

Available online on 15.10.2018 at http://jddtonline.info

## **Journal of Drug Delivery and Therapeutics**

Open Access to Pharmaceutical and Medical Research

© 2011-18, publisher and licensee JDDT, This is an Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited





**Review Article** 

# CHEMICAL PENETRATION ENHANCERS FOR TRANSDERMAL DRUG DELIVERY SYSTEM

### Kapoor Anupriya\*, Mishra Shashi Kiran, Verma Dharmesh Kumar, Pandey Prashant

University Institute of Pharmacy, Chhatarapati Sahu Ji Maharaj University, Kanpur-208024, Uttar Pradesh, India

#### ABSTRACT

In present scenario more than 70% of the drugs that are taken by oral route are found to be less effective as desired, to overcome this constraint Transdermal drug delivery system has emerged as an innovative area of research, this system helps in delivering the drugs and macromolecules through skin into systemic circulation. At present, the worldwide market of Transdermal patch has reached 2 billion pounds. Many drugs like Estrogen, Progestrone, Nitroglycerine, Clonodine etc. are fabricated in form of Transdermal patches due to its ability to deliver the drug in non-invasive manner and also to overcome the problems associated with oral route. Although the Transdermal patches deliver the drug at predetermined rate<sup>1</sup>, the partitioning of drug from the system to the skin and then penetration through different layers of skin can be altered by adding penetration enhancers that can be physical or chemical in nature. This article deals with the role of different chemicals that can be used as penetration enhancer.

**Keywords:** Penetration enhancer, Layer of skin, Fatty alcohol and glycol

Article Info: Received 02 Sep, 2018; Review Completed 30 Sep 2018; Accepted 02 Oct 2018; Available online 15 Oct 2018

#### Cite this article as:

Kapoor A, Mishra SK, Verma DK, Pandey P, Chemical penetration enhancers for transdermal drug delivery system, Journal of Drug Delivery and Therapeutics. 2018; 8(5-s):62-66 DOI: http://dx.doi.org/10.22270/jddt.v8i5-s.1952

#### \*Address for Correspondence:

Anupriya Kapoor, Assistant Professor, University Institute of Pharmacy, Chhatarapati Sahu Ji Maharaj University, Kanpur-208024, Uttar Pradesh, India

#### **INTRODUCTION**

#### Drug delivery trough skin

Skin being the largest organ of the body, has total area of about 20 square feet. it protects us from microbes and other ailments, helps to regulate body temperature, and permits the sensations of touch, heat, and cold <sup>2</sup>.

#### Lavers of skin

#### Non-viable epidermis (stratum corneum)

It is the outer most layer of skin, being an actual physical barrier to most substance that come in contact with the skin, it acts as barrier to the entry of foreign substances. Stratum corneum is 10 to 20 cell layer thick over most of the body. The composition of Stratum corneum comprises of lipids like phospholipids, cholesterol, neutral lipids etc.

The other component being proteins, the major fraction of which is Keratin.

#### Viable epidermis

This layer of the skin is found between the stratum corneum and the dermis, the thickness ranges from 50- 100  $\mu m$ . The structure of the cells in the viable epidermis is physiochemical similar to other living tissues. The water content is about 90%.

#### Dermis

Just beneath the viable epidermis is the dermis. It is a structural fibrin and very few cells are like it can be found histologically in normal tissue. Dermis thickness range from 2000 to 3000  $\mu$ m and consists of a matrix of loose connective tissue composed of fibrous protein embedded in an amphorphose ground substance.

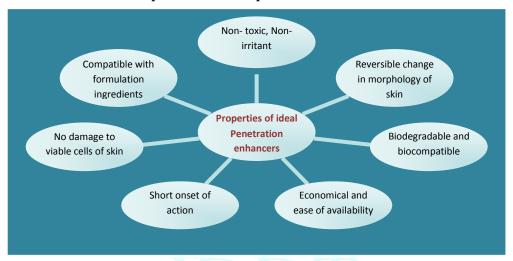
ISSN: 2250-1177 [62] CODEN (USA): JDDTAO

#### Subcutaneous connective tissue

The subcutaneous tissue or hypodermis is not actually considered a true part of the structured connective tissue is composed of loose textured, white, fibrous connective tissue containing blood and lymph vessels, secretory pores of the sweat gland and cutaneous nerves. Most investigators consider drug permeating through the skin enter the circulatory system before reaching the hypodermis, although the fatty tissue could serve as a depot of the drug.

#### Sites of drug penetration through skin<sup>3</sup>

Intercellular route: it is the most common pathway through which the drugs cross through the skin, the drugs pass through the small gaps between the cells of skin


Transcellular route: drugs pass the skin through the keratinocyte cells

Follicular route: drugs pass through sweat gland, hair follicles and sebaceous glands

#### **Penetration enhancers:**

Chemical penetration enhancers are proven to increase the transport of drug across the skin layers. They show their effect by different mechanisms that depend on the chemical nature of penetration enhancer, the mechanism may include disruption of lipid bilayers of stratum corneum or extraction of intercellular protein; Keratin and thus modify the penetration ability of drugs<sup>4</sup>or may improve the partitioning of drug due to solvent action. Chemical penetration enhances temporarily diminish the barrier nature of skin and known to accelerate or enhance drug flux.

#### **Properties of chemical penetration enhancers**<sup>5</sup>



#### Classes of penetration enhancers

- Fatty acids
- Fatty alcohols
- Terpenes
- Sulfoxides
- Anionic surfactants
- Cationic surfactants
- Non-ionic surfactants
- Zwitter ion surfactants
- Ureas

**Fatty acids** like oleic acid, linolenic acid, palmitoleic acid etc. Are included in GRAS (generally regarded as safe) list and are found to be effective penetration enhancers that could be incorporated in transdermal patches, the acid interact with the lipoidal components of stratum corneum and may modify the extent of partitioning of drug from the patch and its penetration into skin. The efficacy of an acid

as enhancer depends upon its structure, length of alkyl chain and extent of unsaturation<sup>6</sup>. Fatty acids with short chain are found to be more effective in disrupting the lipoidal component of stratum corneum when they are incorporated in nonpolar solvents; on the contrary long chain fatty acids are more effective in polar solvents. In case of saturated fatty acid a polar head with C10 to C12 helps in potentiating the efficacy of enhancer where as in case of unsaturated fatty acid a polar head with C18 gives optimum effect.

**Fatty alcohol and glycols** solvents like ethanol, propylene glycol, diethylene glycol, manitol etc. are known to increase the penetration of several compounds. The mechanism by which these solvents act is based on the extraction of lipids from cells of stratum corneum<sup>7</sup> the extraction of lipids result in formation of pores thus increasing the cutaneous hydration and solubility of solutes.

**Terpenes** natural terpenes like Anithole, Camphor, Borneol , Eugenol etc. are known to exhibit penetration enhancing ability as exhibited by several researches, the

ISSN: 2250-1177 [63] CODEN (USA): JDDTAO

exact mechanism by which terpenes act is not clear but experimentally it has been demonstrated that they act by several ways like helping the drug molecule to diffuse trough stratum corneum by extractin intercellular lipids, they may also extract lipids of stratum corneum and breaking of hydrogen bond. They may also act by increasing the lipid fluidity and improving the partitioning of drug. Camphor sows its action by disrupting the regular organization of stratum corneum <sup>8,9,10</sup>.

Sulfoxides: sulfoxides and similar molecules like DMSO (dimethyl sulfoxide), DMF (dimethyl formamide) etc. Are known to demonstrate penetration enhancing power. DMSO is a commonly explored penetration enhancer, it is an aprotic solvent that has been used to prepare topical formulations for several drugs like antibiotics, steroids, narcotics etc11. DMSO causes structural changes in stratum corneum layer , it interacts with  $\alpha$ - keratin proteins and β-sheet convert them conformation, to conformational alterations in skin layer as well as DMSO induced variations in lipid composition of skin are responsible for it penetration enhancing power across the skin 12. Although both DMSO and DMF have good penetration enhancement power but they cause irreversible cell membrane damage at higher concentrations above 60%

**Anionic surfactants:** sodium lauryl sulphate is an example of anionic surfactant that has found a wide application as penetration enhancer. Anionic surfactants are more efficacious than non-ionic or cationic surfactants, it is observed that anionic surfactants interact with keratin and lipid of stratum corneum cells, it alter the skin permeability by uncoiling the keratin filament, by increasing the fluidity of epidermal cells and also by increasing the hydration of skin due to hydrophobic interaction of alkyl chain with skin structure. <sup>14, 15</sup>

Cationic surfactants: cationic surfactants show interaction with the keratin fibrils of the cornified cells and result in disruption of cellular-lipid matrix. The cationic surfactants may also show interaction with anionic components of the stratum corneum and thus cause a change in electronic property at the site, and thus stimulate the passage of the anionic drug across the skin layer<sup>16</sup>.

**Non-ionic surfactants:** Non-ionic surfactants demonstrate their penetration enhancer ability by causing the fluidization of stratum corneum, the surfactant initially penetrates into the intercellular spaces of stratum corneum due to which fluidity is increased because of solubilisation and extraction of lipid. The surfactant may also interact with the keratin filaments and result in disruption of cells of stratum corneum<sup>17</sup>.

**Zwitterionic** surfactants: dodecylbetaine, hexadecylbetaine, hexadecylsulfobetaine, N, Ndimethyl-N-dodecyl amine oxide, dodecyltrimethylammonium bromide etc. are few experimentally zwitterinic surfactants that have demonstrated their ability to act as penetration enhancer; they act by solubilization of lipids of stratum corneum<sup>18</sup>.

**Ureas:** urea and its derivatives have been used in topical and transdermal preparations due to its mosturising,

keratolytic and penetration enhancing applicatios<sup>19</sup>. Urea causes the hydration of stratum corneum by the formation of hydrophilic channels within the barrier layer of skin. They are also known to cause disruption of lipid matrix of stratum corneum thereby increasing the penetration of molecules across the skin. A cyclic structure in urea derivatives make them biodegradable and non toxic which makes them suitable for their role as penetration enhasncer<sup>20</sup>.

#### Research infield of Transdermal patches

- Formulation of patches of Repaglinide to provide sustain release and to improve the bioavailability of drug<sup>21</sup>.
- 2. Formulation and evaluation of transdermal patches of Propanalol hydrochloride in order to overcome its first pass metabolism and to demonstrate the effect of Eugenol as permeation enhancer<sup>22</sup>.
- 3. Designing of patches of Diclofenac sodium using cellulose acetate phthalate polymer and to study the effect of different penetration enhancers like isopropylmyristate, Tween 80, oleic acid, linoleic acid<sup>23</sup>.
- Development of reservoir type transdermal patch of iso-sorbide nitrate for sustain effect<sup>24</sup>.
- 5. Formulation and evaluation of patch for Donepezil with aim to improve its patient compliance and therapeutic efficacy<sup>25</sup>.
- Formulation of Indomethacin Transdremal patches and to evaluate the effect of Patchouli oil as penetration enhancer<sup>26</sup>.
- 7. Formulation of Trandermal patches of Torasemide to avoid first pass metabolism and to avoid irritation due to intra-venous therapy of drug<sup>27</sup>.
- 8. Preparation of patches of Risperidone to avoid the oral side effects of drug in treatment of schizophrenia<sup>28</sup>.
- Formulation of monolithic Transdermal patches of Salbutamol sulphate and to evaluate the effect of penetration enhancer<sup>29</sup>.
- 10. Formulation of self adhesive matrix type Transdermal patch of Ondensetron<sup>30</sup>.
- 11. Designing of Transdermal patches for combination of Diclofenac and Teriflunomide for treatment of rheumatoid arthritis<sup>31</sup>.
- 12. Formulaton of matrix type patches of Olanzapine and to observe the effect of eucalyptus oil as penetration enhancer<sup>32</sup>.
- 13. Formulation of Transdermal patch of combination of Salbutamol and Ketotifin fumarate<sup>33</sup>.
- 14. Formulation of Transdermal patches of Flubiprofen and evaluation of milk thistle oil and olive oil as penetration enhancer<sup>34</sup>.
- 15. Formulation of matrix type Transdermal patch of Zaleplon<sup>35</sup>.

- 16. Formulation of Transdermal patch of Papaveirine hydrochloride by solvent casting method<sup>36</sup>.
- 17. Formulation of Transdermal patch for Aceclofenac for rheumatoid arthritis<sup>37</sup>.
- 18. Formulation of Transdermal patches of Carvedilol with novel polymers like HPMCK100, Eudragit RL100, HPMC E5 and PVA<sup>38</sup>.
- 19. Reservoir type Transdermal patches of Hydralzine hydrochloride and to study the effect of penetration enhancers<sup>39</sup>.
- 20. Development of Transdermal patch of Lisnopril dehydrates to overcome its poor oral bioavailability<sup>40</sup>.
- 21. Formulation of Transdermal patch of Lamotrigine using terpenes as natural penetration enhancer<sup>41</sup>.
- 22. Development of Transdermal patch of Nicardipine hydrochloride and to evaluate the effect of eugenol and DMSO as penetration enhancer<sup>42</sup>.

- 23. Designing of Transdermal patch of Atorvastatin<sup>43</sup>.
- 24. Formulation of Transdermal patches of Curcumin for wound healing effect<sup>44</sup>.
- 25. Formulation if Simvastatin nanoparticles loaded transdermal patches<sup>45</sup>.
- 26. Formulation and evaluation of matrix type patch of Ondensetron<sup>46</sup>.
- 27. Formulation of matrix typr patch for Rivastigmine tartrate<sup>47</sup>.

#### **CONCLUSION**

Since Transdermal drug delivery system is emerging as a field of interest in order to deliver the drug to the patient with compliance, the use of penetration enhancers in patches have led to a significant increase in drug permeation trough skin however focus should be imparted on problems like skin irritation and allergy caused by these chemicals when they are used in higher concentrations.

#### REFERENCES

- Kumar JA, Pullakandam N, Prabu SL, Gopal V, Transdermal drug delivery system: An overview. International Journal of Pharmaceutical Sciences Rev Res, 2010; 3:49-54.
- 2. https://www.webmd.com
- 3. Pandey A, Mittal A, Chauhan N, Alam S, Role of Surfactants as Penetration Enhancer in Transdermal Drug Delivery System. Journla of Molecular Pharmaceutics of journal & Organic Process Research, 2014; 2(2):2-10.
- Dragicevic N., Atkinson J.P, Maibach H.I, Chemical Penetration Enhancers: Classification and Mode of Action. In: Dragicevic N., Maibach H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg, (2015).
- Reiger MM, Rhein LD. Surfactant in Cosmetics. Vol. 68. New York: Marcel Dekker; 1997.
- Kandimalla K, Kanikkannan N, Andega S, Singh M. Effect of fatty acids on the permeation of melatonin across rat and pig skin *in-vitro* and on the transepidermal water loss in rats *in-vivo*. Journal of Pharmacy and Pharmacology, 1999; (51):783– 90.
- Perhing L.K.; Lambert L.D. and Knutson K. Mechanism of ethanol-enhanced estradiol permeation across human skin in vivo. Pharmaceutical. Research, 1990; 7(2):170-175.
- El-Kattan AF Asbill CS Michniak B.B. The effect of terpene enhancer lipophilicity on the percutaneous permeation of hydrocortisone formulated in HPMC gel systems. International Journal of Pharmceutics, 2000, 5; 198(2):179-89.
- Lan Y, Li H, Chen Y, Zhang Y, Liu N, Zhang Q, Wu Q, Essential oil from Zanthoxylum bungeanum Maxim. and its main components used as transdermal penetration enhancers: A comparative study. Journal of Zhejiang University Science, 2014; 15(11):940–952.
- Furuishi T, KatoY, Fukami T, Suzuki T, Endo T, Nagase H, Ueda H, Tomono K, Effect of terpenes on the skin permeation of lomerizine dihydrochloride. Journal of Pharmacy and Pharmacology Science, 2013; 16(4):551–563.
- Wiliamsand AC, Barry BW, Skin absorption enhancers, Critical Reviews in Therapeutic Drug Carrier Systems, 1992; 305–353.
- Horrocks Jr WD, Cotton FA, Infrared and Raman spectra and normal co-ordinate analysis of dimethyl sulfoxide and dimethyl sulfoxide-d6, Spectrochimica Acta 17, 1961; 17(2):134–147.

- 13. Barry BW, Southwell D, Woodford R. Optimization of bioavailability of topical steroid: penetration enhancers under occlusion. Journal of Investigative Dermatology 1984; 82:49-52
- 14. Rhein LD, Robbins CR, Fernee K, Cantore R Surfactant structure effects on swelling of isolated human stratum corneum. Journal of Society Cosmetic Chemist, 1986; 37:125-139
- Gibson WT, Teall MR Interactions of C12 surfactants with the skin: changes in enzymes and visible and histological features of rat skin treated with sodium lauryl sulphate. Food and Chemical Toxicology, 1983; 21(5):587-594.
- 16. Kitagawa S, Kasamaki M, Ikarashi, A Effects of n-alkyl trimethyl ammonium on skin permeation of benzoic acid through excised guinea pig dorsal skin. Chemical and Pharmaceutical Bulletin (Tokyo), 2000; 48:1698-1701.
- Breuer MM, The interaction between surfactants and keratinous tissues. Journal of Society Cosmetic Chemist, 1979; 30:41-64.
- Ridout G, Hostynek JJ, Reddy AK, Wiersema RJ, Hodson CD, Lorence CR, The effects of zwitterionic surfactants on skin barrier function. Fundamental and applied toxicology, 1991; 16(1):41–50.
- Williams A.C, Urea and Derivatives as Penetration Enhancers. In: Dragicevic N., Maibach H. (eds) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer, Berlin, Heidelberg, (2015).
- Singh PB, Choudhury PK, Penetration enhancers for transdermal drug delivery of systemic agents. Tropical Journal of Pharmaceutical Research, 2007; 6(5):44-50.
- Prajapati Shailesh T, Patel CG, Patel C N, Formulation and Evaluation of Transdermal Patch of Repaglinide. International Scholarly Research Network, 2011; 1-9
- Sheth NS, Mistry RB, Formulation and evaluation of transdermal patches and to study permeation enhancement effect of eugenol. Journal of Applied pharmaceutical sciences, 2011; 1(03):96-101.
- Hanna E, Fakhry G, Effect of various penetration enhancer concentrations on diclofenac sodium release from cellulose acetate phthalate polymeric film. Asian journal of pharmaceutical sciences, 2011; 5(1):33-40.

- Zhan X, Mao Z, Chen S, Chen S, Wang L, Formulation and evaluation of transdermal drug-delivery system of isosorbide dinitrate. Brazilian Journal of Pharmaceutical Sciences, 2015; 51(2):373-382.
- Madan JR, Argade NS, Dua K, Formulation and evaluation of transdermal patches of Donepezil. Pub-med NCBI, 2015; 9(1):95-103.
- Jadhav JK, Sreenivas SA, Formulation and In-vitro evaluation of Indomethacin transdermal patches using polymers HPMC E5 and ethyl cellulose. International Journal of Pharmacy and Pharmaceutical Sciences, 2012; 4(1):550-556.
- Asifa R, Gupta A, Maheswarin BS, Formulation and evaluation of transdermal patches of Toresamide. International journal of advances in scientific research, 2015; 1(01):38-44.
- Dhawan S, Hari KSL, Formulation and in-vitro evaluation of transdermal patches of containing of reserperidone. Drug Development and Industrial Pharmacy, 2013; 39(1):39-50.
- Kumar R, Saini N, Saroha K, Formulation, optimization & evaluation of transdermal patches of salbutamol sulphate. International jurnal of pharmaceutical sciences and research, 2016; (4):1572-79.
- David SRN, Rajaballaya R and Zhia ES, Development and in
   -vitro evaluation of self adhesive matrix type transdermal
   delivery system of Ondansetron Hydrochloride. Tropical
   journal of pharmaceutical research February, 2015; 14(2):211 218
- 31. Zhang Y, Cun D, Kong X, Fang L, Design and evaluation of a novel transdermal patch containing Diclofenac and Teriflunamide for rheumatoid arithritis therapy. Asian Journal of pharmaceutical sciences. 2014; 251-259.
- Agrarwal G, Dhawan S, Hari Kumar S, Formulation, in-vitro evaluation of matrix type transdermal patches containing Olanzapine. Pharmaceutical technology and development, 2013; 18(04):916-25.
- Yousuf M, Ahmad M, Usman M. and Ali L, Formulation of transdermal patch of combination of Salbutamol and Ketotifin fumarate. Indian Journal of Pharmaceutical Sciences, 2013; 75(5):569-577.
- Akhlaq M, Danish Z, Khan K, Saeed H, Fabrication of Flurbiprofen transdermal patch using Milk, thistle oil as permeation enhancer. Acta Poloniae pharmaceutica – drug research, 2017; 74(04):1187-1201.
- 35. Tirunagari M, Nandagopal A, Development and physicochemical, In Vitro and In vivo evaluation of Transdermal patches of Zaleplon. International Journal of Pharmaceutical Education and Research, 2013; 47(4):49-58.
- Prabhakara P, Koland M, Vijaynarayana K, Harish NM, Shankar G, Ahmed MG, Preparation and Evaluation of Transdermal patches of Papaverine Hydrochloride.

- International Journal of Research in Pharmaceutical Sciences, 2010; 1(3):259-266.
- Wang Y, Zhao X-P, and Ruan J-W, Transdermal delivery of Aceclofenac for Rheumatoid Arthritis and the effect of permeation enhancers, In vitro and In vivo characterization. International Journal of pharmacology, 2015; 11(5):456-462.
- Karemore M N, Dandare M S, Belgamwar A V, Mundhada D R, Bhaskaran Dr. S, Design and evaluation of Carvedilol Transdermal patch using natural polymer. Journal Of Pharmacy Research, 2012; 5(10):4947-4949.
- Revathi Mannam, Indira Muzib Yallamalli , Formulation Optimization and Study on Effect of Penetration Enhancers on Reservoir Transdermal Therapeutic Systems of Hydralazine Hydrochloride. Journal of Young Pharmacists, 2017; 9(4):513-518
- Banweer J, Pandey S, Pathak A K, Development and Optimization of Transdermal System of Lisinopril dehydrate: Employing Permeation Enhancers. Iranian Journal of Pharmaceutical Sciences, Autumn, 2010; 6(04):245-251.
- Lakshmi PK, Mounika K and Saroja CH, Transdermal Permeation Enhancement of Lamotrigine Using Terpenes. Journal of J Pharmaceutical Care & Health Systems, 2014; 1(1):2-6.
- 42. Kharat RS, Bathe RS, Formulation and evaluation of transdermal patches of nicardipine hydrochloride. International journal of pharmacy & technology, 2016; 8(2):12609-12628.
- Subramanian S, Keerthana Devi M., Vaiyana Rajesh C., Sakthi M, Suganya G, Ravichandran S, Preparation, Evaluation, and Optimization of Atorvastatin Nanosuspension Incorporated Transdermal Patch, 2016; 10(4):487-491.
- Gadekar R, Saurabh M K, Thakur G S, Saurabh A. Study of formulation, characterization and wound Healing potential of transdermal patches of curcumin. Asian Journal of Pharmaceutical and clinical research, 2012; 50(4):225-230.
- 45. Bhaskar VN et al., Formulation and characterization of Simvastatin nanoparticle loaded transdermal patches. Journal of chemical and pharmaceutical research, 2015; 7(7):1084-1093
- 46. Dangi AA, Sheth ZP, Joshi J. Formulation and evaluation of transdermal Ondasteron Hydrochloride matrix patch: In vitro skin permeation and irritation styudy. International Journal of Pharmaceutical Research and Allied sciences, 2012; 1(2):26-37.
- Vennapoosa S, Sandeep D, Formulation and evaluation of a matrix-type Transdermal patch containing Rivastigmaine Tartarate. International Journal of Pharmaceutical Science and Research, 2013; 4(2):10-16.