FORMULATION AND EVALUATION OF MATRIX DIFFUSION CONTROLLED TRANSDERMAL DRUG DELIVERY SYSTEM OF GLIPIZIDE
Abstract
Abstract:
Context: There has been a tremendous increase in interest for transdermal drug delivery system for sustain release dosage form in chronic manageable diseased conditions like diabetes, hypertension etc to reduce the frequency of dosing. It reduces the risk of exposing the body to drug above maximum safe concentration in case of dosage form failure in comparison to oral sustained release drug delivery system.
Aims: Transdermal patches of Glipizide were formulated to achieve sustain release pattern within the therapeutic range.
Methods and Material: HPMC 5cps, HPMC 15cps, HPMC K-100M, Ethyl cellulose (EC), Eudragit RS 100 (ERS-100) and Polyvinylpyrrolidone (PVP) K30 were used as matrix forming polymer. Propylene glycol was used as penetration enhancer. Polyethylene glycol (PEG) 400 and n-dibultyl phthalate (n-DB) were used as plasticizer. Methanol and chloroform were used as solvents. Patches were prepared by solvent casting method.
Results: Patches prepared, from each batch, gave release profile for over 10 hours.
Conclusions: Prepared patches from HPMC 5 cps and ethyl cellulose exhibited good characteristics for sustained release action and other parameters evaluated.Downloads
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).