

Available online on 15.04.2019 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

© 2011-18, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited

Research Article

Preliminary evaluation of melatonin in the kindling model of epilepsy

Ashish Mishra a*, Jeetendra Kumar Gupta a and Nilesh Jain b, Sunil Mistry c

- ^a Department of Pharmacology, GLA University, Mathura, (U.P.), India
- **b** Sagar Institute of Research Technology and Science- Pharmacy, Bhopal (M.P.), India.
- ^c Apex institute of Pharmacy, Mirzapur, India

ABSTRACT

During the past decades, epilepsy syndrome has been depicted across India as well as worldwide and this leads to increasing mortality and morbidity rate. Researchers are trying to investigate the responsible causes and risk factors for seizure occurrence. Epilepsy is a chronic disorder which is derived from a Latin word 'sacire' meaning 'convulsive attack' and is expressed as a paroxysmal experience appointed to atypical, unnecessary or concurrent neuronal bustle in the brain. The treatment of epilepsy involves the use of anti-epileptic drugs i.e. Sodium valproate, phenytoin, carbamazepine. Despite being treated with the available anti-convulsant drugs, this disease is still prevalent worldwide. So, as an adjuvant treatment melatonin exhibit an anti-epileptic activity in several animal models of epilepsy. However, its anti-epileptic potential has yet to be evaluated in Pentylenetetrazole (PTZ) induced model of epilepsy through kindling phenomenon. Rats were injected with a dose of (35-55 mg/kg) of pentylenetetrazole (PTZ) up to twenty days in alternate days. Observed the convulsive behavior of rats for thirty minutes immediately after PTZ injection. The entire treatment schedule includes the administration of melatonin (75 mg/kg) one hour prior to the PTZ administration. Sodium valproate was used as standard drug for this kindling model of epilepsy.

Keywords: Pentylenetetrazole, Melatonin, Sodium valproate, Gamma-amino butyric acid

Article Info: Received 20 Feb 2019; Review Completed 27 March 2019; Accepted 29 March 2019; Available online 15 April 2019

Cite this article as:

Mishra A, Gupta JK, Jain N, Mistry S, Preliminary evaluation of melatonin in the kindling model of epilepsy, Journal of Drug Delivery and Therapeutics. 2019; 9(2-s):223-226 http://dx.doi.org/10.22270/jddt.v9i2-s.2496

*Address for Correspondence:

Dr. Nilesh Jain, Sagar Institute of Research Technology and Science-Pharmacy, Ayodhya Bypass Road, Bhopal, Madhya

Pradesh 462041, India

1. INTRODUCTION

Epilepsy is considered as one of the most prevailing pandemic of the twenty-first century¹ (Ben et al. 2009). According to the World Health Organization report, around fifty million people worldwide are suffering from epilepsy syndrome^{2,3}. It has been suggested that the epilepsy leads to several complications⁴ including central nervous system disorders^{5,6} result from the complex interaction between epileptogenic, precipitating and endogenous factors.

Various clinical and animal studies revealed that epilepsy can cause multidimensional cognitive impairment. The treatment of epilepsy involves the use of anti-epileptic drugs i.e. Sodium valproate, phenytoin, carbamazepine⁷. It has been documented that sodium valproate can ameliorate γ -amino butyric acid level in epileptic animals⁸. However, along with their efficacy and potency, several adverse effects of sodium valproate have also been reported including abdominal cramps, abnormal liver function, and tremor^{9,10}. Hence, it is imperative to discover novel strategies in the management of epilepsy syndrome.

Melatonin is considered as hormone of darkness as well as human time keeping machine. It accomplishes clock and calendar functions to make the human body alter to diurnal variation which impact the 24-h rhythms in physiology and behaviors of human body^{11,12}. Lerner and his colleagues worked on melatonin by isolating and chemically characterizing them from mammalian pinealocytes in 1958¹³. Melatonin (also called pleiotropic hormone) exhibit chronobiotic effects linked with hormonal secretion, sleepwake cycle, thermoregulation and other physiological events¹⁴⁻¹⁶. Melatonin have also been observed to maintain the immunity, energy metabolism, feeding behavior, free radical scavenging, cancer proliferation, maintenance of vasculature, inflammation, reproduction growth and development¹⁷.

Melatonin also exhibits anti-epileptic activity against experimentally induced epilepsy in several animal models. Moreover, it has been reported that melatonin can protect neuronal damage in the brain of chemical-induced epileptic animals.

Several epidemiological studies have postulated that neuronal hyperexcitability is the main reason in the pathogenesis of epileptic seizure. Underlying molecular mechanism of rapid neuronal firing, it depends on three steps which include decreased inhibitory neurotransmission,

ISSN: 2250-1177 [223] CODEN (USA): JDDTA0

increased excitatory neurotransmission, and variation in sodium or potassium ion channels¹⁸⁻¹⁹ Glutamate²⁰⁻²², GABA, Dopamine, Serotonin, Acetylcholine are some major neurotransmitters found in central nervous system²³ (Nicoll et al. 1990). Among them, GABA and glutamate (inhibitory and excitatory neurotransmitter respectively) are the important neurotransmitters for the mechanism of epilepsy^{24,25}. Experimental result suggests that melatonin increases the seizure threshold by enhancing the GABA level in the hippocampus region of the central nervous system. Inhibitory neurotransmitter (GABA) precedes their effects through GABAA and GABAB receptors, which are found postsynaptically and presynaptically respectively²⁶⁻²⁸. Melatonin exerts their effect by opening the chloride channels through the activation of GABA-A receptors which leads to inhibition of action potential and thus effective in epilepsy syndrome²⁹⁻³¹.

2. MATERIAL AND METHODS

2.1. Animals

Male Wistar albino rats (180 \pm 20 g) were obtained from the central animal house, Institute of Pharmaceutical Research, GLA University, Mathura and were used in this study. The animals were grouped and housed in poly-acrylic cages lined with husk under standard conditions (24 \pm 2 °C temperature, 45–55 % relative humidity and 12 h light: 12 h dark cycle). Animals were fed standard pellets diet and had free access to water. The experimental protocol was carried out in accordance with the approval of the Institutional Animal Ethics Committee (1260/Po/ac/09/CPCSEA/IAEC/2018/P.Col./R01) under strict compliance of the Committee for the Purpose of Control and Supervision of Experiments on

Animals (CPCSEA) guidelines for experimental studies (National Research Council US Committee for the update of the guide for the care and use of laboratory animals 2011)³².

2.2. Chemicals

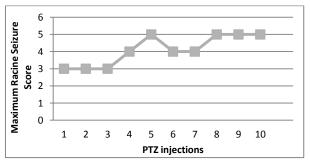
Melatonin was purchased from Central Drug House, India. Curcumin (Yarrow chemicals), Sodium valproate (Yarrow chemicals), Pentylenetetrazole (Star chemicals) and GABA (yarrow chemicals). All other chemicals and reagents were available commercially from local suppliers and were of analytical grade.

2.3. Animal Kindling Model of Pentylenetetrazole induced epilepsy

Rats were injected intra-peritoneally with sub convulsive doses of Pentylenetetrazole at 48 h intervals during 20 days (From 35 mg/kg to 55 mg/kg) [additional 5mg after each 2 injections]³³.

2.4. Experimental Design

The acclimatized animals were divided into three groups of six rats in each. Each groups namely control, Test drug and standard. All the animals received Pentyleneterazole (PTZ) (except control) in an alternative manner for up to 20 days. Assessment of convulsion behavior in rats immediately after the PTZ injection for 30 minutes and scored according to modified Racine's scale³⁴.


2.5. Assessment of Behavioral parameters

According to researchers, seizure scores are evaluated under the following headings:

Behavioral Responses	Scores
No seizure	0
Sudden immobilization	1
Ear and facial twitching	2
Facial, vibrissal and forelimb clonus/or wet dog shake behavior	3
Sporadic forelimb clonus with kangaroo posture	4
Clonic and/or tonic seizures with posture maintenance	5
Generalized tonic-clonic seizures with loss of posture tone, and turning onto the	6
side and seizures characterized by rearing and falling	
Death within half an hour	7

 Table 1: Seizure scores in accordance with modified Racine's scale

PTZ administration was withdrawn after establishment of kindling status and subsided by saline injections until the end of the protocol. After the induction of epilepsy, the treatment schedule involves the administration of test drug (melatonin 50 mg/kg) and standard drug (sodium valproate, 200 mg/kg) through oral route one hour prior to the administration of Pentylenetetrazole.

Figure 1: Graphical representation of induction of seizure during kindling progression according to Racine's seizure scale

2.6. Data Analysis

All the data were mean \pm standard error of the mean (SEM). All statistical analyses of data were done using one-way analysis of variance (ANOVA) with Dunnett multiple comparison test. P< 0.05 was considered as *significant; P< 0.01 was considered as *more significant.

3. RESULTS

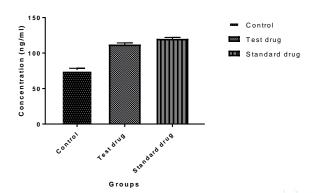

Table depicts the effect of melatonin (75 mg/kg) on PTZ induced changes in the level of γ -amino butyric acid (GABA). Stastical analysis revealed that melatonin treatment significantly attenuated PTZ induced decrease in the levels of GABA in wistar albino rats. However, the anti-epileptic activity of melatonin (75 mg/kg) was significantly lower compared to standard drug sodium valproate in epileptic rats Table-2.

Table 2: Drug concentration

Groups	Concentration
Control	76 ± 2.531
Test drug (Melatonin)	112 ± 2.312**
Standard drug (Sodium Valproate)	120 ± 2.112**

All values are mean \pm SEM (n = 6)

(One way ANOVA followed by Dunnett multiple comparison test). ** More Significant difference at P< 0.01 vs. Control group.

Figure 2: Effect of melatonin (75.0 mg/kg) on PTZ induced changes in to convulsion behavior of rats. All values are mean ± SEM (n = 6). ** More Significant difference at P< 0.01 vs. Control group (one-way ANOVA followed by Dunnett multiple comparison test)

4. DISCUSSION

The present study demonstrated for the first time the fact that melatonin (75 mg/kg) exhibit anti-epileptic activity in Pentyleneterazole (PTZ) induced epileptic rats. Wistar albino rats of either sex were employed in the present study because of their small size, low cost and easily availability. Hence, melatonin can perhaps be considered as an adjuvant to sodium valproate in the management of epilepsy syndrome during PTZ-induced seizure.

The relation between ion channels and neurotransmitters with epilepsy was proved in many epidemiological studies (Babb TL et al. 1987). Currently, it is known that reduction of GABA level, increase in glutamate level, and alteration in sodium or potassium ion channels are observed in the population affected from epilepsy syndrome. In our study, chemical kindling model of epilepsy was conducted. Kindling process refers to a process in which there is a repeated administration of a subconvulsant stimulus, electrical or chemical produces a gradually electroencephalographic and behavioral response which culminates in a behavioral seizure. Administration of pentylenetetrazole used as an inducing agent at a dose of 25-55 mg/kg, intraperitoneal in an alternate manner for 20 days produced a seizure.

In the present study, Melatonin (an indoleamine derivative of serotonin) at a dose of 75 mg/kg, i.p. was noted to reduce hyperexcitability of neurons and thus suppress seizure by increasing the level of inhibitory neurotransmitter (GABA). Sodium valproate was used as a standard to compare the test drugs such as melatonin.

ACKNOWLEDGMENTS

AM is thankful to GLA University, Mathura, Uttar Pradesh, India for the financial assistantship.

ISSN: 2250-1177 [225]

REFERENCES

- 1. Ben HI, Mrabet A, "Neurovascular progress in the dawn of the 21st century", La Tunisie medicale 2009; 87(1):6-16.
- Noronha AL, Borges MA, Marques LH, Zanetta DM, Fernandes PT, De Boer H, Espindola J, Miranda CT, Prilipko L, Bell GS, Sander JW "Prevalence and pattern of epilepsy treatment in different socioeconomic classes in Brazil", Epilepsia, 2007; 48(5):880-5.
- 3. Megiddo I, Colson A, Chisholm D, Dua T, Nandi A, Laxminarayan R "Health and economic benefits of public financing of epilepsy treatment in India: An agent-based simulation model." Epilepsia, 2016; 57(3):464-474.
- 4. Warner TT, Hammans SR. "Practical guide to neurogenetics", Philadelphia: Saunders/Elsevier, 2009.
- Annegers JF, Grabow JD, Groover RV, Laws ER, Elveback LR, Kurland LT. "Seizures after head trauma. A population stud", Neurology, 1980; 30(7):683.
- 6. Behrens E, Schramm J, Zentner J Konig R. "Surgical and neurological complications in a series of epilepsy surgery procedures", Neurosurgery, 1997; 41(1):1-10.
- Ochoa J G, Riche W. "Antiepileptic drugs: an overview", eMedicine journal, 2004.
- Lowenstein DH. "Seizures and epilepsy", Harrison's principles of internal medicine, 2005; 16(2):2357.
- Tomson T, Battino D. "Teratogenic effects of anti-epileptic drugs", Lancet Neurol, 2012; 11:803-13.
- Zawab A, Carmody J. "Safe use of sodium valproate", Australian prescriber, 2014; 37(4).
- 11. Lowrey PL, Takahashi JS "Mammalian circadian biology: elucidating genome-wide levels of temporal organization." Annu. Rev Genomics Hum Genet 2004; 5:407-4.
- 12. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, lino M, Hashimoto S. "System-level identification of transcriptional circuits underlying mammalian circadian clocks", Nature genetics, 2005; 37(2):187.
- Chowdhury I, Sengupta A, Maitra SK. "Melatonin: fifty years of scientific journey from the discovery in bovine pineal gland to delineation of functions in human".
- 14. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR. "Melatonin—A pleiotropic, orchestrating regulator molecule." Progress in neurobiology 2011; 93(3):350-84.
- Singh M, Jadhav HR, "Melatonin: functions and ligands. Drug discovery today", 2014; 19(9):1410-8.
- Mahmood D, Muhammad BY, Alghani M, Anwar J, el-Lebban N, Haider M. "Advancing role of melatonin in the treatment of neuropsychiatric disorders", Egyptian Journal of Basic and Applied Sciences, 2016; 3(3):203-18.
- Radogna F, Diederich M, Ghibelli L. "Melatonin: a pleiotropic molecule regulating inflammation", Biochemical pharmacology 2010; 80(12):1844-52.
- 18. Goldensohn ES, Porter RJ, Schwartzkroin PA. "The American Epilepsy Society: an historic perspective on 50 years of advances in research". Epilepsia, 1997; 38(1):124-50.
- 19. Babb TL "Pathological findings in epilepsy: Surgical treatment of the epilepsies", 1987; 511-40.
- Mayer ML, Westbrook GL. "Permeation and block of N methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones", The Journal of physiology, 1987; 394(1):501-27.
- 21. Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S, "A family of metabotropic glutamate receptors", Neuron, 1992; 8(1):169-79
- Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S. "A family of metabotropic glutamate receptors", Neuron, 1993; 8(1):169-79.
- Nicoll R A, Malenka R C, Kauer JA. "Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system", Physiological reviews, 70(2):513-565, 1990.
- Depaulis ACMC, Deransart C, Vergnes M, Marescaux C "GABAergic mechanisms in generalized epilepsies: the neuroanatomical dimension", Revue neurologique 1997; 153:S8-13.
- Lason W, Chlebicka M, Rejdak K. "Research advances in basic mechanisms of seizures and antiepileptic drug action." Pharmacological Reports, 2013; 65(4):787-80.
- Bloom FE, Iversen LL. "Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography", Nature 1971; 229(5287):628-630.

- 27. Sieghart W. "Structure, pharmacology, and function of GABAA receptor subtypes", Adv Pharmacol, 2006; 54:231-263.
- Bowery NG. "Historical perspective and emergence of the GABAB receptor," Adv Pharmacol, 2010; 58:1-18.
- Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA. "Neurosteroid modulation of GABAA receptors". Prog Neurobiol, 2003; 7(1):67-80.
- 30. Hosie AM, Wilkins ME, da Silva HM, Smart TG. "Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites". Nature 2006; 444(7118):486-489.
- 31. Wang M. "Neurosteroids and GABA-A receptor function", Front Endocrinol (Lausanne), 2011; 2:44.
- 32. "National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals Guide for the care and use of laboratory animals", 8th edn. National Academies Press, Washington, 2011.
- Hoeller AA, de Carvalho CR, Franco PL, Formolo DA, Imthon AK, dos Santos HR, Eidt I, Souza GR, Constantino LC, Ferreira CL, Prediger RD. "Behavioral and Neurochemical Consequences of Pentylenetetrazol-Induced Kindling in Young and Middle-Aged Rats." Pharmaceuticals, 2017; 10(3):75.
- 34. Luttjohann A, Fabene PF, van Luijtelaar G. "A revised Racine's scale for PTZ-induced seizures in rats", Physiol Behav, 2009; 98:579-586.

ISSN: 2250-1177 [226] CODEN (USA): JDDTAO