Whether Cord Blood or Venous Blood Procalcitonin Level for Better Prediction of Maternofetal Infections in Algerian Newborns?

  • Imene Adouani Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University Setif-1, Setif 19000, Algeria
  • Farida Djabi Laboratory of Molecular Biology, Saadna Abd el Nour Hospital, Setif 19000, Algeria
  • TaiJun Hang Center of Drug Quality and Pharmacovigilence, China pharmaceutical university, Nanjing 210000, China
  • Souad Guemeche Unit of Epidemiology, Saadna Abd el Nour Hospital, Setif 19000, Algeria

Abstract

This prospective study aims to measure and compare the level of umbilical cord blood and venous blood procalcitonin (PCT) for a better and more rapid prediction of maternofetal infections in Algerian newborns. The study was conducted at the hospital of child and mother of Setif in Algeria from 2016 to 2018. 164 Algerian term suspected newborns born alive to mothers with Maternofetal infection (MFI) risk factors were included. 69 non-infectious newborns born alive to mothers without MFI risk factors served as the control group. The venous blood and cord blood in each group were collected. PCT levels were determined and compared to CRP levels. Receiver operating curves (ROC) were generated to detect the best cut-off values for sensitivity and specificity. Levels of both cord blood and venous blood procalcitonin were significantly higher in the suspected group than those in the control group (P<0.05). According to the ROC curve, at the cut-off value of cord blood PCT of 0.595 ng/mL, the sensitivity and specificity were 92.3 %, 91.8 % respectively. At the cut-off value of venous blood PCT of 1.12 ng/mL, the sensitivity and specificity were 100%, 80.5% respectively. The diagnostic value of cord blood PCT for maternofetal infections is higher than venous blood PCT.


Keywords:   Algerian term newborns, Cord blood, Procalcitonin, Maternofetal infections.

Keywords: Algerian term newborns, Cord blood, Procalcitonin, Maternofetal infections

Downloads

Download data is not yet available.

Author Biographies

Imene Adouani, Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University Setif-1, Setif 19000, Algeria

Department of Pharmacy, Faculty of Medical Sciences, Ferhat Abbas University Setif-1, Setif 19000, Algeria

Farida Djabi, Laboratory of Molecular Biology, Saadna Abd el Nour Hospital, Setif 19000, Algeria

Laboratory of Molecular Biology, Saadna Abd el Nour Hospital, Setif 19000, Algeria

TaiJun Hang, Center of Drug Quality and Pharmacovigilence, China pharmaceutical university, Nanjing 210000, China

Center of Drug Quality and Pharmacovigilence, China pharmaceutical university, Nanjing 210000, China

Souad Guemeche, Unit of Epidemiology, Saadna Abd el Nour Hospital, Setif 19000, Algeria

Unit of Epidemiology, Saadna Abd el Nour Hospital, Setif 19000, Algeria

References

1. Vergnano S, Heath P. Fetal and neonatal infections. Medicine. 2017; 45(11):715-722.
2. Cortese F, Scicchitano P, Gesualdo M, Filaninno A, De Giorgi E, Schettini F et al. Early and Late Infections in Newborns: Where Do We Stand? A Review. Pediatrics & Neonatology. 2016; 57(4):265-273.
3. Kan B, Razzaghian H, Lavoie P. An Immunological Perspective on Neonatal Sepsis. Trends in Molecular Medicine. 2016; 22(4):290-302.
4. Stronati M, Castagnoli R, Ioimo I, Achille C, Manzoni P, Tzialla C et al. Novel Approaches to the Study of Neonatal Infections. American Journal of Perinatology. 2018; 35(06):570-574.
5. Dramowski A, Velaphi S, Reubenson G, Bekker A, Perovic O, Finlayson H et al. National Neonatal Sepsis Task Force launch: Supporting infection prevention and surveillance, outbreak investigation and antimicrobial stewardship in neonatal units in South Africa. South African Medical Journal. 2020; 110(5):360.
6. Khan A, Morris S, Bhutta Z. Neonatal and Perinatal Infections. Pediatric Clinics of North America. 2017; 64(4):785-798.
7. Vergnano S, Buttery J, Cailes B, Chandrasekaran R, Chiappini E, Clark E et al. Neonatal infections: Case definition and guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine. 2016; 34(49):6038-6046.
8. Chauhan N, Tiwari S, Jain U. Potential biomarkers for effective screening of neonatal sepsis infections: An overview. Microbial Pathogenesis. 2017; 107:234-242.
9. Van Herk W, Stocker M, van Rossum A. Recognising early onset neonatal sepsis: an essential step in appropriate antimicrobial use. Journal of Infection. 2016; 72:S77-S82.
10. Amess P, Rabe H, Wertheim D. Visual assessment of heart rate variability patterns associated with neonatal infection in preterm infants. Early Human Development. 2019; 134:31-33.
11. Wortham J, Hansen N, Schrag S, Hale E, Van Meurs K, Sánchez P et al. Chorioamnionitis and Culture-Confirmed, Early-Onset Neonatal Infections. Pediatrics. 2015; 137(1):e20152323.
12. Carr D, Barnes E, Gordon A, Isaacs D. Effect of antibiotic use on antimicrobial antibiotic resistance and late-onset neonatal infections over 25 years in an Australian tertiary neonatal unit. Archives of Disease in Childhood - Fetal and Neonatal Edition. 2016; 102(3):F244-F250.
13. Hao W, Song J, Li G, Han B. Procalcitonin and C-reactive protein in neonatal infection, a comparison study between intrauterine infection and non-intrauterine infection. Biomedical Research. 2017; 28(14):6256- 6259.
14. Huang F, Chen H, Yang P, Lin H. Bird's Eye View of a Neonatologist: Clinical Approach to Emergency Neonatal Infection. Pediatrics & Neonatology. 2016; 57(3):167-173.
15. Tang Z, Qin D, Tao M, Lv K, Chen S, Zhu X et al. Examining the utility of the CD64 index compared with other conventional indices for early diagnosis of neonatal infection. Scientific Reports. 2018; 8(1).
16. Sharma D, Farahbakhsh N, Shastri S, Sharma P. Biomarkers for diagnosis of neonatal sepsis: a literature review. The Journal of Maternal-Fetal & Neonatal Medicine. 2017; 31(12):1646-1659.
17. Eschborn S, Weitkamp J. Procalcitonin versus C-reactive protein: review of kinetics and performance for diagnosis of neonatal sepsis. Journal of Perinatology. 2019; 39(7):893-903.
18. Pontrelli G, De Crescenzo F, Buzzetti R, Calò Carducci F, Jenkner A, Amodio D et al. Diagnostic value of soluble triggering receptor expressed on myeloid cells in paediatric sepsis: a systematic review. Italian Journal of Pediatrics. 2016; 42(1).
19. Delanghe J, Speeckaert M. Translational research and biomarkers in neonatal sepsis. Clinica Chimica Acta. 2015; 451:46-64.
20. Markic J, Saraga M, Dahlem P. Sepsis Biomarkers in Neonates and Children: C-Reactive Protein and Procalcitonin. Journal of Child Science. 2017; 07(01):e89-e95.
21. Dapaah-Siakwan, F., Mehra, S., Lodhi, S., Mikhno, A., Cameron, G. White Cell Indices and CRP: Predictors of Meningitis in Neonatal Sepsis?. International Journal of Pediatrics, 2016; 4(2):1355-1364.
22. Brown J, Meader N, Cleminson J, McGuire W. C-reactive protein for diagnosing late-onset infection in newborn infants. Cochrane Database of Systematic Reviews. 2019; 14(1):1.
23. Pontrelli G, De Crescenzo F, Buzzetti R, Jenkner A, Balduzzi S, Calò Carducci F et al. Accuracy of serum procalcitonin for the diagnosis of sepsis in neonates and children with systemic inflammatory syndrome: a meta-analysis. BMC Infectious Diseases. 2017; 17(1).
24. Hooven, T. A., Polin, R. A. Neonatal Bacterial Infections. In Common Problems in the Newborn Nursery. Springer, Cham. 2019:71-80.
25. Hendricks-Munoz K, Xu J, Mally P. Biomarkers for neonatal sepsis: recent developments. Research and Reports in Neonatology. 2014; 157.
26. Mathur N, Behera B. Blood Procalcitonin Levels and Duration of Antibiotics in Neonatal Sepsis. Journal of Tropical Pediatrics. 2018; 65(4):315-320.
27. Iskandar A, Arthamin M, Indriana K, Anshory M, Hur M, Di Somma S. Comparison between presepsin and procalcitonin in early diagnosis of neonatal sepsis. The Journal of Maternal-Fetal & Neonatal Medicine. 2018; 32(23):3903-3908.
28. Pravin Charles M, Kalaivani R, Venkatesh S, Kali A, Seetha K. Evaluation of procalcitonin as a diagnostic marker in neonatal sepsis. Indian Journal of Pathology and Microbiology. 2018; 61(1):81.
29. Brodska H, Valenta J, Pelinkova K, Stach Z, Sachl R, Balik M et al. Diagnostic and prognostic value of presepsin vs. established biomarkers in critically ill patients with sepsis or systemic inflammatory response syndrome. Clinical Chemistry and Laboratory Medicine (CCLM). 2018; 56(4):658-668.
30. Montaldo P, Rosso R, Santantonio A, Chello G, Giliberti P. Presepsin for the detection of early-onset sepsis in preterm newborns. Pediatric Research. 2016; 81(2):329-334.
31. Nakstad B. The diagnostic utility of procalcitonin, interleukin-6 and interleukin-8, and hyaluronic acid in the Norwegian consensus definition for early-onset neonatal sepsis (EONS). Infection and Drug Resistance. 2018; 11:359-368.
32. Yang A, Liu J, Yue L, Wang H, Yang W, Yang G. Neutrophil CD64 combined with PCT, CRP and WBC improves the sensitivity for the early diagnosis of neonatal sepsis. Clinical Chemistry and Laboratory Medicine (CCLM). 2016; 54(2).
33. Ranosiarisoa Z, El Harrif S, Andrianirina A, Duron S, Simon-Ghediri M, Ramparany L et al. Epidemiology of Early-onset Bacterial Neonatal Infections in Madagascar. The Pediatric Infectious Disease Journal. 2019; 38(1):76-81.
Statistics
100 Views | 78 Downloads
How to Cite
1.
Adouani I, Djabi F, Hang T, Guemeche S. Whether Cord Blood or Venous Blood Procalcitonin Level for Better Prediction of Maternofetal Infections in Algerian Newborns?. JDDT [Internet]. 5Nov.2020 [cited 22Oct.2021];10(5-s):320-5. Available from: http://jddtonline.info/index.php/jddt/article/view/4567