Dry-Coating of Powder Particles is Current Trend in Pharmaceutical Field

Dry coating process of powder particles

  • Saikh Mahammed Athar Alli Department of Pharmaceutics, Jeypore College of Pharmacy, Jeypore, Koraput, Odisha, India, 764 005

Abstract

Modification of surface attributes of particles, usually accomplished by coating, is desirous to enhance and maintain their usability. Coating is a multi-step process involves application of the coating material (CoM) onto the substrate, herein powder particles, where the process along with device/ equipment monitors surface attributes of the applied coating. Nowadays competitive market calls for cost cutting to survive product(s). Thus saving of energy and time, minimising number and quantity of additives, reducing and shortening process steps; consequently minimising the coating process cost are main goals while developing coating process for powder particle. Innovation of processes for dry-powder coating (DPC) along with their further development and refinement finds solution to said issues. Further, DPC process does not calls for liquid solvent or solution thus are viewed as cost-effective and environmentally safe, DPC process uses thermo-mechanical methods like mechanofusion, magnetic assisted impaction coating (MAIC), hybridization, rotating fluid-bed process, theta-composer, hot-melt coating (HMC), and many others. Besides these available are non-thermo-mechanical methods namely electrostatic coating; supercritical fluids (SCF) based methods like rapid expansion of supercritical fluid (RESF), gas anti-solvent (GAS), SCF anti-solvent, gas-saturated solution (GSS); vapour coating; and others. Basing on said thermo-mechanical and non-thermo-mechanical principle several DPC methods/ process had been reported in scientific literatures and patents. Said DPC method founds multidisciplinary applications like drug delivery and drug development. Diverse devices are there for the DPC process; their method of working, principle, limitations and benefits along with their applicability in pharmaceutical field are discussed and presented in this article.


Keywords: Dry, particle, coating, pharmaceutical, process

Keywords: Dry, coating, particle, pharmaceutical, process

Downloads

Download data is not yet available.

Author Biography

Saikh Mahammed Athar Alli, Department of Pharmaceutics, Jeypore College of Pharmacy, Jeypore, Koraput, Odisha, India, 764 005

Professor and HOD,

Department of Pharmaceutics,

Jeypore College of Pharmacy,

Jeypore, Koraput, Odisha,

References

1. Saikh MAA, Aqueous film coating the current trend. Journal of Drug Delivery and Therapeutics, 2021; 11(4-S):212-224. DOI: https://dx.doi.org/10.22270/jddt.v11i4-S.4911.
2. Saikh MAA. Pharmaceutical’s Granulation. Germany: LAP Lambert Academic Publishing; 2016.
3. Saikh MAA. Pharmaceutical’s Coating. Germany: LAP Lambert Academic Publishing; 2015.
4. Chavda VP, Soniwala MM, Chavda JR. Particle coating: From conventional to advanced. International Journal of Pharmaceutical and Medicinal Research, 2013; 1:1-17.
5. Singhai NJ, Rawal A, Maurya R, Suman R. Design and characterization of dual drug loaded microspheres for colon drug targeting. Journal of Drug Delivery and Therapeutics, 2019; 9(3-S):12-22. DOI: https://dx.doi.org/10.22270/jddt.v9i3-s.2923.
6. Gaware RU, Tambe ST, Dhobale SM, Jadhav SL. Formulation and in-vitro evaluation of theophylline sustained release tablet. Journal of Drug Delivery and Therapeutics, 2019; 9(1-S):48-51. DOI: https://dx.doi.org/10.22270/jddt.v9i1-s.2252.
7. Divya B, Sreekanth J, Satyavati D. Development of extended release formulations of Ilaprazole tablets. Journal of Drug Delivery and Therapeutics, 2019; 9(3):8-12. DOI: https://dx.doi.org/10.22270/jddt.v9i3.2811.
8. Yang Q, Yuan F, Xu L, Yan Q, Yang Y, Wu D, Guo F, Yang G. An update of moisture barrier coating for drug delivery. Pharmaceutics, 2019; 11(9):436. DOI: https://dx.doi.org/10.3390/pharmaceutics11090436.
9. Pundir K, Parashar B. The innovations in tablet coating: A review. International Educational Applied Research Journal, 2019; 3(6):18-23.
10. Ahmed SAN, Patil SR, Khan MKS, Khan MS. Tablet coating techniques: Concept and recent trends. International Journal of Pharmaceutical Sciences Review and Research, 2021; 66(1):43-53.
11. Yang Q, Ma Y, Zhu J. Dry powder coated osmotic drug delivery system. European Journal of Pharmaceutical Sciences, 2018; 111:383-392. DOI: https://dx.doi.org/10.1016/j.ejps.2017.10.001.
12. Foppoli AA, Maroni A, Cerea M, Zema L, Gazzaniga A. Dry coating of solid dosage forms: An overview of processes and applications. Drug Development and Industrial Pharmacy, 2017; 43(12):1919-1931.
13. Yang Q, Ma Y, Zhu J, Chow K, Shi K. An update on electrostatic powder coating for pharmaceuticals. Particuology, 2017; 31:1–7. DOI: https://dx.doi.org/10.1016/j.partic.2016.10.001.
14. Yang Q, Ma Y, Shi K, Yang G, Zhu J. Electrostatic coated controlled porosity osmotic pump with ultrafine powders. Powder Technology, 2018; 333:71–77. DOI: https://dx.doi.org/10.1016/j.powtec.2018.04.009.
15. Prasad LK, McGinity JW, Williams RO 3rd. Electrostatic powder coating: Principles and pharmaceutical applications. International Journal of Pharmaceutics, 2016; 505(1-2):289-302. DOI: https://dx.doi.org/10.1016/j.ijpharm.2016.04.016.
16. Yang Y, Shen L, Yuan F, Fu H, Shan W. Preparation of sustained release capsules by electrostatic dry powder coating, using traditional dip coating as reference. International Journal of Pharmaceutics, 2018; 543(1-2):345-351. DOI: https://dx.doi.org/10.1016/j.ijpharm.2018.03.047.
17. Qiao M, Luo Y, Zhang L, Ma Y, Stephenson TS, Zhu J. Sustained release coating of tablets with Eudragit(®) RS/RL using a novel electrostatic dry powder coating process. International Journal of Pharmaceutics, 2010; 399(1-2):37-43. DOI: https://dx.doi.org/10.1016/j.ijpharm.2010.07.047.
18. Qiao M, Zhang L, Ma Y, Zhu J, Xiao W. A novel electrostatic dry coating process for enteric coating of tablets with Eudragit® L 100-55. European Journal of Pharmaceutics and Biopharmaceutics, 2013; 83(2):293-300. DOI: https://dx.doi.org/10.1016/j.ejpb.2012.10.006.
19. Yang Q, Ma Y, Zhu J. Applying a novel electrostatic dry powder coating technology to pellets. European Journal of Pharmaceutics and Biopharmaceutics, 2015; 97(PtA):118-124. DOI: https://dx.doi.org/10.1016/j.ejpb.2015.10.006.
20. Yang Q, Ma Y, Zhu J. Sustained drug release from electrostatic powder coated tablets with ultrafine Ethylcellulose powders. Advanced Powder Technology, 2016; 27(5):2145–2152. DOI: https://dx.doi.org/10.1016/j.apt.2016.07.027.
21. BarlettaT M, Tagliaferri V. Electrostatic fluidized bed deposition of a high performance polymeric powder on metallic substrates. Surface & Coatings Technology, 2006; 200:4282-4290.
22. Ramlakhan M, Yu Wu C, Watano S, Dave RN, Pfeffer R, Dry particle coating using magnetically assisted impaction coating: Modification of surface properties and optimization of system and operating parameters, Powder Technology, 2000; 112(1–2):137-148. DOI: https://dx.doi.org/10.1016/S0032-5910(99)00314-9.
23. Singh RK, Ata A, Fitz-Gerald J, Rabinovich Y, Hendrickson W. Dry coating method using magnetically assisted impaction in a randomly turbulent fluidized bed. Kona Powder and Particle Journal, 1997; 15:121-131. DOI: https://dx.doi.org/10.14356/kona.1997016.
24. Gera M, Saharan VA, Kataria M, Kukkar V. Mechanical methods for dry particle coating processes and their applications in drug delivery and development. Recent Patents on Drug Delivery & Formulation, 2010; 4(1):58-81. DOI: https://dx.doi.org/10.2174/187221110789957200.
25. Jallo LJ, Dave RN. Explaining electrostatic charging and flow of surface-modified Acetaminophen powders as a function of relative humidity through surface energetics. Journal of Pharmaceutical Sciences, 2015; 104(7):2225-2232. DOI: https://dx.doi.org/10.1002/jps.24479.
26. Jallo LJ, Ghoroi C, Gurumurthy L, Patel U, Davé RN. Improvement of flow and bulk density of pharmaceutical powders using surface modification. International Journal of Pharmaceutics, 2012; 423(2):213-225. DOI: https://dx.doi.org/10.1016/j.ijpharm.2011.12.012.
27. Stocker E, Becker K, Hate S, Hohl R, Schiemenz W, Sacher S, Zimmer A, Salar-Behzadi S. Application of ICH Q9 quality risk management tools for advanced development of hot melt coated multiparticulate systems. Journal of Pharmaceutical Sciences, 2017; 106(1):278-290. DOI: https://dx.doi.org/10.1016/j.xphs.2016.09.025.
28. Zier KI, Schultze W, Leopold CS. Combination of a hot-melt subcoating and an enteric coating for moisture protection of hygroscopic Sennae fructus tablets. Pharmaceutical Development and Technology, 2019; 24(10):1210-1217. DOI: https://dx.doi.org/10.1080/10837450.2019.1648509.
29. Wang X, Wang P, Huang C, Lin X, Gong H, He H, Cai C. Hot-melt sub- and outer coating combined with enteric aqueous coating to improve the stability of aspirin tablets. Asian Journal of Pharmaceutical Sciences, 2017; 12(3):266-278. DOI: https://dx.doi.org/10.1016/j.ajps.2016.11.003.
30. Bannow J, Koren L, Salar-Behzadi S, Löbmann K, Zimmer A, Rades T. Hot melt coating of amorphous Carvedilol. Pharmaceutics, 2020; 12(6):519. DOI: https://dx.doi.org/10.3390/pharmaceutics12060519.
31. Jannin V, Cuppok Y. Hot-melt coating with lipid excipients. International Journal of Pharmaceutics, 2013; 457(2):480-487. DOI: https://dx.doi.org/10.1016/j.ijpharm.2012.10.026.
32. Salar-Behzadi S, Corzo C, Gomes Lopes D, Meindl C, Lochmann D, Reyer S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 2: Application of polyglycerol esters of fatty acids as hot melt coating excipients. European Journal of Pharmaceutics and Biopharmaceutics, 2020; 148:107-117. DOI: https://dx.doi.org/10.1016/j.ejpb.2020.01.009.
33. Salar-Behzadi S, Corzo C, Schaden L, Laggner P, Zimmer A. Correlation between the solid state of lipid coating and release profile of API from hot melt coated microcapsules. International Journal of Pharmaceutics, 2019; 565:569-578. DOI: https://dx.doi.org/10.1016/j.ijpharm.2019.05.036.
34. Guimarães TF, Comelli ACC, Tacón LA, Cunha TA, Marreto RN, Freitas LAP. Fluidized bed hot melt granulation with hydrophilic materials improves Enalapril maleate stability. AAPS PharmSciTech, 2017; 18(4):1302-1310. DOI: https://dx.doi.org/10.1208/s12249-016-0593-0.
35. Schertel S, Salar-Behzadi S, Karrer J, Laggner P, Zimmer A. Impact of Polysorbate 65 on Tripalmitin crystal growth and release stability of hot melt coated multiparticulate systems. International Journal of Pharmaceutics, 2021; 607:120970. DOI: https://dx.doi.org/10.1016/j.ijpharm.2021.120970.
36. Schertel S, Salar-Behzadi S, Zimmer A. Impact of surface properties of core material on the stability of hot melt-coated multiparticulate systems. Pharmaceutics, 2021; 13(3):366. DOI: https://dx.doi.org/10.3390/pharmaceutics13030366.
37. Lopes DG, Salar-Behzadi S, Zimmer A. Designing optimal formulations for hot-melt coating. International Journal of Pharmaceutics, 2017; 533(2):357-363. DOI: https://dx.doi.org/10.1016/j.ijpharm.2017.08.086.
38. Lopes DG, Garsuch V, Becker K, Paudel A, Stehr M, Zimmer A, Salar-Behzadi S. Improving the granule strength of roller-compacted ibuprofen sodium for hot-melt coating processing. International Journal of Pharmaceutics, 2016; 510(1):285-295. DOI: https://dx.doi.org/10.1016/j.ijpharm.2016.06.049.
39. Hohl R, Scheibelhofer O, Stocker E, Behzadi SS, Haack D, Koch K, Kerschhaggl P, Lochmann D, Sacher S, Zimmer A. Monitoring of a hot melt coating process via a novel multipoint near-infrared spectrometer. AAPS PharmSciTech, 2017; 18(1):182-193. DOI: https://dx.doi.org/10.1208/s12249-016-0504-4.
40. Yeung CW, Rein H. Determination of surface energies of hot-melt extruded sugar-starch pellets. Pharmaceutical Development and Technology, 2018; 23(2):198-206. DOI: https://dx.doi.org/10.1080/10837450.2017.1395886.
41. Milanovic A, Aleksic I, Ibric S, Parojcic J, Cvijic S. Tableting of hot-melt coated Paracetamol granules: Material tableting properties and quality characteristics of the obtained tablets. European Journal of Pharmaceutical Sciences, 2020; 142:105121. DOI: https://dx.doi.org/10.1016/j.ejps.2019.105121.
42. Jedinger N, Schrank S, Fischer JM, Breinhälter K, Khinast J, Roblegg E. Development of an abuse- and alcohol-resistant formulation based on hot-melt extrusion and film coating. AAPS PharmSciTech, 2016; 17(1):68-77. DOI: https://dx.doi.org/10.1208/s12249-015-0373-2.
43. Yang Y, Shen L, Li J, Shan WG. Preparation and evaluation of Metoprolol tartrate sustained-release pellets using hot melt extrusion combined with hot melt coating. Drug Development and Industrial Pharmacy, 2017; 43(6):939-946. DOI: https://dx.doi.org/10.1080/03639045.2017.1287715.
44. Liu Y, Doddi J, Zheng Y, Ho V, Pheil M, Shi Y. Transmission raman spectroscopic quantification of active pharmaceutical ingredient in coated tablets of hot-melt extruded amorphous solid dispersion. Applied Spectroscopy, 2020; 74(1):108-115. DOI: https://dx.doi.org/10.1177/0003702819884994.
45. Shibata Y, Fujii M, Sugamura Y, Yoshikawa R, Fujimoto S, Nakanishi S, Motosugi Y, Koizumi N, Yamada M, Ouchi K, Watanabe Y. The preparation of a solid dispersion powder of Indomethacin with Crospovidone using a twin-screw extruder or kneader. International Journal of Pharmaceutics, 2009; 365(1-2):53-60. DOI: https://dx.doi.org/10.1016/j.ijpharm.2008.08.023.
46. Iida K, Hayakawa Y, Okamoto H, Danjo K, Luenberger H. Influence of storage humidity on the in vitro inhalation properties of Salbutamol sulfate dry powder with surface covered lactose carrier. Chemical and Pharmaceutical Bulletin (Tokyo), 2004; 52(4):444-446. DOI: https://dx.doi.org/10.1248/cpb.52.444.
47. Iida K, Inagaki Y, Todo H, Okamoto H, Danjo K, Luenberger H. Effects of surface processing of lactose carrier particles on dry powder inhalation properties of Salbutamol sulfate. Chemical and Pharmaceutical Bulletin (Tokyo), 2004; 52(8):938-942. DOI: https://dx.doi.org/10.1248/cpb.52.938.
48. Iida K, Hayakawa Y, Okamoto H, Danjo K, Luenbergerb H. Effect of surface covering of lactose carrier particles on dry powder inhalation properties of Salbutamol sulfate. Chemical and Pharmaceutical Bulletin (Tokyo), 2003; 51(12):1455-1457. DOI: https://dx.doi.org/10.1248/cpb.51.1455.
49. Quinlan L, Morton DAV, Zhou Q. Particle engineering via mechanical dry coating in the design of pharmaceutical solid dosage forms. Current Pharmaceutical Design, 2015; Article Number 21(999). DOI: https://dx.doi.org/10.2174/1381612821666151008151001.
50. Jeon IS, Lee MH, Choi HH, Lee S, Chon JW, Chung DJ, Park JH, Jho JY. Mechanical properties and bioactivity of polyetheretherketone/hydroxyapatite/carbon fiber composite prepared by the mechanofusion process. Polymers (Basel), 2021; 13(12):1978. DOI: https://dx.doi.org/10.3390/polym13121978.
51. Koskela J, Morton DAV, Stewart PJ, Juppo AM, Lakio S. The effect of mechanical dry coating with Magnesium stearate on flowability and compactibility of plastically deforming microcrystalline cellulose powders. International Journal of Pharmaceutics, 2018; 537(1-2):64-72. DOI: https://dx.doi.org/10.1016/j.ijpharm.2017.11.068.
52. Bungert N, Kobler M, Scherließ R. In-depth comparison of dry particle coating processes used in dpi particle engineering. Pharmaceutics, 2021; 13(4):580. DOI: https://dx.doi.org/10.3390/pharmaceutics13040580.
53. Matsumoto A, Ono A, Murao S, Murakami M. Microparticles for sustained release of water-soluble drug based on a containment, dry coating technology. Drug Discoveries & Therapeutics, 2018; 12(6):347-354. DOI: https://dx.doi.org/10.5582/ddt.2018.01082.
54. Cerea M, Zheng W, Young CR, McGinity JW. A novel powder coating process for attaining taste masking and moisture protective films applied to tablets. International Journal of Pharmaceutics, 2004; 279(1-2):127-139. DOI: https://dx.doi.org/10.1016/j.ijpharm.2004.04.015.
55. Sauer D, Zheng W, Coots LB, McGinity JW. Influence of processing parameters and formulation factors on the drug release from tablets powder-coated with Eudragit L 100-55. European Journal of Pharmaceutics and Biopharmaceutics, 2007; 67(2):464-475. DOI: https://dx.doi.org/10.1016/j.ejpb.2007.02.021.
56. Ötles S, Lecoq O, Dodds JA. Dry particle high-impact coating of biopowders: coating strength. Particulate Science and Technology, 2009; 27(4):352-361, DOI: https://dx.doi.org/10.1080/02726350902993987.
57. Christian P, Ehmann HM, Coclite AM, Werzer O. Polymer encapsulation of an amorphous pharmaceutical by initiated chemical vapor deposition for enhanced stability. ACS Applied Materials & Interfaces, 2016; 8(33):21177-21184. DOI: https://dx.doi.org/10.1021/acsami.6b06015.
58. Christian P, Ehmann HM, Werzer O, Coclite AM. Wrinkle formation in a polymeric drug coating deposited via initiated chemical vapor deposition. Soft Matter, 2016; 12(47):9501-9508. DOI: https://dx.doi.org/10.1039/c6sm01919f.
59. Perrotta A, Werzer O, Coclite AM. Strategies for drug encapsulation and controlled delivery based on vapor-phase deposited thin films. Advanced Engineering Materials, 2017; 20:1700639. DOI: https://dx.doi.org/10.1002/adem.201700639,
60. Tylinski M, Smith RS, Kay BD. Morphology of vapor-deposited acetonitrile films. Journal of Physical Chemistry A, 2020; 124(30):6237-6245. DOI: https://dx.doi.org/10.1021/acs.jpca.0c03650.
61. Wack S, Lunca Popa P, Adjeroud N, Vergne C, Leturcq R. Two-Step approach for conformal chemical vapor-phase deposition of ultra-thin conductive silver films. ACS Applied Materials & Interfaces, 2020; 12(32):36329-36338. DOI: https://dx.doi.org/10.1021/acsami.0c08606.
62. Li H, Gao Y, Shao Y, Su Y, Wang X. Vapor-Phase atomic layer deposition of CO9S8 and its application for supercapacitors. Nano Letters, 2015; 15(10):6689-6695. DOI: https://dx.doi.org/10.1021/acs.nanolett.5b02508.
63. Santino LM, Hwang E, Diao Y, Lu Y, Wang H, Jiang Q, Singamaneni S, D'Arcy JM. Condensing vapor phase polymerization (cvpp) of electrochemically capacitive and stable polypyrrole microtubes. ACS Applied Materials & Interfaces, 2017; 9(47):41496-41504. DOI: https://dx.doi.org/10.1021/acsami.7b13874.
64. Soh SH, Lee LY. Microencapsulation and nanoencapsulation using supercritical fluid (SCF) techniques. Pharmaceutics, 2019; 11(1):21. DOI: https://dx.doi.org/10.3390/pharmaceutics11010021.
65. Trivedi V, Bhomia R, Mitchell JC. Myristic acid coated protein immobilised mesoporous silica particles as ph induced oral delivery system for the delivery of biomolecules. Pharmaceuticals (Basel), 2019; 12(4):153. DOI: https://dx.doi.org/10.3390/ph12040153.
66. Chen LF, Xu PY, Fu CP, Kankala RK, Chen AZ, Wang SB. Fabrication of supercritical antisolvent (SAS) process-assisted Fisetin-encapsulated poly (vinyl pyrrolidone) (PVP) nanocomposites for improved anticancer therapy. Nanomaterials (Basel), 2020; 10(2):322. DOI: https://dx.doi.org/10.3390/nano10020322.
67. Sheth P, Sandhu H, Singhal D, Malick W, Shah N, Kislalioglu MS. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production. Current Drug Delivery, 2012; 9(3):269-284. DOI: https://dx.doi.org/10.2174/156720112800389052.
68. Amania M, Saadati N, Navid A, Majda Y. Utilization of supercritical CO2 gas antisolvent (GAS) for production of Capecitabine nanoparticles as anti-cancer drug: Analysis and optimization of the process conditions. Journal of CO2 Utilization, 2021; 46:101465. DOI: https://dx.doi.org/10.1016/j.jcou.2021.101465.
69. Silva JM, Akkache S, Araújo AC, Masmoudi Y, Reis RL, Badens E, Duarte ARC. Development of innovative medical devices by dispersing fatty acid eutectic blend on gauzes using supercritical particle generation processes. Materials Science & Engineering. C, Materials for Biological Applications, 2019; 99:599-610. DOI: https://dx.doi.org/10.1016/j.msec.2019.02.012.
70. Perinelli DR, Cespi M, Bonacucina G, Naylor A, Whitaker M, Lam JK, Howdle SM, Casettari L, Palmieri GF. PEGylated biodegradable polyesters for PGSS microparticles formulation: Processability, physical and release properties. Current Drug Delivery, 2016; 13(5):673-81. DOI: https://dx.doi.org/10.2174/1567201813666151207111034.
Statistics
45 Views | 3 Downloads
How to Cite
1.
Alli S. Dry-Coating of Powder Particles is Current Trend in Pharmaceutical Field. JDDT [Internet]. 15Sep.2021 [cited 18Oct.2021];11(5):145-57. Available from: http://jddtonline.info/index.php/jddt/article/view/5034