

Available online on 15.11.2018 at <http://jddtonline.info>

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

© 2011-18, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited

Open Access

Research Article

*In-vitro antimicrobial and antioxidant activity of *Argyreia cuneata* (Willd.) Ker Gawl. (Convolvulaceae)*

Prashith Kekuda T.R*, Nitish A. Bharadwaj, Sachin M.B, Sahana B.K, Priyanka G.S

Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs Road, Shivamogga-577201, Karnataka, India

ABSTRACT

Objectives: *Argyreia cuneata* (Willd.) Ker Gawl. belongs to the family Convolvulaceae. The present study was performed to screen the potential of crude extract of various parts of *A. cuneata* to exhibit antimicrobial activity. **Methods:** Extraction of shade dried and powdered leaf, stem and flower of *A. cuneata* was carried out by maceration technique. Antibacterial and antifungal activity of extracts was evaluated by Agar well diffusion and Poisoned food technique respectively. Antioxidant activity was determined by DPPH radical scavenging, ABTS radical scavenging and ferric reducing assays. **Results:** All extracts were effective in inhibiting test bacteria and the susceptibility of bacteria to extracts was in the order: *Bacillus cereus* > *Shigella flexneri* > *Escherichia coli* > *Salmonella typhimurium*. Leaf extract and stem extract exhibited highest and least antibacterial activity, respectively. Extracts were effective in causing inhibition of seed-borne fungi viz. *Aspergillus niger* and *Bipolaris* sp to >50%. Leaf extract exhibited marked antifungal activity followed by flower extract and stem extract. All extracts were shown to exhibit concentration dependent scavenging and reducing activity. Antioxidant activity of extracts observed was in the order: leaf extract > flower extract > stem extract. **Conclusion:** Among various parts of *A. cuneata*, leaf extract exhibited marked antimicrobial and antioxidant activity. The plant can be employed as an effective antimicrobial and antioxidant agent in suitable form. Further studies may be undertaken to recover phytochemicals from the plant and to investigate the antimicrobial and antioxidant activity of isolated components.

Keywords: *Argyreia cuneata*, Maceration, Antimicrobial, Agar well diffusion, Poisoned food technique, Antioxidant

Article Info: Received 22 Sep, 2018; Review Completed 22 Oct 2018; Accepted 23 Oct 2018; Available online 15 Nov 2018

Cite this article as:

Prashith Kekuda T.R., Bharadwaj NA, Sachin M.B., Sahana B.K., Priyanka G.S., In vitro antimicrobial and antioxidant activity of *Argyreia cuneata* (Willd.) Ker Gawl. (Convolvulaceae), Journal of Drug Delivery and Therapeutics. 2018; 8(6):22-27 DOI: <http://dx.doi.org/10.22270/jddt.v8i6.2003>

*Address for Correspondence:

Dr. Prashith Kekuda T.R., Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs Road, Shivamogga-577201, Karnataka, India

INTRODUCTION

Argyreia cuneata (Willd.) Ker Gawl. belonging to the family Convolvulaceae is a suberect silky shrub with showy red flowers (Figure 1) and climbing tendency. The plant is popularly known by the name Purple morning glory and Purple convolvulus in English. The plant is found distributed in South India and common across the plains along the hedges. In Karnataka, the plant is found distributed in several districts viz. Bangalore, Shivamogga, Hassan, Chikmagalur, Davanagere, Kodagu and Uttara Kannada. Leaves are obovate-lanceolate, emarginate, broadly cuneate at base and glabrous above. Peduncle is 1-2cm with 3 or more flowers in axillary cymes. Corolla is funnel shaped, bright red in color. Fruit is a 4-seeded, leathery, dry ellipsoid berry ^{1,2,3}. Phytochemicals such as indole, isoquinoline, pyrrolidine, tropane alkaloids have been detected in the plant ⁴. *A. cuneata* has ethnomedicinal significance and is used for the treatment of arthritis, diabetes, bone fracture, scabies, helminthic infections,

rheumatism and to initiate labor pain and to ease delivery ^{5,6,7,8,9}.

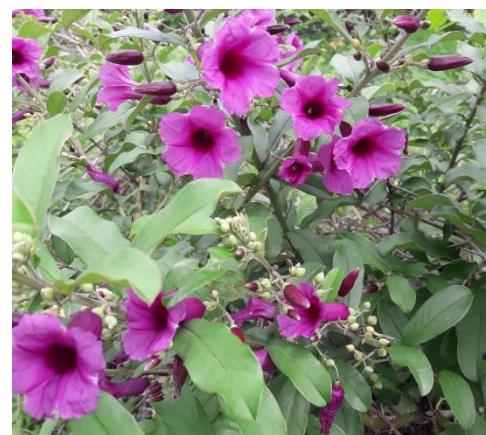


Figure 1: *A. cuneata* (Photograph by Prashith Kekuda)

The plant also has ethnoveterinary significance in terms of treating anorexia, swelling of throat and retention of fetal membrane ^{5,10}. *A. cuneata* is reported to exhibit pharmacological activities such as antidiabetic ^{11,12}, analgesic ¹³, antipyretic ¹⁴, and wound healing activity ¹⁴. The present study was conducted to evaluate antibacterial and antifungal activity of various parts viz. leaf, stem and flower of *A. cuneata*.

MATERIALS AND METHODS

Collection and extraction of plant material

The plant material was collected near Amruthapura, Tarikere, Karnataka during January 2017. The plant material was authenticated by Dr. Vinayaka K.S, Principal, KFGC, Shikarpura. Maceration process was performed for extraction of shade dried and powdered plant materials (leaf, stem and flower). Methanol was used as extraction solvent. Filtrates were evaporated to dryness at room temperature and crude leaf, stem and flower extracts were obtained ¹⁵.

Antibacterial activity of *A. cuneata*

Agar well diffusion method was performed to evaluate antibacterial activity of leaf, flower and stem extracts of *A. cuneata* against bacteria viz. *Bacillus cereus*, *Escherichia coli*, *Shigella flexneri* and *Salmonella typhimurium*. Streptomycin was used as reference standard. Zones of inhibition were measured using a ruler ¹⁵.

Antifungal activity of *A. cuneata*

Poisoned food technique was employed to determine antifungal potential of leaf, flower and stem extracts of *A. cuneata* against two seed-borne fungi viz. *Aspergillus niger* and *Bipolaris* sp. Extent of reduction in mycelial growth of test fungi was determined using the formula:

Inhibition of fungal growth (%) = (C - T / C) x 100, where 'C' denotes the diameter of fungal colonies in control plates and 'D' denotes the diameter of fungal colonies in poisoned plates ¹⁵.

Antioxidant activity of *A. cuneata*

DPPH radical scavenging assay

Scavenging effect of various concentrations of leaf, flower and stem extracts of *A. cuneata* against DPPH free radicals was evaluated by employing the protocol of Raghavendra et al. ¹⁵. Ascorbic acid was used as reference standard. Scavenging activity was determined by using the formula:

Scavenging of DPPH radicals (%) = (Ac - At / Ac) x 100, where 'Ac' and 'At' represents absorbance of DPPH control and absorbance of DPPH in the presence of extracts/ascorbic acid respectively. IC₅₀ value was calculated.

ABTS radical scavenging assay

The protocol employed by Raghavendra et al. ¹⁵ was used to evaluate the potential of various concentrations of *A. cuneata* extracts to scavenge ABTS radicals. Ascorbic acid was used as reference standard. The scavenging activity was determined by using the formula:

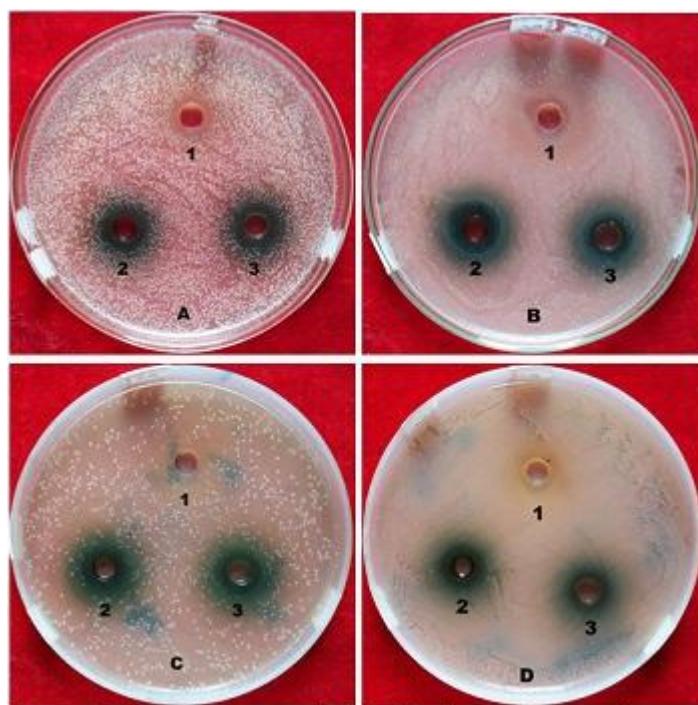
Scavenging of ABTS radicals (%) = (Ac - At / Ac) x 100, where 'Ac' and 'At' represents absorbance of ABTS control and absorbance of ABTS in the presence of extracts/ascorbic acid respectively. IC₅₀ value was calculated.

Ferric reducing assay

The efficacy of different concentrations of extracts of *A. cuneata* to exhibit reducing ability was investigated by Ferric reducing assay ¹⁵. Ascorbic acid was used as reference standard. An increase in the absorbance with the increase in concentration of extracts or ascorbic acid indicated reducing potential.

Statistical analysis

Experiments were conducted in triplicates. Results are presented as Mean ± Standard deviation. IC₅₀ values were calculated by using Origin (Data Analysis and Graphing) Software version 7.0 for windows.


RESULTS AND DISCUSSION

Antibacterial activity of extracts of *A. cuneata*

Microbial infections are major cause of death worldwide. Indiscriminate use of antibiotics resulted in several negative impacts such as adverse effects on health, killing of non-target bacteria and emergence of resistant strains of pathogenic bacteria. Crude solvent extracts and purified compounds from higher plants are shown to be promising alternatives for antibiotics with activity even against antibiotic resistant bacteria ¹⁶⁻²². In this study, we evaluated the potential of extracts of *A. cuneata* against gram positive and gram negative bacteria by agar well diffusion method. All extracts were shown to exhibit antibacterial activity. Among bacteria, *B. cereus* was found to exhibit greater susceptibility to solvent extracts. The susceptibility of test bacteria to extracts was in the order: *B. cereus* > *S. flexneri* > *E. coli* > *S. typhimurium*. Among solvent extracts, leaf extract displayed marked antibacterial activity followed by flower and stem extracts. Reference antibiotic caused higher inhibitory activity against test bacteria while DMSO did not cause inhibition of any of the test bacteria (Table 1; Figure 2). Studies have revealed the antibacterial potential of other *Argyreia* species such as *A. argentea* ²³, *A. cymosa* ²⁴, *A. speciosa* ²⁵ and *A. osyrensis* ²⁶.

Table 1: Antibacterial activity of *A. cuneata*

Test bacteria	Zone of inhibition in cm				
	Leaf extract	Stem extract	Flower extract	Antibiotic	DMSO
<i>B. cereus</i>	1.63±0.05	1.23±0.05	1.33±0.05	3.03±0.05	0.00±0.00
<i>E. coli</i>	1.40±0.00	1.20±0.00	1.30±0.00	3.30±0.00	0.00±0.00
<i>S. typhimurium</i>	1.33±0.05	1.13±0.05	1.20±0.00	3.20±0.00	0.00±0.00
<i>S. flexneri</i>	1.43±0.05	1.20±0.00	1.23±0.05	3.40±0.10	0.00±0.00

A- *E. coli*; B- *B. cereus*; C- *S. typhimurium*; D- *S. flexneri*

1- Stem extract; 2- Leaf extract; 3- Flower extract

Figure 2: Inhibition of test bacteria by extracts of *A. cuneata*

Antifungal activity of extracts of *A. cuneata*

The extensive and indiscriminate use of synthetic pesticides results in environmental pollution, toxic effects on non-target organisms and humans and development of resistance in fungal pathogens. The use of plants seems to be an effective alternative for synthetic fungicides. Crude extracts and purified compounds from higher compounds have shown to exhibit marked antifungal activity as revealed by a number of studies ^{18,27-33}. In the present study, we evaluated antifungal activity of *A. cuneata* extracts by poisoned food technique. All three extracts were effective in causing mycelial growth inhibition of *Bipolaris* sp. and *A. niger* (Table 2; Figure 3). Extracts were shown to inhibit the growth of both fungi to >50%. The extent of inhibition (%) of *Bipolaris* sp. by extracts was in

the order: leaf extract (63.82%) > flower extract (59.57%) > stem extract (56.80%). In case of *A. niger* also, marked inhibitory activity was shown by leaf extract (61.48%) followed by flower extract (58.40%) and stem extract (57.86%). Studies have revealed the antifungal potential of other *Argyreia* species such as *A. nervosa* ³⁴ and *A. argentea* ²³.

Table 2: Antifungal activity of *A. cuneata*

Treatment	Colony diameter in cm	
	<i>Bipolaris</i> sp.	<i>A. niger</i>
Control	4.70±0.00	5.53±0.05
Leaf extract	1.70±0.00	2.13±0.05
Flower extract	1.90±0.00	2.30±0.00
Stem extract	2.03±0.05	2.33±0.05

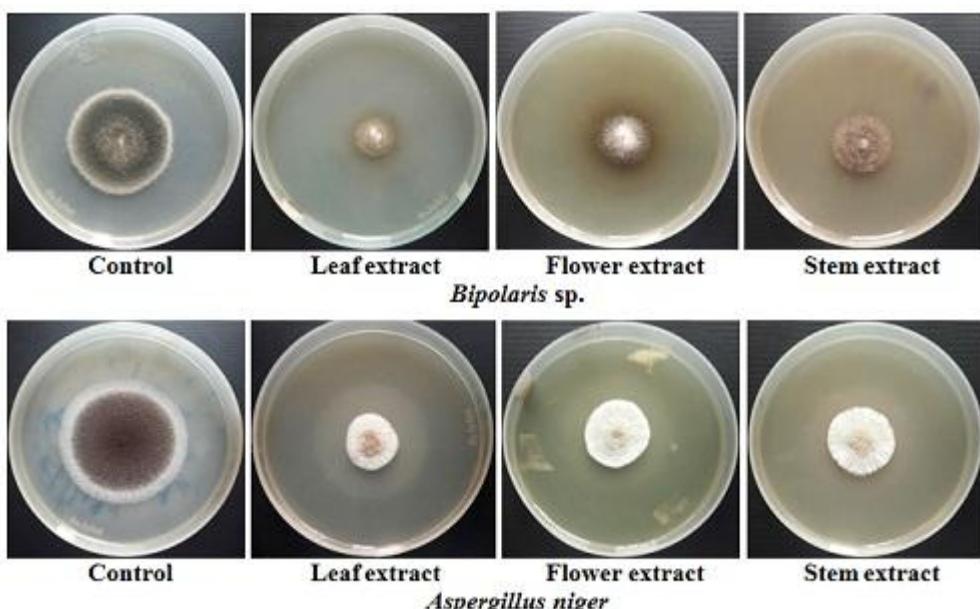


Figure 3: Growth of test fungi in control and poisoned plates

DPPH radical scavenging activity of *A. cuneata*

The method involving scavenging of DPPH radicals is one of the most widely employed assays for evaluating antiradical activity of various kinds of samples including plant extracts 15,35-39. In this assay, bleaching of DPPH radical color from purple to yellow by various concentrations of extracts and ascorbic acid was monitored at 517nm. Figure 4 shows the result of DPPH radical scavenging activity of *A. cuneata* extracts. All extracts were efficient in scavenging radicals in dose dependent manner. A scavenging potential of 50% and higher was recorded at concentration 12.50 μ g/ml, 25 μ g/ml and 50 μ g/ml in case of leaf extract, flower extract and stem extract respectively.

Among extracts, leaf extract was more effective in scavenging radicals with IC₅₀ value 14.22 μ g/ml followed by flower extract (IC₅₀ value 25.35 μ g/ml) and stem extract (IC₅₀ value 41.26 μ g/ml). Ascorbic acid was shown to scavenge DPPH radicals to higher extent (IC₅₀ value 8.17 μ g/ml) when compared to *A. cuneata* extracts. It is evident from the results of the present study that the extracts of *A. cuneata* can possibly act as antioxidants owing to their scavenging ability against free radicals. Studies have shown the DPPH radical scavenging potential of various *Argyreia* species such as *A. nervosa* 40, *A. osyrensis* 26, *A. elliptica* 41, *A. argentea* 42, *A. roxburghii* 43 and *A. cymosa* 44.

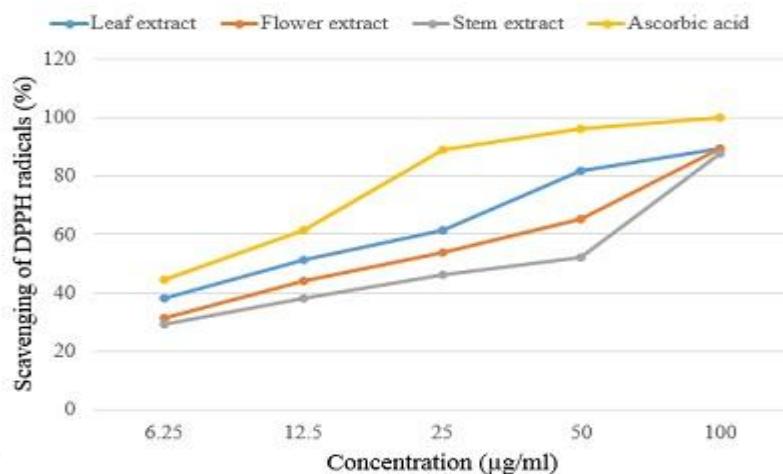


Figure 4: Scavenging of DPPH radicals by extracts of *A. cuneata*

ABTS radical scavenging activity of *A. cuneata*

Like DPPH radical scavenging assay, the scavenging of ABTS radicals is another widely used assays for determining antiradical activity of various kinds of samples including plant extracts 15,35,38,39,45,46. Substances capable of donating electron (antioxidants) can reduce the blue-green colored ABTS radical solution into colorless form. In the present study, extracts of *A. cuneata* were shown to be effective in scavenging ABTS radicals in dose dependent manner and the result obtained is shown in Figure 5. All extracts were effective in scavenging ABTS radicals in concentration dependent manner. A scavenging potential of 50% and higher was recorded at concentration

12.50 μ g/ml in case of leaf extract while flower extract and stem extract revealed a scavenging potential of 50% and higher at concentration 25 μ g/ml. Among extracts, leaf extract was more effective in scavenging ABTS radicals with IC₅₀ value 9.34 μ g/ml followed by flower extract (IC₅₀ value 14.98 μ g/ml) and stem extract (IC₅₀ value 22.47 μ g/ml). Ascorbic acid was shown to scavenge ABTS radicals to higher extent (IC₅₀ value 5.83 μ g/ml) when compared to *A. cuneata* extracts. Although leaf, flower and stem extracts of *A. cuneata* displayed lower scavenging of ABTS radicals, however, it is evident that the extracts can be potent radical scavengers. Studies have shown the potential of other *Argyreia* species such as *A. cymosa* 44, *A. nervosa* 47 to scavenge ABTS radicals.

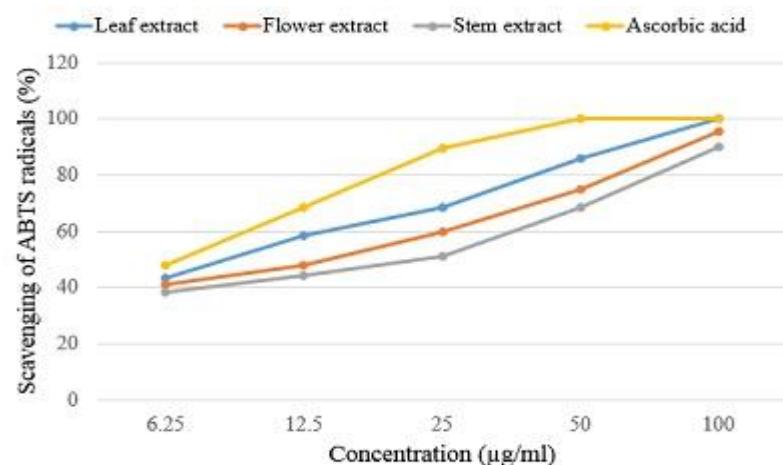


Figure 5: Scavenging of ABTS radicals by extracts of *A. cuneata*

Ferric reducing activity of *A. cuneata*

In this study, the reducing ability of leaf, flower and stem extracts of *A. cuneata* was evaluated by ferric reducing assay. The reducing ability of a substance is shown to be a significant indicator of its antioxidant capacity. The presence of reductones is responsible for reducing potential of the sample and these reductones reduce the Fe^{3+} /ferricyanide complex to the ferrous form resulting in the formation of Perl's Prussian blue complex. The intensity of the color complex is measured at 700nm in order to reveal the extent of reduction process^{45,48-51}. In

the present study, an increase in the absorbance with increase in the concentration of extracts of *A. cuneata* and ascorbic acid was observed indicating the reducing efficacy of extracts and ascorbic acid (Figure 6). The reducing potential observed was in the order: Ascorbic acid > leaf extract > flower extract > stem extract. It is clear from the results observed that the extracts of *A. cuneata* possess electron donating ability and hence the extracts can possibly terminate the chain reactions caused by free radicals. The reducing potential of other *Argyreia* species such as *A. argentea*⁴², and *A. roxburghii*⁴³ has been reported.

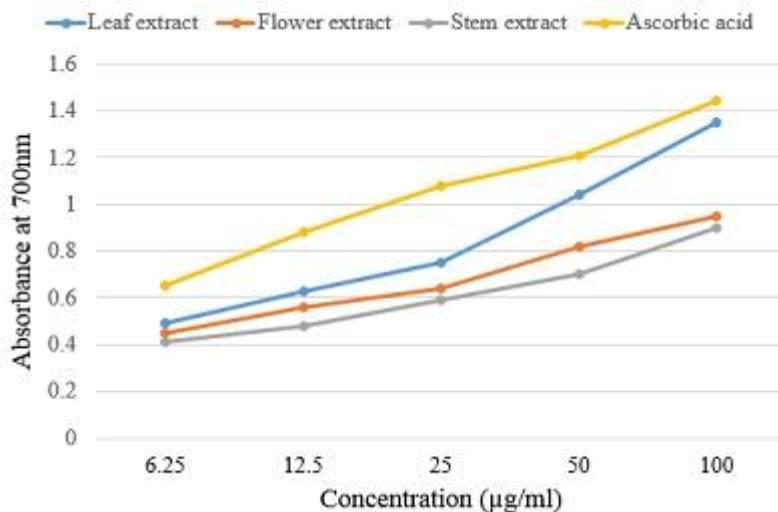


Figure 6: Ferric reducing activity of extracts of *A. cuneata*

CONCLUSION

Argyreia cuneata was shown to exhibit antimicrobial and antioxidant activity. Among various extracts, leaf extract exhibited marked activity followed by flower and stem extracts. The plant can be used against diseases caused by pathogenic bacteria and seed-borne fungi and oxidative damage.

ACKNOWLEDGEMENTS

Authors are thankful to Head, Department of Microbiology and Principal, S.R.N.M.N College of Applied Sciences,

REFERENCES

1. Saldanha CJ, Nicolson DH. Flora of Hassan district, Karnataka, India. Amarind Publishing Co Pvt Ltd, New Delhi, India, 1976, Pp 464.
2. Gamble JS. Flora of the Presidency of Madras. Volume II. Bishen Singh Mahendra Pal Singh, Dehra Dun, India, 1993, Pp 909.
3. <http://florakarnataka.ces.iisc.ac.in/hjcb2/herbsheet.php?id=1147&cat=1>
4. Semwal DK, Bamola A, Rawat U. Chemical constituents of some antidiabetic plants. Universities' Journal of Phyto-chemistry and Ayurvedic Heights 2007; 2: 40-48.
5. Quattrocchi U. CRC world dictionary of medicinal and poisonous plants. CRC press, Boka Raton, 2012, Pp 376.
6. Kumar S, Saini M, Kumar V, Prakash O, Arya R, Rana M, Kumar D. Traditional medicinal plants curing diabetes: A promise for today and tomorrow. Asian J Tradit Med 2012; 7(4): 178-188.
7. Lingaraju DP, Sudarshana MS, Rajashekhar N. Ethnopharmacological survey of traditional medicinal plants in tribal areas of Kodagu district, Karnataka, India. J Pharm Res 2013; 6(2): 284-297.
8. Dhivya SM, Kalaichelvi K. Medicinal plants used by Irula tribes of Nellithurai Beat, Karamadai Range, Western Ghats, Tamil Nadu, India: An ethnobotanical survey. Journal of Medicinal Plants Studies 2016; 4(4): 270-277.
9. Kumar PGM, Shiddamallayya N. Survey of wild medicinal plants of Hassan district, Karnataka. Journal of Medicinal Plants Studies 2016; 4(1): 91-102.
10. Raveesha HR, Sudhama VN. Ethnoveterinary practices in Mallenahalli of Chikmagalur taluk, Karnataka. Journal of Medicinal Plants Studies 2015; 3(1): 37-41.
11. Biradar SM, Rangani AT, Kulkarni VH, Joshi H, Habbu PV, Smita DM. Prevention of onset of hyperglycemia by extracts of *Argyreia cuneata* on alloxan-induced diabetic rats. J Pharm Res 2010; 3(9): 2186-2187.
12. Malathi S, Balasubramaniam V, Kumar JS, Kumar NR, Kaffoor AH. Antidiabetic effect of methanolic leaf extract of *Argyreia cuneata* Willd. Ex Ker- Awl. (Convolvulaceae). World J Pharm Pharm Sci 2017; 6(8): 1650-1663.

13. Malathi S, Balasubramaniam V, Kumar NR, Kumar JS. Evaluation of analgesic activity of methanolic leaf extract of *Argyreia cuneata* Willd. (Convolvulaceae). *Int J Pharm Biol Sci* 2017; 7(4): 231-234.
14. Manda RM, Seru G, Bakshi V. Evaluation of anti-pyretic and wound healing activities of *Argyreia cuneata* in Wistar Albino rats. *Int J Pharm Biol Sci* 2016; 6(2): 111-113.
15. Raghavendra HL, Kekuda PTR, Akarsh S, Ranjitha MC, Ashwini HS. Phytochemical analysis, antimicrobial and antioxidant activities of different parts of *Pleocaulus sessilis* (Nees) Bremek (Acanthaceae). *Int J Green Pharm* 2017; 11(2): 98-107.
16. Cowan MM. Plant products as antimicrobial agents. *Clin Microbiol Rev* 1999; 12(4):564-582.
17. Rios JC, Recio MC. Medicinal plants and antimicrobial activity. *J Ethnopharmacol* 2005; 100(1-2): 80-84.
18. Raj KM, Balachandran C, Duraipandian V, Agastian P, Ignacimuthu S. Antimicrobial activity of Ulopteron isolated from *Toddalia asiatica* (L.) Lam.: A traditional medicinal plant. *J Ethnopharmacol* 2012; 140(1): 161-165.
19. Radulovic NS, Blagojevic PD, Stojanovic-Radic ZZ, Stojanovic NM. Antimicrobial plant metabolites: Structural diversity and mechanism of action. *Curr Med Chem* 2013; 20: 932-952.
20. Compean KL, Ynalvez RA. Antimicrobial activity of plant secondary metabolites: A review. *Research Journal of Medicinal Plants* 2014; 8: 204-213.
21. Wikaningtyas P, Sukandar EY. The antibacterial activity of selected plants towards resistant bacteria isolated from clinical specimens. *Asian Pac J Trop Biomed* 2016; 6(1): 16-19.
22. Long S, Li C, Hu J, Zhao Q, Chen D. Indole alkaloids from the aerial parts of *Kopsia fruticosa* and their cytotoxic, antimicrobial and antifungal activities. *Fitoterapia* 2018; 129: 145-149.
23. Rahman AM, Ahsan T, Islam S. Antibacterial and antifungal properties of the methanol extract from the stem of *Argyreia argentea*. *Bangladesh J Pharmacol* 2010; 5: 41-44.
24. Packialakshmi N, Beevi HF. Antibacterial screening on leaves of *Argyreia cymosa* Roxb. against pathogenic bacteria isolated from infected patients samples wound, sputum and stool. *Int J Appl Sci Biotechnol* 2014; 2(3): 279-282.
25. Habbu PV, Mahadevan KM, Shastri RA, Manjunatha H. Antimicrobial activity of flavonoid sulphates and other fractions of *Argyreia speciosa* (Burm.f) Boj. *Indian J Exp Biol* 2009; 47: 121-128.
26. Mahendra C, Manasa G, Murali M, Amruthesh KN, Sudarshana MS, Lingaraju DP. Antibacterial and antioxidant properties of *Argyreia osyrensis* Roth. *Ann Phytomed* 2016; 5(1): 110-115.
27. Quiroga EN, Sampietro AR, Vattuone MA. Screening antifungal activities of selected medicinal plants. *J Ethnopharmacol* 2001; 74(1): 89-96.
28. Dellavalle PD, Cabrera A, Alem D, Larranaga P, Ferreira F, Rizza MD. Antifungal activity of medicinal plant extracts against phytopathogenic fungus *Alternaria* spp. *Chilean J Agric Res* 2011; 71(2): 231-239.
29. Bhalodia NR, Shukla VJ. Antibacterial and antifungal activities from leaf extracts of *Cassia fistula* L: An ethnomedicinal plant. *J Adv Pharm Technol Res* 2011; 2(2): 104-109.
30. Dissanayake MLMC. Inhibitory effect of selected medicinal plant extracts on phytopathogenic fungus *Fusarium oxysporum* (Nectriaceae) Schlecht. Emend. Snyder and Hansen. *Annu Res Rev Biol* 2014; 4(1): 133-142.
31. Sales MDC, Costa HB, Fernandes PMB, Ventura JA, Meira DD. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. *Asian Pac J Tropical Biomed* 2016; 6(1): 26-31.
32. Kekuda PTR, Raghavendra HL. Antifungal activity of *Helichrysum buddleoides* DC. against seed borne fungi. *EC Microbiology* 2017; 6(2): 54-59.
33. Shabana YM, Abdalla ME, Shahin AA, El-Sawy MM, Draz IS, Youssif AW. Efficacy of plant extracts in controlling wheat leaf rust disease caused by *Puccinia triticina*. *Egyptian Journal of Basic and Applied Sciences* 2017; 4(1): 67-73.
34. Mahule A, Rai P, Ghorpade DS, Khadabadi S. In vitro antifungal activity of ethanol fractions of *Argyreia nervosa* (Burm.f) Boj. leaves. *Indian J Nat Prod Resour* 2012; 3(1): 48-54.
35. Samarth RM, Panwar M, Kumar M, Soni A, Kumar M, Kumar A. Evaluation of antioxidant and radical-scavenging activities of certain radioprotective plant extracts. *Food Chem* 2008; 106(2): 868-873.
36. Sylvie DD, Anatole PC, Cabral BP, Veronique PB. Comparison of in vitro antioxidant properties of extracts from three plants used for medical purpose in Cameroon: *Acalypha racemosa*, *Garcinia lucida* and *Hymenocardia lyrata*. *Asian Pac J Trop Biomed* 2014; 4(Suppl 2): S625-S632.
37. Pavithra K, Vadivukkarasi S. Evaluation of free radical scavenging activity of various extracts of leaves from *Kedrostis foetidissima* (Jacq.) Cogn. *Food Science and Human Wellness* 2015; 4(1): 42-46.
38. Jayathilake C, Rizliya V, Liyanage R. Antioxidant and free radical scavenging capacity of extensively used medicinal plants in Sri Lanka. *Procedia Food Sci* 2016; 6: 123-126.
39. Adebiyi OE, Olayemi FO, Ning-Hua T, Guang-Zhi Z. In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of *Grewia carpinifolia*. *Beni-Suef Univ J Basic Appl Sci* 2017; 6(1): 10-14.
40. Sareedenchai V, Wiwat C, Wongsinkongman P, Soonthornchareonnon N. In vitro testing of anti-HIV and antioxidative activities of *Argyreia nervosa* (Burm.f) Bojor leaves. *Mahidol Univ J Pharm Sci* 2014; 41(4): 47-53.
41. Prashanth MK, Revanasiddappa HD, Rai KML, Raveesha KA, Jayalakshmi B2. Antibacterial, antihelmintic and antioxidant activity of *Argyreia elliptica* extracts: Activity enhancement by the addition of metal salts. *Int J Appl Res Nat Prod* 2013; 6(3): 1-10.
42. Uddin MN, Rahman MA, Mitra K, Akter R. Preliminary phytochemical analysis and in vitro antioxidant activities of methanol extract of *Argyreia argentea* (Roxb). *Int J Appl Res Nat Prod* 2014; 7(1): 1-7.
43. Baruah NC, Das S, Yadav SK. Preliminary phyto-chemical analysis and antioxidant activities of methanol extract of *Argyreia roxburghii* Choisy. *International Journal of Herbal Medicine* 2014; 2(1): 126-131.
44. Badami S, Vaijanathappa J, Bhojraj S. In vitro antioxidant activity of *Argyreia cymosa* bark extracts. *Fitoterapia* 2008; 79(4): 287-289.
45. Nisha S, Vishnupriya M, Sasikumar JM, Christabel HP, Gopalakrishnan VK. Antioxidant activity of ethanolic extract of *Maranta arundinacea* L. tuberous rhizomes. *Asian J Pharm Clin Res* 2012; 5(4): 85-88.
46. Lu J, Fu X, Liu T, Zheng Y, Chen J, Luo F. Phenolic composition, antioxidant, antibacterial and anti-inflammatory activities of leaf and stem extracts from *Cryptotaenia japonica* Hassk. *Ind Crops Prod* 2018; 122: 522-532.
47. Joshi BB, Chudasama P, Patel J, Mistry KN. In vitro evaluation of anti-oxidant and anti-proliferative activity in crude extracts of *Argyreia nervosa* roots. *World J Pharm Pharm Sci* 2014; 3(11): 1235-1250.
48. Shanta MA, Ahmed T, Uddin MN, Majumder S, Hossain MS, Rana MS. Phytochemical screening and in vitro determination of antioxidant potential of methanolic extract of *Streospermum chelonoides*. *J Appl Pharm Sci*, 2013; 3(3):117-121.
49. Vijayalakshmi M, Ruckmani K. Ferric reducing anti-oxidant power assay in plant extract. *Bangladesh J Pharmacol* 2016; 11: 570-572.
50. Benslama A, Harrar A. Free radicals scavenging activity and reducing power of two Algerian Sahara medicinal plants extracts. *International Journal of Herbal Medicine* 2016; 4(6): 158-161.
51. Sahana BK, Akhilesha S, Priyanka GS, Kekuda PTR. Antioxidant and antifungal activity of *Geophila repens* (L.) I. M. Johnston. (Rubiaceae). *J Drug Delivery Ther* 2018; 8(5): 268-272.