Nanoparticulate drug delivery systems: A revolution in design and development of drugs

  • Prashant Shukla Banaras Hindu University, Institute of Technology, Department of Pharmaceutics, Varanasi-221005, India
  • Shweta Sharma Department of Pharmaceutics, ITS Pharmacy College, India
  • Padma Rao Department of Pharmaceutics, Dubai Pharmacy College, UAE

Abstract

The recent developments in nanoparticle-based drug formulations have been helping to address issues around treating challenging diseases. Nanoparticles come in different sizes but usually vary between 100nm to 500nm. For the past few years there has been research going on in the area of drug delivery using particulate delivery systems. Various drug molecules have been modified for both pharmacokinetic and pharmacodynamic properties using nanoparticles as physical approach. Various polymers have been used in the formulation of nanoparticles for drug delivery research to increase therapeutic benefit, while minimizing side effects. Here, we review various aspects of nanoparticle formulation, characterization, effect of their characteristics and their applications in delivery of drug molecules and therapeutic genes.


Keywords: nanoparticles, applications in delivery, Liposomes, Dendrimers

Keywords: nanoparticles, applications in delivery, Liposomes, Dendrimers

Downloads

Download data is not yet available.

Author Biographies

Prashant Shukla, Banaras Hindu University, Institute of Technology, Department of Pharmaceutics, Varanasi-221005, India

Banaras Hindu University, Institute of Technology, Department of Pharmaceutics, Varanasi-221005, India

Shweta Sharma, Department of Pharmaceutics, ITS Pharmacy College, India

Department of Pharmaceutics, ITS Pharmacy College, India

Padma Rao, Department of Pharmaceutics, Dubai Pharmacy College, UAE

Department of Pharmaceutics, Dubai Pharmacy College, UAE

References

1. Bhowmik D, Duraivel S, Kumar KS. Recent trends in challenges and opportunities in transdermal drug delivery system. The Pharma Innovation. 2012; 1(10). [Google Scholar]
2. NirvedV U, Lokesh V, Prasad MG, Joshi HM. Formulation and evaluation of ethosomes of sesbania grandiflora linn. Seeds. Novel Science International Journal of Pharmaceutical Science. 2012; 1:274-5. [Google Scholar]
3. Pan BF, Gao F, Gu HC: Dendrimer modified magnetite nanoparticles for protein immobilization. Journal of colloid and interface science, 2005; 284(1):1-6. https://doi.org/10.1016/j.jcis.2004.09.073
4. dos Santos Giuberti C, de Oliveira Reis EC, Ribeiro Rocha TG, Leite EA, Lacerda RG, Ramaldes GA, de Oliveira MC: Study of the pilot production process of long-circulating and pH-sensitive liposomes containing cisplatin. Journal of liposome research, 2011; 21(1):60-69. https://doi.org/10.3109/08982101003754377
5. Salata, Oleg V. "Applications of nanoparticles in biology and medicine." Journal of nanobiotechnology. 2004; 2(1):1-6. https://doi.org/10.1186/1477-3155-2-1
6. Paull R, Wolfe J, Hebert P, Sinkula M: Investing in nanotechnology. Nature Biotechnology. 2003; 21(10):1144-1147. 10.1038/nbt1003-1144. https://doi.org/10.1038/nbt1003-1144
7. Manne R, Devarajan A. Development of nicotinic acid controlled release tablets with natural phenolic anti-oxidant polymer by encapsulation technique. Journal of Natural Remedies. 2021; 20(4):204-16. https://doi.org/10.18311/jnr/2020/25514
8. van den Hoven JM, Van Tomme SR, Metselaar JM, Nuijen B, Beijnen JH, Storm G: Liposomal drug formulations in the treatment of rheumatoid arthritis. Molecular pharmaceutics, 2011; 8(4):1002-1015. https://doi.org/10.1021/mp2000742
9. Bilensoy E, Sarisozen C, Esendagl G, Dogan LA, Aktas Y, Sen M, Mangan AN: Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. International journal of pharmaceutics. 2009; 371(1-2):170-176 https://doi.org/10.1016/j.ijpharm.2008.12.015
10. Bai J, Li Y, Du J, Wang S, Zheng J, Yang O, Chen X: One-pot synthesis of polyacrylamide-gold nanocomposite. Materials Chemistry and Physics. 2007; 106(2-3): 412-415. https://doi.org/10.1016/j.matchemphys.2007.06.021
11. Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GS, Dickey S, Lim DV: Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorganic & medicinal chemistry letters. 2007; 17(1):53-56. https://doi.org/10.1016/j.bmcl.2006.09.098
12. Kurakula M, Naveen N R, Patel B, Manne R, Patel DB. Preparation, Optimization and Evaluation of Chitosan-Based Avanafil Nanocomplex Utilizing Antioxidants for Enhanced Neuroprotective Effect on PC12 Cells. Gels. 2021; 7(3):96. https://doi.org/10.3390/gels7030096
13. Saraogi GK, Gupta P, Gupta UD, Jain NK, Agrawal GP. Gelatin nanocarriers as potential vectors for effective management of tuberculosis. International journal of pharmaceutics. 2010; 385(1-2):143-149. https://doi.org/10.1016/j.ijpharm.2009.10.004
14. Panyam J, Labhasetwar V. Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Molecular pharmaceutics. 2004; 1(1):77-84. https://doi.org/10.1021/mp034002c
15. Prabha S, Labhasetwar V. Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharmaceutical research. 2004; 21(2):354-364. https://doi.org/10.1023/B:PHAM.0000016250.56402.99
16. Murakami, H., Kobayashi, M., Takeuchi, H., & Kawashima, Y. Preparation of poly (DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. International journal of pharmaceutics.1999; 187(2):143-152. https://doi.org/10.1016/S0378-5173(99)00187-8
17. Kovacevic A, Savic S, Vuleta G, Mueller RH, Keck CM. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. International journal of pharmaceutics. 2011; 406(1-2):163-72. https://doi.org/10.1016/j.ijpharm.2010.12.036
18. Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science. 1968; 26(1):62-9. https://doi.org/10.1016/0021-9797(68)90272-5
19. Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chemistry of Materials. 2001; 13(2):308-11. https://doi.org/10.1021/cm0011559
20. Zhang Q, Shen Z, Nagai T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. International journal of pharmaceutics. 2001; 218(1-2):75-80. https://doi.org/10.1016/S0378-5173(01)00614-7
21. Boudad H, Legrand P, Lebas G, Cheron M, Duchene D, Ponchel G. Combined hydroxypropyl-β-cyclodextrin and poly (alkylcyanoacrylate) nanoparticles intended for oral administration of saquinavir. International journal of pharmaceutics. 2001; 218(1-2):113-24. https://doi.org/10.1016/S0378-5173(01)00622-6
22. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews. 2003; 55(3):329-47. https://doi.org/10.1016/S0169-409X(02)00228-4
23. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharmaceutical research. 1997; 14(11):1568-73. https://doi.org/10.1023/A:1012126301290
24. Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996; 13:1838-45 https://doi.org/10.1023/A:1016085108889
25. Redhead HM, Davis SS, Illum L. Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. Journal of Controlled Release. 2001; 70(3):353-63. https://doi.org/10.1016/S0168-3659(00)00367-9
26. Swarbrick J, Boylan J. Encyclopedia of pharmaceutical technology. 2nd ed.; Marcel Dekker: New York, 2002. 34.
27. Müller RH, Wallis KH. Surface modification of iv injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. International journal of pharmaceutics. 1993; 89(1):25-31.https://doi.org/10.1016/0378-5173(93)90304-X https://doi.org/10.1016/0378-5173(93)90304-X
28. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Advanced drug delivery reviews. 2012; 64:24-36. https://doi.org/10.1016/j.addr.2012.09.006
29. Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. Journal of pharmaceutical sciences. 2008; 97(9):3518-90. https://doi.org/10.1002/jps.21270
30. Devapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical development. J Pharm Sci. 2007; 96:2547-65. https://doi.org/10.1002/jps.20875
31. Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Experimental and molecular pathology. 2009; 86(3):215-23. https://doi.org/10.1016/j.yexmp.2008.12.004
32. Gupta S, Moulik SP. Biocompatible microemulsions and their prospective uses in drug delivery. Journal of pharmaceutical sciences. 2008; 97(1):22-45. https://doi.org/10.1002/jps.21177
33. Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Utilization of poly (DL-lactide-co-glycolide) nanoparticles for preparation of mini-depot tablets by direct compression. Journal of Controlled Release. 2000; 67(1):29-36. https://doi.org/10.1016/S0168-3659(99)00288-6
34. Mozafari MR, Omri A. Importance of divalent cations in nanolipoplex gene delivery. Journal of pharmaceutical sciences. 2007; 96(8):1955-66. https://doi.org/10.1002/jps.20902
35. Kolluru LP, Rizvi SA, D'Souza M, D'Souza MJ. Formulation development of albumin based theragnostic nanoparticles as a potential delivery system for tumor targeting. Journal of drug targeting. 2013; 21(1):77-86. Google Scholar https://doi.org/10.3109/1061186X.2012.729214
36. Chikan V, McLaurin EJ. Rapid nanoparticle synthesis by magnetic and microwave heating. Nanomaterials. 2016; 6(5):85. https://doi.org/10.3390/nano6050085. https://doi.org/10.3390/nano6050085
37. Ruel-Gariépy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux JC. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics. 2004; 57(1):53-63. [PubMed] [Google Scholar] https://doi.org/10.1016/S0939-6411(03)00095-X
38. Ramanan RM, Chellamuthu P, Tang L, Nguyen KT. Development of a temperature‐sensitive composite hydrogel for drug delivery applications. Biotechnology progress. 2006; 22(1):118-25. [PubMed] [Google Scholar] https://doi.org/10.1021/bp0501367
39. Paavola A, Kilpeläinen I, Yliruusi J, Rosenberg P. Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. International journal of pharmaceutics. 2000; 199(1):85-93. https://doi.org/10.1016/S0378-5173(00)00376-8
40. Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder technology. 2000; 107(1-2):137-43. https://doi.org/10.1016/S0032-5910(99)00182-5
41. Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Evaluation of poly (DL-lactide-co-glycolide) nanoparticles as matrix material for direct compression. Advanced Powder Technology. 2000; 11(3):311-22. https://doi.org/10.1163/156855200750172187
Crossmark
Statistics
247 Views | 69 Downloads
How to Cite
1.
Shukla P, Sharma S, Rao P. Nanoparticulate drug delivery systems: A revolution in design and development of drugs. JDDT [Internet]. 15Oct.2021 [cited 24Apr.2024];11(5-S):188-93. Available from: https://jddtonline.info/index.php/jddt/article/view/5023