Novel Delivery System Used for Oral Bioavailability Enhancement of Poorly Water Soluble Drugs

  • Sunil Kumar Lakavath Department of Pharmaceutics, Jangaon Institute of Pharmaceutical Sciences, Yeshwanthpur, Jangaon, Telangana State – 506 167, India


Majority of the drugs used for the treatment of various diseases are administered by oral route using conventional delivery. The major drawback of the oral administration is the poor bioavailability due to the poor water solubility, chemical stability and pre-systemic metabolism. Numerous researches are going on for the improvement of oral bioavailability of drugs using novel drug delivery systems as an alternative to conventional delivery systems. Majority of the novel delivery system includes; solid dispersion, sustained, controlled buccal, gastro retentive, nano carrier delivery systems such as lipid nanoparticles, and self-emulsifying systems. The oral bioavailability improvement by these delivery systems might be due to the increased particle size, improved dissolution and/or permeation and subsequently bioavailability of the drugs. In this review, we attempt to discuss the various novel delivery systems developed for the enhancement of oral bioavailability of poorly water soluble therapeutics.

Keywords: Oral bioavailability, poor solubility, stability, metabolism, novel delivery systems, nano carriers.

Keywords: Oral bioavailability, poor solubility, stability, metabolism, novel delivery systems, nano carriers


Download data is not yet available.

Author Biography

Sunil Kumar Lakavath, Department of Pharmaceutics, Jangaon Institute of Pharmaceutical Sciences, Yeshwanthpur, Jangaon, Telangana State – 506 167, India

Department of Pharmaceutics, Jangaon Institute of Pharmaceutical Sciences, Yeshwanthpur, Jangaon, Telangana State – 506 167, India


1. Food and Drug Administration. (2000). Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. Food and Drug Administration, Rockville, MD.
2. Amidon, G. L., Lennernäs, H., Shah, V. P., & Crison, J. R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical research, 1995; 12(3):413-420.
3. Broccatelli, F., Cruciani, G., Benet, L. Z., & Oprea, T. I. BDDCS class prediction for new molecular entities. Molecular pharmaceutics, 2012; 9(3):570-580.
4. Reddy, B. B. K., & Karunakar, A. Biopharmaceutics classification system: a regulatory approach. Dissolution Technologies, 2011; 18(1):31-37.
5. Dudhipala N. A Comprehensive Review on Solid Lipid Nanoparticles as Delivery Vehicle for Enhanced Pharmacokinetic and Pharmacodynamic Activity of Poorly Soluble Drugs. Int J Pharm Sci Nanotech. 2019; 12:4421-40.
6. Kumar A, Sahoo SK, Padhee K, Kochar PS, Sathapathy A, Pathak N. Review on solubility enhancement techniques for hydrophobic drugs. Pharmacie Globale. 2011; 3(3):001-7.
7. Dudhipala N. Influence of Solid Lipid Nanoparticles on Pharmaco-dynamic Activity of Poorly Oral Bioavailable Drugs. International Journal of Pharmaceutical Sciences and Nanotechnology. 2020 Jul 11; 13(4):4979-83.
8. Yum SI, Schoenhard G, Tipton AJ, Gibson JW, Middleton JC, inventors; Durect Corp, assignee. Oral drug delivery system. United States patent US 8,133,507. 2012 Mar 13.
9. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN pharmaceutics. 2012; 2012.
10. Narendar Dudhipala, Arjun Narala and Ramesh Bomma. Recent Updates in the Formulation Strategies to Enhance the Bioavailability of Drugs Administered via Intranasal Route. J bioequ avail. 2016; 8(5):204-207.
11. Swetha E, Narendar D. Influence of β-cyclodextrin and hydroxypropyl-β-cyclodextrin on enhancement of solubility and dissolution of isradipine. Int J Pharm Sci Nanotech. 2017; 10(3):3752-3757.
12. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. European journal of Pharmaceutics and Biopharmaceutics. 2000 Jul 3; 50(1):47-60.
13. Narendar D, Arjun N, Dinesh S, Karthik J. Biopharmaceutical and preclinical studies of efficient oral delivery of zaleplon as semisolid dispersions with self-emulsifying lipid surfactants. Int J Pharm Sci Nanotech. 2016; 9(1):1-8.
14. Palem CR, Reddy ND, Satyanarayana G, Varsha BP. Development and optimization of Atorvastatin calcium-cyclodextrin inclusion complexed oral disintegrating tablets for enhancement of solubility, dissolution, pharmacokinetic and pharmacodynamic activity by central composite design. Int J Pharm Sci Nanotech. 2016; 9(2):1-1.
15. Chella N, Shastri N, Tadikonda RR. Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan. Acta Pharmaceutica Sinica B. 2012 Oct 1; 2(5):502-8.
16. Butreddy A, Dudhipala N. Enhancement of solubility and dissolution rate of trandolapril sustained release matrix tablets by liquisolid compact approach. Asian Journal of Pharmaceutic• Oct-Dec. 2015; 9(4):1.
17. Allegra JR, Hawley SA. Attenuation of sound in suspensions and emulsions: Theory and experiments. The Journal of the Acoustical Society of America. 1972 May; 51(5B):1545-64.
18. Dudhipala, N. A Review of Novel Formulation Strategies to Enhance Oral Delivery of Zaleplon. J Bioequiv Availab, 2016; 8:211-213.
19. Narendar D and Kishan V. Candesartan cilexetil nanoparticles for improved oral bioavailability. Ther deli, 2017; 8(2):79-88.
20. Peddapalli H, Dudhipala N, Chinnala KM, Banala N. Transmucosal Delivery of Duloxetine Hydrochloride for Prolonged Release: Preparation, in vitro, ex vivo Characteri-zation and in vitro-ex vivo Correlation. Int J Pharm Sci Nanotech. 2018; 11(5):29-4258.
21. Sathish, D., Himabindu, S., Shravan, Y., & Madhusudan, R.Y. Floating drug delivery systems for prolonging gastric residence time: a review. Current drug deli. 2011; 8(5):494-510.
22. Donthi MR, Dudipala N, Komalla DR, Suram D, Banala N. Design and Evaluation of Floating Multi Unit Mini Tablets (MUMTS) Muco Adhesive Drug Delivery System of Famotidine to Treat Upper Gastro Intestinal Ulcers. Journal of Pharmacovigilance. 2015 Oct 12.
23. Arjun, N., Narendar, D., Sunitha, K., Harika, K., Madhusudan, R. Y., & Nagaraj, B. Development, evaluation and influence of formulation and process variables on in vitro performance of oral elementary osmotic device of atenolol. Int J Pharm Invest, 2016; 6(4):1-9.
24. Narendar, D., Arjun, N., Sunitha, K., Harika, K., & Nagaraj, B. Development of osmotically controlled oral drug delivery systems of tramadol hydrochloride: effect of formulation variables on in-vitro release kinetics. Asian J Pharm. 2016; 10(3):1-10.
25. Sunil, R., Pavan, K.P,. Narendar, D., & Madhusudan, R. Y. Development and in vitro evaluation of modified release coated tablets of freely water soluble drug metoprolol succinate. American J Pharm Tech Res. 2012; 2(3):1-15.
26. Nagaraj B, Anusha K, Narendar D, Sushma P. Formulation and evaluation of microemulsion-based transdermal delivery of duloxetine hydrochloride. International Journal of Pharmaceutical Sciences and Nanotechnology. 2020 Jan 31; 13(1):4773-82.
27. Rao, M.Y., Vani, G., & Chary, B.R. Design and evaluation of mucoadhesive drug delivery systems. Indian Drugs. 1998; 35:558–65.
28. Smart, J.D. Buccal drug delivery. Expert Opin Drug Deliv. 2005; 2(3):507-17.
29. Mahipalreddy D, Narendar D, Devendhar K, Dinesh S, Kiran S, Nagaraj B. Preparation and evaluation of ketoprofen enteric coated mini tablets for prevention of chronic inflammatory disease. J Pharm Drug Deliv Res. 2015; 4(2).
30. Reddy, P.C., Chaitanya, K.C.S., & Madhusudan, R. Y. A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods. Daru, 2011; 19(6):385–403.
31. Palem, C. R., Gannu, R., Doodipala, N., Yamsani, V., & Yamsani, M. R. Transmucosal delivery of domperidone from bilayered buccal patches: in vitro, ex vivo and in vivo characterization. Archives of pharmacal research, 2011 34(10):1701-1710.
32. Palem, C. R., Dudhipala, N. R., Battu, S. K., Repka, M. A., & Rao Yamsani, M. Development, optimization and in vivo characterization of domperidone-controlled release hot-melt-extruded films for buccal delivery. Drug development and industrial pharmacy, 2016; 42(3):473-484.
33. Palem, C. R., Dudhipala, N., Battu, S. K., Goda, S., Repka, M. A., & Yamsani, M. R. Combined dosage form of pioglitazone and felodipine as mucoadhesive pellets via hot melt extrusion for improved buccal delivery with application of quality by design approach. Journal of Drug Delivery Science and Technology, 2015; 30:209-219.
34. Chopparapu C, Palem CR, Yamsani MR. Development of Promethazine mucoadhesive tablets for buccal delivery: in-vitro, ex-vivo and in-vivo characterization. American Jr PharmTech Res. 2012; 2(1):1697-705.
35. Choi, H. G., & Kim, C. K. Development of omeprazole buccal adhesive tablets with stability enhancement in human saliva. Journal of controlled release, 2000; 68(3):397-404.
36. Raghuraman, S., Velrajan, G., Ravi, R., Jeyabalan, B., Johnson, D. B., & Sankar, V. Design and evaluation of propranolol hydrochloride buccal films. Indian journal of pharmaceutical sciences, 2002; 64(1):32.
37. Perioli, L., Ambrogiv, V., Stefano, G., Ricci, M., Blasi, P., & Carlo, R. Mucoadhesive bilayered tablets for buccal sustained release of flurbiprofen. AAPS PharmSciTech. 2007; 8(3):E20– E27.
38. Vamshi, V.Y., Ramesh, G., Chandrasekhar, K., Rao, B.M.E., Rao, Y.M. Development and in vitro evaluation of buccoadhesive carvedilol tablets. Acta Pharm, 2007; 57:185–197.
39. Hassan, N., Ali, M., & Ali, J. Novel buccal adhesive system for anti-hypertensive agent nimodipine. Pharm Dev Technol, 2010; 15(2):124-30.
40. Surya, N. R.A., Bhabani, S.N., Amit. K. N., & Biswaranjan, M. Formulation and evaluation of buccal patches for delivery of atenolol. AAPS PharmSciTech, 2010; 11(3):1038–1044.
41. Shindhaye, S.S., Thakkar, P.V.D., & Kadak. V.J. Buccal drug delivery of pravastatin sodium. AAPS PharmSciTech, 2010; 11:416–24.
42. Streubel, A., Siepmann, J., & Bodmeier, R. (2006). Gastroretentive drug delivery systems. Expert Opin Drug Deliv, 3(2), 217-33.
43. Donthi MR, Dudhipala NR, Komalla DR, Suram D, Banala N. Preparation and Evaluation of Fixed Combination of Ketoprofen Enteric Coated and Famotidine Floating Mini Tablets by Single Unit Encapsulation System. Journal of Bioequivalence & Bioavailability. 2015; 7(6):279.
44. Carla, M.L., Catarina, B., Alessandra, R.,, & Francesca, B. Overview on gastro retentive drug delivery systems for improving drug bioavailability. Int J Pharm, 2016; 50(1):144-158.
45. Narendar, D., Palem, C.R., Reddy, S., & Rao, Y.M. Pharmaceutical development and clinical pharmacokinetic evaluation of gastroretentive floating matrix tablets of levofloxacin. Int J Pharma Sci and Nanotech, 2011; 4(3):1461-1467.
46. Reddy, N.D., Chinna R. P., Sunil, R., & & Madhusudan, R. Y. Development of floating matrix tablets of Ofloxacin and Ornidazole in combined dosage form: in vitro and in vivo evaluation in healthy human volunteers. Int J Drug Deli, 2012; 4:462-469.
47. Ramesh, B., & Kishan, V. Development of gastroretentive drug delivery system for cefuroxime axetil: In vitro and In vivo evaluation, Pharma Develop and Tech. 2013; 18(5):1230-1237.
48. Ramesh, B., & Kishan, V. Statistical optimization of floating-bioadhesive drug delivery system for risedronate sodium: In vitro, ex vivo and in vivo evaluation. Int j of Drug deli. 2014; 6:36-49.
49. Narendar, D., Arjun, N., Karthik, Y. J., & Ramesh, B. Amoxycillin trihydrate floating-bioadhesive drug delivery system for eradication of helicobacter pylori: preparation, in vitro and ex vivo evaluation. J bioequ avail. 2016; 8(3):118-124.
50. Arun, B. R. & Narendar, D. Development of multiple-unit floating drug delivery system of clarithromycin: formulation, in vitro dissolution by modified dissolution apparatus, in vivo radiographic studies in human volunteers. Drug res. 2017; 67:412-418.
51. Narendar, D., Someshwar, K., Arjun, N., & Madhusudan R.Y. Quality by design approach for development and optimization of Quetiapine Fumarate effervescent floating matrix tablets for improved oral delivery. J Pharm Investi. 2016; 46(3):253-263.
52. Müller, R.H., Mäder, K., & Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm,. 2000; 50(1):161-177.
53. Üner, M., & Yener, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomed. 2007; 2(3):289-300.
54. Narendar, Dudhipala., Arjun, Narala., & Ramesh, Bomma. Recent updates in the formulation strategies to enhance the bioavailability of drugs administered via intranasal route. J bioequ avail. 2016; 8(5):204-207.
55. Dudhipala N, Ahmed AAY, Nagaraj B. Colloidal lipid nanodispersion enriched hydrogel of antifungal agent for management of fungal infections: comparative in-vitro, ex-vivo and in-vivo evaluation for oral and topical application. Chemistry and Physics of Lipids. 2020: 104981.
56. Souto EB, Baldim I, Oliveira WP, Rao R, Yadav N, Gama FM, Mahant S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opinion on Drug Delivery. 2020 Mar 3; 17(3):357-77.
57. Narendar D, Thirupathi G. Neuroprotective effect of ropinirole loaded lipid nanoparticles hydrogel for Parkinson’s disease: preparation, in vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. Pharmaceutics, 2020; 12(5):448.
58. Dudhipala, N. Polymeric Matrices at Micro and Nanoscale for Ocular Drug Delivery. Saudi J of Biomed Res. 2017; 2:96-100.
59. Akshaya Tatke, Narendar Dudhipala, Karthik Yadav Janga, Sai Prachetan Balguri, Bharathi Avula, Monica M. Jablonski Soumyajit Majumdar. In Situ Gel of Triamcinolone Acetonide-Loaded Solid Lipid Nanoparticles for Improved Topical Ocular Delivery: Tear Kinetics and Ocular Disposition Studies. Nanomaterials (Basel). 2018 Dec 27; 9(1). pii: E33. doi: 10.3390/nano9010033.
60. Reddy, N.D. Ocular Iontophoresis for Anterior and Posterior Segment Drug Delivery. Saudi Pharm Med Sci. 2017; 3(8A):853-857.
61. Müller, R.H., Radtke, M., & Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002; 54:S131-55.
62. Ahmed AAY, Narendar D, Mujumdar S. Ciprofloxacin Loaded Nanostructured Lipid Carriers Incorporated into In-Situ Gels to Improve Management of Bacterial Endophthalmitis. Pharmaceutics, 2020; 12(6):572.
63. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Advanced pharmaceutical bulletin. 2015 Sep; 5(3):305.
64. Dudhipala N, Ahmed AA. Amelioration of ketoconazole in lipid nanoparticles for enhanced antifungal activity and bioavailability through oral administration for management of fungal infections. Chemistry and Physics of Lipids. 2020; 232:104953.
65. Priano L, Esposti D, Esposti R, Castagna G, De Medici C, Fraschini F, Gasco MR, Mauro A. Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. Journal of nanoscience and nanotechnology. 2007 Oct 1; 7(10):3596-601.
66. zur Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. European journal of pharmaceutics and biopharmaceutics. 1998 Mar 1; 45(2):149-55.
67. Narendar, D., & Kishan, V. Pharmacokinetic and pharmacodynamic studies of nisoldipine-loaded solid lipid nanoparticles developed by central composite design. Drug Dev Ind Pharm. 2015; 41(12):1968-77.
68. Narendar, D., & Kishan, V. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deli. 2016; 23(2):395-404.
69. Usha, G., Narendar, D., & Kishan, V. Preparation, characterization and in vivo evaluation of felodipine solid lipid nanoparticles to improve the oral bioavailability. Int J Pharma Sci Nanotech. 2015; 8(4):2995-3002.
70. Sandeep, V., Narendar, D., Arjun, N., & Kishan, V. Lacidipine loaded solid lipid nanoparticles for oral delivery: Preparation, characterization and In vivo evaluation. Int J Pharma Sci Nanotech, 2016; 9(6):3524-30.
71. Arun, B., Narendar, D., & Kishan, V. Development of olmesartan medoxomil lipid based nanoparticles and nanosuspension: preparation, characterization and comparative pharmacokinetic evaluation. Artificial cells, nanomed and biotech. 2018; 46(1):126-137.
72. Dudhipala, N., & Veerabrahma, K. Improved anti-hyperlipidemic activity of Rosuvastatin Calcium via lipid nanoparticles: Pharmacokinetic and pharmacodynamic evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2017; 110:47-57.
73. Suvarna, G., Narender, D., & Kishan, V. Preparation, characterization and in vivo evaluation of rosuvastatin calcium loaded solid lipid nanoparticles. Int J Pharma Sci and Nanotech. 2015; 8(1):2779-2785.
74. Narala, A., & Veerabrahma, K. Preparation, characterization and evaluation of quetiapine fumarate solid lipid nanoparticles to improve the oral bioavailability. Journal of pharmaceutics, 2013.
75. Nagaraj, K., Narendar, D., & Kishan, V. Development of olmesartan medoxomil optimized nanosuspension using Box-Behnken design to improve oral bioavailability. Drug Dev Ind Pharm, 2017; 43(7):1186-1196.
76. Dudhipala, N., & Puchchakayala, G. Capecitabine lipid nanoparticles for anti-colon cancer activity in 1, 2-dimethylhydrazine induced colon cancer: Preparation, cytotoxic, pharmacokinetic and pathological evaluation. Drug development and industrial pharmacy, (just-accepted), 2018; 1-32.
77. Yang S, Zhu J, Lu Y, Liang B, Yang C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharmaceutical research. 1999 May 1; 16(5):751-7.
78. Dudhipala, N., & Janga, K. Y. Lipid nanoparticles of zaleplon for improved oral delivery by Box–Behnken design: optimization, in vitro and in vivo evaluation. Drug development and industrial pharmacy, 2017; 43(7):1205-1214.
79. Nagaraj B, Tirumalesh C, Dinesh S, Narendar D. Zotepine loaded lipid nanoparticles for oral delivery: development, characterization, and in vivo pharmacokinetic studies. Future Journal of Pharmaceutical Sciences. 2020 Dec; 6(1):1-1.
80. Tirumalesh C, Suram D, Dudhipala N, Banala N. Enhanced pharmacokinetic activity of Zotepine via nanostructured lipid carrier system in Wistar rats for oral application. Pharmaceutical Nanotechnology. 2020 Apr 1; 8(2):148-60.
81. Thirupathi, G., Swetha, E., & Narendar, D. Role of isradipine loaded solid lipid nanoparticles in the pharmacodynamic effect of isradipine in rats. Drug res, 2017; 67(03):163-169.
82. Dudhipala, N., Janga, K. Y., & Gorre, T. Comparative study of nisoldipine-loaded nanostructured lipid carriers and solid lipid nanoparticles for oral delivery: preparation, characterization, permeation and pharmacokinetic evaluation. Artificial cells, nanomedicine, and biotechnology, 2018; 1-10.
83. Paudel, A., Imam, S. S., Fazil, M., Khan, S., Hafeez, A., Ahmad, F. J., & Ali, A. Formulation and Optimization of Candesartan Cilexetil Nano Lipid Carrier: In Vitro and In Vivo Evaluation. Current drug delivery, 2017; 14(7):1005- 1015.
84. Kaithwas, V., Dora, C. P., Kushwah, V., & Jain, S. Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability. Colloids and Surfaces B: Biointerfaces, 2017; 154:10-20.
85. Pouton CW. Formulation of self-emulsifying drug delivery systems. Advanced drug delivery reviews. 1997 Apr 14; 25(1):47-58.
86. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomedicine & pharmacotherapy. 2004 Apr 1; 58(3):173-82.
87. Krishna VM, Kumar VB, Dudhipala N. In-situ Intestinal absorption and pharmacokinetic investigations of carvedilol loaded supersaturated self-emulsifying drug system. Pharmaceutical nanotechnology. 2020 Jun 1; 8(3):207-24.
88. Tang JL, Sun J, He ZG. Self-emulsifying drug delivery systems: strategy for improving oral delivery of poorly soluble drugs. Current drug therapy. 2007 Jan 1; 2(1):85-93.
89. Kallakunta, V. R., Bandari, S., Jukanti, R., & Veerareddy, P. R. Oral self-emulsifying powder of lercanidipine hydrochloride: formulation and evaluation. Powder Technology, 2012; 221:375-382.
90. Alekya K, Narendar D, Arjun N, Mahipal D and Nagaraj B. Design and evaluation of chronomodulated drug delivery of tramadol hydrochloride. Drug res. 2017; Early online.
91. Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. Journal of agricultural and food chemistry. 2012 May 30; 60(21):5373-9.
92. Corinne Sweeney, Narendar Dudhipala, Ruchi Thakkar, Tabish Mehraj, Sushrut Marathe, Waseem Gul, Mahmoud. A. ElSohly, Brian Murphy, Soumyajit Majumdar. Effect of surfactant concentration and sterilization process on intraocular pressure–lowering activity of Δ9‑tetrahydrocannabinolvaline‑ hemisuccinate (NB1111) nanoemulsions. Drug Delivery and Translational Research. 2020
93. Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: design trends and approaches. Aaps Pharmscitech. 2015 Aug 1; 16(4):731-41.
94. Rajitha R, Narendar D, Arjun N, Mahipal D and Nagaraj B. Colon delivery of naproxen: preparation, characterization and in vivo evaluation. IJPSN, 2016; 9(3):1-10.
95. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, Wang F. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharmaceutical research. 2013 Feb 1; 30(2):307-24.
96. Karri V, Butreddy A, Dudhipala N. Fabrication of Efavirenz Freeze Dried Nanocrystals: Formulation, Physicochemical Characterization, In Vitro and Ex Vivo Evaluation. Advanced Science, Engineering and Medicine. 2015 May 1; 7(5):385-92.
97. Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug discovery today. 2016 May 1; 21(5):789-801.
98. Butreddy A, Narala A, Dudhipala N. Formulation and characterization of Liquid Crystalline Hydrogel of Agomelatin: In vitro and Ex vivo evaluation. Journal of Applied Pharmaceutical Science. 2015 Sep; 5(09):110-4.
59 Views | 53 Downloads
How to Cite
Lakavath SK. Novel Delivery System Used for Oral Bioavailability Enhancement of Poorly Water Soluble Drugs. JDDT [Internet]. 15Dec.2020 [cited 21Jan.2021];10(6-s):139-44. Available from: