Assessing the Role of Modern Excipients for Delivery of Gold Nanoparticles

  • Abdul Waheed Centre of Biochemistry, Drug Design and Cancer Research, University of Salford, England
  • Nayela Ghazal Department of Quality Assurance, Assistant Professor, Global College of Pharmacy, (JNTU-Hyderabad), India

Abstract

Using the drug delivery approach, we explain the role lipids and polymers perform in the delivery of gold nanoparticles. They were tested alongside drug and polymer compatibility using pharmacodynamics and pharmacokinetics. The collected data demonstrate the production of gold nanoparticles' stability and strong therapeutic effects. We illustrate some of the intriguing categories of targeting systems for the delivery of Au G Nanoparticles that are under development. Polymers containing reactive functional groups to combine targeting binding sites, cell receptors, or drugs are also coated with nanoparticles engineered for biomedical applications. The present review focuses on utilization of modern excipients, lipids, polymers in formulation of delivery systems that can efficiently delivery the gold nanoparticles. Gold nanoparticles have outranged in their use for treating wide health diseases with limited side effects. The next generation medical deliverables are majorly focused on gold nanoparticles.


Keywords: Gold nanoparticles, Lipids, Polymers, Delivery systems, Excipients, Diseases.

Keywords: Gold nanoparticles, Lipids, Polymers, Delivery systems, Excipients, Diseases

Downloads

Download data is not yet available.

Author Biographies

Abdul Waheed, Centre of Biochemistry, Drug Design and Cancer Research, University of Salford, England

Centre of Biochemistry, Drug Design and Cancer Research, University of Salford, England

Nayela Ghazal, Department of Quality Assurance, Assistant Professor, Global College of Pharmacy, (JNTU-Hyderabad), India

Department of Quality Assurance, Assistant Professor, Global College of Pharmacy, (JNTU-Hyderabad), India

References

1. Cai W, Gao T, Hong H, Sun J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, science and applications. 2008; 1:17.
2. Abdelhady, S., Honsy, K. M., & Kurakula, M. Electro Spun- Nanofibrous Mats: A Modern Wound Dressing Matrix with a Potential of Drug Delivery and Therapeutics. Journal of Engineered Fibers and Fabrics, 2015; 10(4):155892501501000. https://doi.org/10.1177/155892501501000411
3. El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano letters. 2005 May 11; 5(5):829-34.
4. Ahmed, O. A. A., Kurakula, M., Banjar, Z. M., Afouna, M. I., & Zidan, A. S. Quality by design coupled with near infrared in formulation of transdermal glimepiride liposomal films. Journal of Pharmaceutical Sciences, 2015; 104(6):2062–2075. https://doi.org/10.1002/jps.24448
5. Alhakamy, N. A., Ahmed, O. A. A., Kurakula, M., Caruso, G., Caraci, F., Asfour, H. Z., Alfarsi, A., Eid, B. G., Mohamed, A. I., Alruwaili, N. K., Abdulaal, W. H., Fahmy, U. A., Alhadrami, H. A., Eldakhakhny, B. M., & Abdel-Naim, A. B. Chitosan-based microparticles enhance ellagic acid’s colon targeting and proapoptotic activity. Pharmaceutics, 2020; 12(7):1–14. https://doi.org/10.3390/pharmaceutics12070652
6. Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. Journal of the American Chemical Society. 2010 Feb 10; 132(5):1517-9.
7. Lim ZZ, Li JE, Ng CT, Yung LY, Bay BH. Gold nanoparticles in cancer therapy. Acta Pharmacologica Sinica. 2011 Aug; 32(8):983-90.
8. Alhakamy, N. A., Fahmy, U. A., Ahmed, O. A. A., Caruso, G., Caraci, F., Asfour, H. Z., Bakhrebah, M. A., Alomary, M. N., Abdulaal, W. H., Okbazghi, S. Z., Abdel-Naim, A. B., Eid, B. G., Aldawsari, H. M., Kurakula, M., & Mohamed, A. I. Chitosan coated microparticles enhance simvastatin colon targeting and pro-apoptotic activity. Marine Drugs, 2020; 18(4):226. https://doi.org/10.3390/md18040226
9. Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, Prise KM, Golding J, Mason NJ. Gold nanoparticles for cancer radiotherapy: a review. Cancer nanotechnology. 2016 Dec 1; 7(1):8.
10. Hasnain, M. S., Kiran, V., Kurakula, M., Rao, G. K., Tabish, M., & Nayak, A. K. Use of alginates for drug delivery in dentistry. In Alginates in Drug Delivery 2020; 387–404. Elsevier. https://doi.org/10.1016/b978-0-12-817640-5.00015-7
11. Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of advanced research. 2010 Jan 1; 1(1):13-28.
12. Hasnain, M. S., Nayak, A. K., Kurakula, M., & Hoda, M. N. Alginate nanoparticles in drug delivery. In Alginates in Drug Delivery 2020; 129–152. Elsevier. https://doi.org/10.1016/b978-0-12-817640-5.00006-6
13. Mansoori GA, Brandenburg KS, Shakeri-Zadeh A. A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers. 2010 Dec; 2(4):1911-28.
14. Hosny, K. M., Aldawsari, H. M., Bahmdan, R. H., Sindi, A. M., Kurakula, M., Alrobaian, M. M., Aldryhim, A. Y., Alkhalidi, H. M., Bahmdan, H. H., Khallaf, R. A., & El Sisi, A. M. Preparation, Optimization, and Evaluation of Hyaluronic Acid-Based Hydrogel Loaded with Miconazole Self-Nanoemulsion for the Treatment of Oral Thrush. AAPS PharmSciTech, 2019; 20(7):297. https://doi.org/10.1208/s12249-019-1496-7
15. Chen W, Zhang S, Yu Y, Zhang H, He Q. Structural‐engineering rationales of gold nanoparticles for cancer theranostics. Advanced Materials. 2016 Oct; 28(39):8567-85.
16. Kurakula, M., & A. Ahmed, T. Co-Delivery of Atorvastatin Nanocrystals in PLGA based in situ Gel for Anti-Hyperlipidemic Efficacy. Current Drug Delivery, 2015; 13(2):211–220. https://doi.org/10.2174/1567201813666151109102718
17. Chen WH, Xu XD, Jia HZ, Lei Q, Luo GF, Cheng SX, Zhuo RX, Zhang XZ. Therapeutic nanomedicine based on dual-intelligent functionalized gold nanoparticles for cancer imaging and therapy in vivo. Biomaterials. 2013 Nov 1; 34(34):8798-807.
18. Kurakula, M., Ahmed, O. A. A., Fahmy, U. A., & Ahmed, T. A. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. Journal of Liposome Research, 2016; 26(4):288–296. https://doi.org/10.3109/08982104.2015.1117490
19. Shah NB, Dong J, Bischof JC. Cellular uptake and nanoscale localization of gold nanoparticles in cancer using label-free confocal Raman microscopy. Molecular pharmaceutics. 2011 Feb 7; 8(1):176-84.
20. Kurakula, M., El-Helw, A. M., Sobahi, T. R., & Abdelaal, M. Y. Chitosan based atorvastatin nanocrystals: Effect of cationic charge on particle size, formulation stability, and in-vivo efficacy. International Journal of Nanomedicine, 2015; 10:321–334. https://doi.org/10.2147/IJN.S77731
21. Li J, Gupta S, Li C. Research perspectives: gold nanoparticles in cancer theranostics. Quantitative imaging in medicine and surgery. 2013 Dec; 3(6):284.
22. Reddy, Kallem Sharat Venkat. Pembrolizumab in the Treatment of Metastatic Non-Small Cell Lung Cancer. 2020, 10.18535/jmscr/v8i9.35.
23. Kurakula, M., & Koteswara Rao, G. S. N. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 2020; 136:109919. https://doi.org/10.1016/j.eurpolymj.2020.109919
24. Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. The Journal of Physical Chemistry C. 2016 Mar 10; 120(9):4691-716.
25. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy.
26. Kurakula, M., Naveen, N. R., & Yadav, K. S. Formulations for Polymer Coatings. Polymer Coatings, 2020; 415–443. https://doi.org/10.1002/9781119655145.ch19
27. Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. The Journal of Physical Chemistry C. 2016 Mar 10; 120(9):4691-716.
28. Kurakula, M., & Raghavendra Naveen, N. In situ gel loaded with chitosan-coated simvastatin nanoparticles: Promising delivery for effective anti-proliferative activity against tongue carcinoma. Marine Drugs, 2020; 18(4):201. https://doi.org/10.3390/md18040201
29. Peng J, Liang X. Progress in research on gold nanoparticles in cancer management. Medicine. 2019 May; 98(18).
30. Naguib, G. H., Hassan, A. H., Al-Hazmi, F., Kurakula, M., Al-Dharrabh, A., Alkhalidi, H. M., Al-Ahdal, A. M., Hamed, M. T., & Pashley, D. H. Zein based magnesium oxide nanowires: Effect of anionic charge on size, release and stability. Digest Journal of Nanomaterials and Biostructures, 2017; 12(3):741–749.
31. Kurakula, M., Rao, G. K., Kiran, V., Hasnain, M. S., & Nayak, A. K. Alginate-based hydrogel systems for drug releasing in wound healing. In Alginates in Drug Delivery, 2020; 323–358. Elsevier. https://doi.org/10.1016/b978-0-12-817640-5.00013-3
32. Shi X, Wang SH, Lee I, Shen M, Baker Jr JR. Comparison of the internalization of targeted dendrimers and dendrimer‐entrapped gold nanoparticles into cancer cells. Biopolymers: Original Research on Biomolecules. 2009 Nov; 91(11):936-42.
33. Rao, G. S. N. K., Kurakula, M., & Yadav, K. S. Application of Electrospun Materials in Gene Delivery. Electrospun Materials and Their Allied Applications, 2020; 265–306
34. Reddy, K. S. V. Understanding Novel Polymer and Lipid Based Carrier Systems In Clinician Perspective. International Journal of Medical Science And Diagnosis Research, 2020; 4(10).
35. Shi X, Wang SH, Lee I, Shen M, Baker Jr JR. Comparison of the internalization of targeted dendrimers and dendrimer‐entrapped gold nanoparticles into cancer cells. Biopolymers: Original Research on Biomolecules. 2009 Nov; 91(11):936-42.
36. Kurakula, M., & Rao, G. S. N. K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of Drug Delivery Science and Technology, 2020; 60:102046. https://doi.org/10.1016/j.jddst.2020.102046
37. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano letters. 2008 Dec 10; 8(12):4593-6.
38. Kurakula, M., Sobahi, T. R., El-Helw, A., & Abdelaal, M. Y. Development and validation of a RP-HPLC method for assay of atorvastatin and its application in dissolution studies on thermosensitive hydrogel-based nanocrystals. Tropical Journal of Pharmaceutical Research, 2014; 13(10):1681–1687. https://doi.org/10.4314/tjpr.v13i10.16
39. Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: gold nanoparticles in targeted cancer drug delivery. Therapeutic delivery. 2012 Apr; 3(4):457-78.
40. Oh MH, Yu JH, Kim I, Nam YS. Genetically programmed clusters of gold nanoparticles for cancer cell-targeted photothermal therapy. ACS applied materials & interfaces. 2015 Oct 14; 7(40):22578-86.
41. Kurakula, M., Srinivas, C., Kasturi, N., & Diwan, P. V. Formulation and Evaluation of Prednisolone Proliposomal Gel for Effective Topical Pharmacotherapy. International Journal of Pharmaceutical Sciences and Drug Research, 2012; 4(1):35. www.ijpsdr.com
42. Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold nanoparticles for photothermal cancer therapy. Frontiers in chemistry. 2019 Apr 5; 7:167.
43. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nature nanotechnology. 2009 Oct; 4(10):669-73.
44. Mallesh, K., Pasula, N., & Kumar Ranjith, C. P. Piroxicam proliposomal gel: a novel approach for tropical delivery. Journal of Pharmacy Research, 2012; 5(3):1755–1763.
45. Kurakula M, Mohd AB, Samhuidrom AP, Diwan PV. Estimation of prednisolone in proliposomal formulation using RP HPLC method. Int. J. Res. Pharm. Biomed. Sci. 2011; 2:663. 2011;1669.
46. Kurakula M, Naveen NR. Prospection of recent chitosan biomedical trends: Evidence from patent analysis (2009–2020). International Journal of Biological Macromolecules. 2020 Oct 15.
47. Nam J, Won N, Jin H, Chung H, Kim S. pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. Journal of the American Chemical Society. 2009 Sep 30; 131(38):13639-45.
48. Venkatesh, M., & Mallesh, K. Self-Nano Emulsifying Drug Delivery System (Snedds) for Oral Delivery of Atorvastatin- Formulation and Bioavailability Studies. Journal of Drug Delivery and Therapeutics, 2013; 3(3):131–140. https://doi.org/10.22270/jddt.v3i3.517
49. Reddy, K. S. V. Clinical implications of novel polymer and lipid based drug delivery systems. International Journal of Research in Hospital and Clinical Pharmacy, 2020; 2(3):60-65.
50. Kurakula M, Mohd AB, Samhuidrom AP, Diwan PV. Estimation of prednisolone in proliposomal formulation using RP HPLC method. Int. J. Res. Pharm. Biomed. Sci. 2011; 2: 663. 2011; 1669.
51. Patskovsky S, Bergeron E, Rioux D, Meunier M. Wide‐field hyperspectral 3D imaging of functionalized gold nanoparticles targeting cancer cells by reflected light microscopy. Journal of biophotonics. 2015 May; 8(5):401-7.
52. Liang H, Tian H, Deng M, Chen X. Gold nanoparticles for cancer theranostics. Chinese Journal of Chemistry. 2015 Sep; 33(9):1001-10.
53. Murali, V. P., Fujiwara, T., Gallop, C., Wang, Y., Wilson, J. A., Atwill, M. T., Kurakula, M., & Bumgardner, J. D. Modified electrospun chitosan membranes for controlled release of simvastatin. International Journal of Pharmaceutics, 2020; 584:119438. https://doi.org/10.1016/j.ijpharm.2020.119438
54. Tian L, Lu L, Qiao Y, Ravi S, Salatan F, Melancon MP. Stimuli-responsive gold nanoparticles for cancer diagnosis and therapy. Journal of functional biomaterials. 2016 Sep; 7(3):19.
55. Fralick, M., Macdonald, E. M., Gomes, T., Antoniou, T., Hollands, S., Mamdani, M. M., & Juurlink, D. N. Co-trimoxazole and sudden death in patients receiving inhibitors of renin-angiotensin system: population based study. Bmj, 2014; 349, g6196.
56. Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS nano. 2011 May 24; 5(5):3679-92.
57. Raoof M, Corr SJ, Kaluarachchi WD, Massey KL, Briggs K, Zhu C, Cheney MA, Wilson LJ, Curley SA. Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine. 2012 Oct 1; 8(7):1096-105.
58. Naguib, Ghada Hussein, Al-Hazmi, F. E., Kurakula, M., Abdulaziz Al-Dharrab, A., Mohamed Hosny, K., Mohammed Alkhalidi, H., Tharwat Hamed, M., Habiballah Hassan, A., Al-Mohammadi, A. M., Mohamed Alnowaiser, A., & Henry Pashley, D. Zein coated zinc oxide nanoparticles: Fabrication and antimicrobial evaluation as dental aid. International Journal of Pharmacology, 2018; 14(8):1051–1059. https://doi.org/10.3923/ijp.2018.1051.1059
59. Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced drug delivery reviews. 2017 Jan 15; 109:84-101.
60. Arias, J. L. (Ed.). (2014). Nanotechnology and drug delivery, volume one: nanoplatforms in drug delivery (Vol. 1). CRC Press.
61. Steinman, M. A., & Hanlon, J. T. Managing medications in clinically complex elders: “There's got to be a happy medium”. Jama, 2010; 304(14):1592-1601.
62. Naveen, N. R., Gopinath, C., & Kurakula, M. Okra-thioglycolic acid conjugate-synthesis, characterization, and evaluation as a mucoadhesive polymer. Processes, 2020; 8(3):316. https://doi.org/10.3390/pr8030316
63. Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S, McEwan A, Roa W, Chen J, Xing JZ. Enhancement of radiation cytotoxicity in breast‐cancer cells by localized attachment of gold nanoparticles. small. 2008 Sep; 4(9):1537-43.
64. Huang CW, Hao YW, Nyagilo J, Dave DP, Xu LF, Sun XK. Porous hollow gold nanoparticles for cancer SERS imaging. InJournal of Nano Research. Trans Tech Publications Ltd. 2010; 10:137-148.
65. Raghavendra Naveen, N., Kurakula, M., & Gowthami, B. Process optimization by response surface methodology for preparation and evaluation of methotrexate loaded chitosan nanoparticles. Materials Today: Proceedings. 2020. https://doi.org/10.1016/j.matpr.2020.01.491
66. Mesbahi A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Reports of Practical Oncology & Radiotherapy. 2010 Nov 1; 15(6):176-80.
67. Le Goas M, Paquirissamy A, Gargouri D, Fadda G, Testard F, Aymes-Chodur C, Jubeli E, Pourcher T, Cambien B, Palacin S, Renault JP. Irradiation effects on polymer-grafted gold nanoparticles for cancer therapy. ACS Applied Bio Materials. 2018 Dec 7; 2(1):144-54.
68. Vanitasagar, S., Srinivas, C., Subhashini, N. J. P., & Mallesh, K. Solid dispersion-a comparative study on the dissolution rate of aceclofenac. International Journal of Pharmacy and Pharmaceutical Sciences, 2012; 4(SUPPL.3), 274–278.
69. Choi CH, Alabi CA, Webster P, Davis ME. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proceedings of the National Academy of Sciences. 2010 Jan 19; 107(3):1235-40.
70. Kodiha M, Wang YM, Hutter E, Maysinger D, Stochaj U. Off to the organelles-killing cancer cells with targeted gold nanoparticles. Theranostics. 2015; 5(4):357.
71. Zhang Z, Jia J, Lai Y, Ma Y, Weng J, Sun L. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorganic & medicinal chemistry. 2010 Aug 1; 18(15):5528-34.
72. Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. International journal of nanomedicine. 2011; 6:2305.
73. Bhattacharya R, Patra CR, Earl A, Wang S, Katarya A, Lu L, Kizhakkedathu JN, Yaszemski MJ, Greipp PR, Mukhopadhyay D, Mukherjee P. Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine. 2007 Sep 1; 3(3):224-38.
74. Rengan AK, Bukhari AB, Pradhan A, Malhotra R, Banerjee R, Srivastava R, De A. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano letters. 2015 Feb 11; 15(2):842-8.
75. Huang YF, Lin YW, Lin ZH, Chang HT. Aptamer-modified gold nanoparticles for targeting breast cancer cells through light scattering. Journal of Nanoparticle Research. 2009 May 1; 11(4):775-83.
Statistics
56 Views | 70 Downloads
How to Cite
1.
Waheed A, Ghazal N. Assessing the Role of Modern Excipients for Delivery of Gold Nanoparticles. JDDT [Internet]. 15Dec.2020 [cited 21Jan.2021];10(6-s):151-8. Available from: http://jddtonline.info/index.php/jddt/article/view/4585