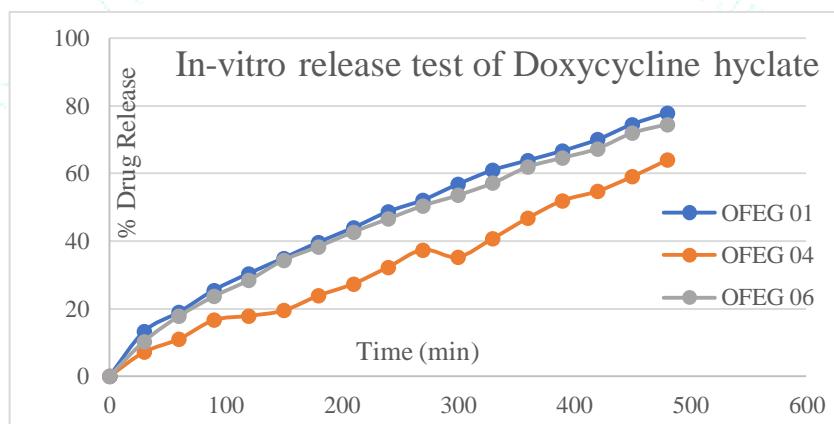


Figure 6: Comparative In-vitro drug release profile Doxycycline

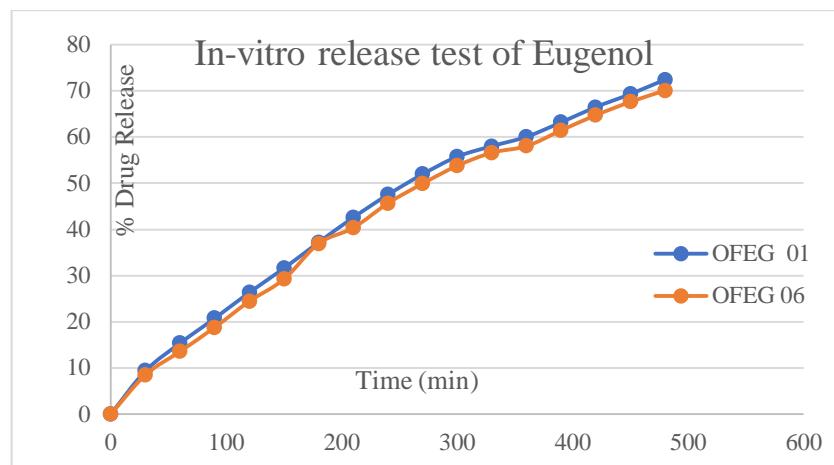


Figure 7: Comparative In-vitro drug release profile Eugenol

Antimicrobial testing

The zone of inhibition (ZOI) Formulations OFEG 01, OFEG 04 and OFEG 06 were found in range of 3.8-4.5. The results are

tabulated in Table 6. The ZOI was found highest for formulation OFEG 01, this may be due to highest drug release from the formulation. The higher drug release may be due to low viscosity of the formulation.

Table 6: Results for the Antimicrobial testing.

Batch No.	OFEG 01	OFEG 02	OFEG 03	OFEG 04	OFEG 05	OFEG 06
Zone of Inhibition (cm)	4.50	4.25	4.29	3.89	3.75	4.35

CONCLUSION

The emulgel formulation can be formulated with the composition of Doxycycline hydiate, Eugenol, Isopropyl Myristate, Mineral Oil, Butylatedhydroxytoluene, Sorbitan Stearate, Polysorbate 20, Emulsifying wax, Cetyl alcohol, Carbopol 974P, Disodium EDTA, Benzyl alcohol, and Purified water. The doxycycline and eugenol are compatible with each other as well as polymer. The formulations have good stability and complies with the evaluation parameter except formulations OFEG 02 and 03. The invitro release study has shown that formulation OFEG 01 and OFEG 06 has similar pattern of drug release but formulation OFEG 04 has slower drug release. The formulation OFEG 01 and 06 has similar antimicrobial efficacy on nutrient media. The combination of Doxycycline hydiate and Eugenol has good antibacterial activity and expected to have better therapeutic efficacy. The formulation OFEG 06 has better stability at accelerated storage condition for 3Months.

REFERENCES

1. Srinath S. Management of Periodontal Disease with Doxycycline: An Update. International Journal of Pharmaceutical and Clinical Research 2015; 7(4): 252-255.
2. Preshaw PM, Hefti AF, Jepsen S et al. Subantimicrobial dose doxycycline as adjunctive treatment for periodontitis. *J Clin Periodontal* 2004; 31: 697-707.
3. Rosso J Q, Faocd DO. Oral Doxycycline in the Management of Acne Vulgaris: Current Perspectives on Clinical Use and Recent Findings with a New Double-scored Small Tablet Formulation. *The Journal of Clinical and Aesthetic Dermatology*, 2015;8(5):19-26.
4. Holmes N, Patrick C. Safety and Efficacy Review of Doxycycline. *Clinical Medicine: Therapeutics*, 2009; 1:471-482.
5. Kothiwale S, Patwardhan V, Gandhi M, Sohani R, Kumar A. A comparative study of antiplaque and antigingivitis effects of herbal mouthrinse containing tea tree oil, clove, and basil with commercially available essential oil mouthrinse. *Journal of Indian society Periodontology*, 2014; 18(3):316-320.
6. Thosar N, Basak S, Bahadure R, Rajurkar M. Antimicrobial efficacy of five essential oils against oral pathogens: An in vitro study. *European journal of dentistry*, 2013; 7(1):71-77.
7. Marya C, Satija G, Avinash J, Nagpal R, Kapoor R, Ahmad A. In Vitro Inhibitory Effect of Clove Essential Oil and Its Two Active Principles on Tooth Decalcification by Apple Juice. *International Journal of Dentistry*, 2012; 1(1):01-06.
8. Captain K, Kale R, Shirodkar S. Formulation Optimization and Performance Evaluation of Papain and Clove Oil based Chemo-mechanical Caries Removing Gel. *Journal of Young Pharmacists*, 2018; 10(1):24-26.
9. Pawar V, Bhagat T, Toshniwal M, Mokashi N, Khandelwal K. Formulation and evaluation of dental gel containing essential oil of coriander against oral pathogens. *International Research Journal of Pharmacy*, 2013; 4(10):48-54.
10. Shah A. Periodontitis- A Review. *Medical clinical review*, 2017;3(14):01-05.
11. Taylor G, Manz M, Borgnakke W. Compendium of Continuing Education in Dentistry, 2004; 25(3):179-184.
12. Arigbede A, Babatope B, Bamidele M. Periodontitis and systemic diseases: A literature review. *Journal of Indian soecieity of periodontology*, 2012; 16(4):487-491.
13. Kogawa A, Mello N, Salgado H. Quantification of Doxycycline in Raw Material by an Eco-Friendly Method of Infrared Spectroscopy. *Pharmaceutica Analytica Acta*, 2016; 7(2):01-04.
14. Yadav S, Mishra B. Preformulation studies on combination of ornidazole and doxycycline in pharmaceutical dosage forms: Infra-red spectroscopy and simultaneous ultra-violet method development. *Journal of Chemical and Pharmaceutical Research*, 2016, 8(8):564-573.
15. Masood N, Naureen H, Abbas N, Adnan M, Tariq M. Formulation development and in-vitro evaluation of double layer tablet of sustained release (S.R.) flurbiprofen and immediate release doxycycline. *International Journal of Pharmaceutical Sciences and Research*, 2017;8(9):3978-3985.
16. Shelke O, Kulkarni A. Formulation, Development and Evaluation of Nifedipine Emulgel for Treatment of Anal Fissures Using Polymeric Emulsifiers. *Indian Journal of Pharmaceutical Education and Research*, 2019; 53(2s):s76-s83.
17. Shelke O, Kulkarni A. Emulgel of Moxifloxacin HCl Solid Lipid Nanoparticles for Topical Application. *World Journal of Pharmacy and Pharmaceutical Sciences*, 2018; 8(1):811-826.
18. Dev A, Chodankar R, Shelke O. Emulgels: A Novel Topical Drug Delivery System. *Pharmaceutical and Biological Evaluations*, 2015; 2(4):64-75.
19. Pakhare A, Deshmankar S, Biyani K. Design and Development of Emulgel Preparation Containing Diclofenac Potassium. *Asian Journal of Pharmaceutics*, 2017; 11(4):712-716.
20. Rao V, Vijaya S, Padmalatha K. Formulation and Evaluation Of Oxiconazole Emulgel For Topical Drug Delivery. *International Journal of Current Research*, 2017; 9(10):58876-58878.
21. Mahajan V, Basarkar G. Formulation design, development and characterization of dexibuprofen emulgel for topical delivery: In-vitro and In-vivo evaluation. *Journal of Drug Delivery & Therapeutics*, 2019; 9(2):330-342.
22. Ueda C, Shah V, Derdzinski K, Ewing G, Flynn G, Maibach H, Marques M, Rytting H, Thakker K, Yacobi A. Topical and Transdermal Drug Products. *Pharmacopeial Forum*, 2009; 35(3):750-764.
23. Goyani M, Akbari B, Chaudhari S, Jivawala R. Formulation and Evaluation of Topical Emulgel Of Antiacne Agent. *International Journal of Advanced Research and Review*. 2018; 3(7),52-68.
24. Chang R, Lionberger R, Yu L. Generic Development of Topical Dermatologic Products: Formulation Development, Process Development, and Testing of Topical Dermatologic Products. *American Association of pharmaceutical science journal*, 2013; 15(1):41-52.
25. Saudagar R, Khairnar S. Formulation development and evaluation of film forming emulgel of betamethasone valerate. *International Journal of Current Advanced Research*, 2017; 6(11):7167-7173.
26. Shelke O, Kulkarni A. Formulation, Development and Evaluation of Nano Ethosomal Gel of Tramadol Hydrochloride. *Journal of Nanomedicine and Nanotechnology*, 2018; 9(5):01-06.
27. Saudagar R, Khairnar S. Formulation development and evaluation of film forming emulgel of betamethasone valerate. *International Journal of Current Advanced Research*, 2017; 6(11):7167-7173.
28. Patel H, Patel U, Akbari B, Thummar P. Formulation Development & Evaluation of Econazole Nitrate Topical Emulgel. *International Journal of Advances in Pharmaceutics*, 2018; 07(06):48-56.

29. Gupta R, Gupta G. Formulation Development and Evaluation of Anti-inflammatory Potential of *Cordia obliqua* Topical Gel on Animal Model. *Pharmacognosy Journal*, 2017; 9(6):93-98.

30. Gadkari P, Patil P, Saudagar R. Formulation, development and evaluation of topical nanoemulgel of tolnaftate. *Journal of Drug Delivery and Therapeutics*, 2019; 9(2):208-213.

31. Dhas A, Deshmukh G. Formulation and Evaluation of Topical Adapalene Emulgel. *American Journal of Pharmtech Research*, 2016; 6(3):530-536.

32. Sekar M, Ismail N. Formulation and evaluation of embelin emulgel for topical delivery. *International Journal of Green Pharmacy*, 2019; 13(1):60-64.

33. Rai S, Ravikumar P. Development and Evaluation of Microsphere Based Topical Formulation using Design of Experiments. *Scientific Publication of The Indian Pharmaceutical Association*, 2016; 78(2):182-192.

34. Kumar L, Verma R. In vitro evaluation of topical gel prepared using natural polymer. *International Journal of Drug Delivery*, 2010; 2(1):58-63.

35. Aiyalu R, Govindarjan A, Ramasamy A. Formulation and evaluation of topical herbal gel for the treatment of arthritis in animal mode. *Brazilian Journal of Pharmaceutical Sciences*, 2016; 52(3):493-507.

36. Jadhav R, Patil P, Patil P. Formulation and Evaluation of Semisolid preparation (Ointment, Gel & Cream) of Thiocolchicoside. *Journal of Pharmaceutical and Biomedical Sciences*, 2011; 08(08):01-06.

37. Sreeram V, Kumar N, Karumuri S, Madhu M. UV Assay Method for the Determination of Doxycycline Hydiate in Bulk and Pharmaceutical Formulation. *Chemical Science Transactions*, 2015; 4(1):69-74.

38. Mitic S, Miletic G, Kostic D, Dokic D, Arsic B, Rasic I. A rapid and reliable determination of doxycycline hydiate by HPLC with UV detection in pharmaceutical samples. *Journal of the Serbian Chemical society*, 2008; 73(6):665-671.

39. Kogwa A, Salgado H. Doxycycline Hydiate: A Review of Properties, Applications And Analytical Methods. *International journal of Life Science and Pharma Research*, 2012; 2(4):11-25.

40. Dhal C, Ahmad F, Chauhan A, Jyothi M, Singh R, Saini P, Mathur S, Singh G. Quality by design approach for simultaneous estimation of doxycycline hydiate and curcumin by RP-HPLC method. *Indian Journal of Pharmaceutical Sciences*, 2015; 77(6):723-728.

41. Chadha V, Bhat K. The evaluation of doxycycline-controlled release gel versus doxycycline-controlled release implant in the management of periodontitis. *Journal of Indian Society of Periodontology*, 2012; 16(2):200-206.

42. Brown C, Friedel H, Barker A, Bushe L, Keitel S, Cecil T, Kraemer J, Morris J, Rappas C, Stickelmeyer M, Yomota C, Shah V. FIP/AAPS Joint Workshop Report: Dissolution/In Vitro Release Testing of Novel/Special Dosage Forms. *AAPS PharmSciTech*, 2011; 1(1):01-13.

43. Jadhao U, Tekade B, Patil R, Patil P, Patil V. Formulation and In-Vitro Evaluation of Oral Hydrogel Containing Miconazole Nitrate. *Asian Journal of Pharmaceutical Education and Research*, 2017; 6(4):57-68.

44. Yu L, Wang J, Hussain A. Evaluation of USP apparatus 3 for dissolution testing of immediate-release products. *American association of pharmaceutical sciences Pharma Sci*, 2002; 4(1):01-05.

45. Hilton A, Deasy P. In vitro and in vivo evaluation of an oral sustained-release floating dosage form of amoxycillin trihydrate. *International Journal of Pharmaceutics*, 1992; 86(1):79-88.

46. Chang R, Raw A, Lionberger R, Yu L. Generic Development of Topical Dermatologic Products: Formulation Development, Process Development, and Testing of Topical Dermatologic Products. *The American Association of Pharmaceutical Sciences Journal*, 2013; 15(1):41-52.

47. USP, Generla Chapter 905; Uniformity of Dosage units. United state Pharmacopiea, 2011 available Online: https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q0304_stage_6_monograph_25_feb_2011.pdf

48. Pahala S, In Vitro Bioequivalence Data for a Topical Product: Chemistry Review Perspective. US FDA Public WorkShop, 2017 Available Online: <https://www.fda.gov/downloads/Drugs/NewsEvents/UCM591915.pdf>

49. USP, General Chapter 1111: Microbiological examination of nonsterile products: Acceptance criteria for pharmaceutical preparations and substances for pharmaceutical use. United State Pharmacopeia, 2013, 36:778-779.

50. Vu N, Lou J, Kupiec T. Quality control: Microbial limit test for nonsterile part 1. *International Journal of Pharmaceutical compounding*, 2014; 18(3):213-221.

51. Vu N, Lou J, Kupiec T. Quality control: Microbial limit test for nonsterile part2. *International Journal of Pharmaceutical compounding*, 2014; 18(4):305-310.

52. Shelke O, Kulkarni A. Effect of pH on the Efficacy of the Sodium Benzoate as Antimicrobial Preservative in Topical formulation. *Inventi Impact: Pharm Tech*, 2018; 2018(2):64-67.

53. USP, General Chapter 51: Antimicrobial effectiveness testing. Microbiological testing. United State Pharmacopeia, 2012; 33(2):54-55.

54. Crystal B. Peer Reviewed: Antimicrobial Testing. Antimicrobial effectiveness testing validation strategies. Available online: <http://www.ivtnetwork.com/article/antimicrobialeffectiveness-testing-validation-trategies>.