Structural and Electronic Factors Governing the Action of Anticonvulsants

  • John N Lisgarten School of Science, University of Greenwich (Medway Campus), Chatham Maritime, Kent ME4 4TB, UK
  • Rex A Palmer Department of Crystallography, Biochemical Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK

Abstract

A selection of eighteen anticonvulsant drug molecules has been subjected to both geometrical analysis and atomic charge calculation to search for a link between structure and activity. A significant consequence of this study is the discovery of a fused 5,6,7 chemical ring system which suggests that these drugs may interact with a receptor site which is its topological complement. Molecular orbital calculations support the observation that anticonvulsant activity appears to be related to the net atomic charge on a specific carbon atom which is central to the fused ring system.


Keywords: Anticonvulsant, lamotrigine, epilepsy, charge calculation.

Keywords: Anticonvulsant, lamotrigine, epilepsy, charge calculation

Downloads

Download data is not yet available.

Author Biographies

John N Lisgarten, School of Science, University of Greenwich (Medway Campus), Chatham Maritime, Kent ME4 4TB, UK

School of Science, University of Greenwich (Medway Campus), Chatham Maritime, Kent ME4 4TB, UK

Rex A Palmer, Department of Crystallography, Biochemical Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK

Department of Crystallography, Biochemical Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK

References

1 Andrews PR. Molecular Orbital Calculations on Anticonvulsant Drugs. J. Med.Chem. 1969; 10:761.
2 Hoffmann R. An Extended Hückel Theory 1 Hydrocarbons. J. Med. Chem. 1963; 39:1397-1492.
3. Pople JA, Santry DP and Segal GA. Approximate Self-consistent Molecular Orbital Theory 1. Invariant Procedures. J. Chem. Phys. 1965; 43:S129-135.
4. People JA and Segal GA. Approximate Self-Consistent Molecular Orbital Theory. 111. CNDO Results for AB2 and AB3 Systems. J. Chem. Phys.1966; 44:3289.
5. Camerman A and Camerman N. Stereochemical similarities in chemically different antiepileptic drugs. Adv. Neurol. 1980; 27:223-235.
6. Camerman A and Camerman N. On the Crystallography and Stereochemistry of Antiepileptic Drugs. Acta. Crystallogr. 1981; B37:1677-1679.
7. Camerman N and Camerman A. The Stereochemical Basis of Anticonvulsant Drug Action. Mol. Pharmacol. 1971; 7:406-421.
8. Jones GL and Woodbury M. Antiepileptic Drugs (Wood, Pendry and Pippenger, eds.) Raven N.Y. 1982.
9. Steward J. “MOPAC” Quantum Chemistry Program Exchange, Dept. Chem., University of Indiana, USA. 1986.
10. Dewar MJS and Thiel WJ. Ground states of molecules. The MNDO method. Approximations and parameters. 38. Am. Chem. Soc, 1977; 99:4899-4907.
11. Janes RW, Lisgarten JN and Palmer RA. Structure of lamotrigine methanol solvate 3,5 diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine methanol, a novel anticonvulsant drug. Acta. Crystallogr. 1989; C45:129-132.
12. Davies E K. CHEM-X, Chemical Design Ltd. Oxford.
13. Hester JB, Rudzie AD and Veldkamp W. Pyrrolo[3,2,1-jk] [1,4] benzodiazepines and pyrrolo[1,2,3-ef] [1,5] benzodiazepines which have central nervous system activity. J.Med. Chem. 1970; 15:827-835.
14. Lisgarten JN and Palmer RA. The Structure of (1,2-Benzisoxazol-3-yl) methanesulfonamide: A Novel Antiepileptic Drug. Acta. Crystallogr. 1988; C44:2013-2016.
15. Lisgarten JN, Saldanha JW and Palmer RA. Crystal and molecular structure of 5-carbamyl-5H-dibenzo- [b, f] azepine J. Cryst. Spect. Res. 1989; 19:641-649.
16. Camerman A and Camerman N. The stereochemical basis of anticonvulsant drug action. I. The crystal and molecular structure of diphenylhydantoin, anoncentrosymmetric structure solved by symbolic addition. Acta. Crystallogr, 1971; B27:2205-2211.
17. Camerman A and Camerman N. Stereochemical basis of anticonvulsant drug action. II. Molecular structure of diazepam. J. Am. Chem. Soc. 1972; 94:268-272.
18. Lisgarten JN and Palmer RA. Structure of 9-(2-fluorobenzyl)-6-methylamino-9H-purine hydrochloride, a novel anticonvulsant. Acta. Crystallogr. 1988; C44:654-657.
19. Lisgarten JN, Saldanha JW and Palmer RA. The structure of 10,11-dihydro10-hydroxy-5H-dibenz [b, f] azepine -5-carboxamide, an anticonvulsant drug molecule. Acta. Crystallogr. 1989; C45:656-658.
20. Codding PW, Lee TA and Richardson J F. Cyheptamide and 3-hydroxy-3-Phenacyloxindole structural similarity to diphenylhydantoin as the basis for anticonvulsant activity. J. Med. Chem. 1984; 27:649-654.
21. Wünderlich H. Structure of 1-methyl-5,5-diethylbarbituric acid. Acta. Crystallogr. 1973; B24:168-172.
22. Lisgarten J N and Palmer RA. The structure of methoin: an anticonvulsant drug. Acta. Crystallogr. 1980; B36:2345-2349.
23. Gilli G, Bertolasi V, Sacerdoti M and Borea P A. 7-Nitro-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one (nitrazepam). Acta. Crystallogr. 1977; B33:2664-2667.
24. Gilli G, Bertolasi V, Sacerdoti M and Borea PA. The crystal and molecular structure of 7-chloro-1,3-dihydro-3-hydroxy-5-phenyl-2H-1,4-benzodiazepin-2-one (oxazepam). Acta. Crystallogr. 1978; B34:2826-2829.
25. Williams P. Polymorphism of phenobarbitone: the crystal structure of 5-ethyl-5-phenylbarbituric acid monohydrate. Acta. Crystallogr. 1973; B27:1572-1579
26. Lisgarten JN and Palmer R A. Structure of 1- [6 –(2-chlorophenyl)-3-piperidin-4-ol, an anticonvulsant drug. Acta. Crystallogr. 1989; C45:102-104.
27. Yeats DGR and Palmer R A. The crystal structure of primidone. Acta. Crystallogr. 1975; B31:1077-1082.
28. Lisgarten J N and Palmer R A. The structure of stiripentol:4,4-dimethyl-1-(3,4-methylenedioxyphenyl)-1-pentene-3-ol- a novel antiepileptic drug. Acta Crystallogr. 1988; C44:1992-1994.
Statistics
32 Views | 19 Downloads
How to Cite
1.
Lisgarten J, Palmer RA. Structural and Electronic Factors Governing the Action of Anticonvulsants. JDDT [Internet]. 15Nov.2020 [cited 26Nov.2020];10(6):67-3. Available from: http://jddtonline.info/index.php/jddt/article/view/4560