An Updated Review on Nanoparticle Based Approach for Nanogel Drug Delivery System

  • Chandrika Chouhan Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India
  • Rudra Pratap Singh Rajput Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India
  • Rishabh Sahu Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India
  • Poonam Verma Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India
  • Suman Sahu Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India

Abstract

Nanocomposite hydrogels or nanogels (a nanoparticles composed of a hydrogel) are nanomaterial filled, swollen nanosized networks of deliquescent or amphiphilic compound chains. It may be developed by drug - polymer interactions and to create 3D advanced networks. Nanogel may be ready by many strategies just like the particle gelation, Inverse mini emulsion, Dispersion, Chemical cross linking, fabrication of biopolymers and so on. It can be characterized by SEM, DSC, FTIR, Drug content, Particle size, Zeta potential and drug efficiency.  Further, it can be evaluated by in vitro drug release and in vivo study in suitable animal modeling. In this review article, we have focused on basic methodology of nanogels, evaluation terms, their application in industry with future prospects for the researchers.


Keywords: Nanogel; methods of nanogel preparation; evaluation parameters and their applications.

Keywords: Nanogel, methods of nanogel preparation, evaluation parameters and their applications

Downloads

Download data is not yet available.

Author Biographies

Chandrika Chouhan, Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India

Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India

Rudra Pratap Singh Rajput, Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India

Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India

Rishabh Sahu, Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India

Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India

Poonam Verma, Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India

Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India

Suman Sahu, Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India

Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur - 493111, Chhattisgarh, India

References

1. Sultana F, Manirujjaman, Imran-Ul-Haque Md, Arafat M, Sharmin S. An Overview of Nanogel Drug Delivery System, Journal of Applied Pharmaceutical Science. 2013; 3(8 Suppl 1):S95-S105.
2. Kumar N, Ashwin, sanoj Rejinold N, P Anjali, Balakrishnan A, Biswas R, R Jayakumar. Preparation of chitin nanogels containing nickel nanoparticles. Carbohydrate Polymer. 2013; 469-474.
3. Talele S, Nikam P, Ghosh B, Deore C, Jaybhave A, Jadhav A. A Research Article on Nanogel as Topical Promising Drug Delivery for Diclofenac sodium. Indian Journal of Pharmaceutical Education and Research. 2017; 51(4S):S580-587.
4. Yashashri I, Bhushan R, Jain Ashish. preparation and evaluation of beta sitosterol nanogel: a carrier design for targeted drug delivery system, Asian Journal of Pharmaceutical Research and Development. 2018; 6(3):81-87.
5. Sheikh T, Abrar M, Ansari D, Chaos S, Bagwan R, Kulkarni K. Nanogel: A versatile nanoscopic platform for oral drug delivery, World Journal of Pharmacy and Pharmaceutical Sciences. 2018; 7(9):2278 – 4357.
6. Sharma A, Garg T, Aman A, Panchal K, Sharma R, Kumar S, Markandeywar T. Nanogel - an advanced drug delivery tool: Current and future, Artificial Cells. Nanomedicine and Biotechnology, 2014.
7. Adhikari B, Cherukuri S, Reddy CS, Haranath C, Bhatta HP, Naidu Inturi R. Recent advances in nanogels drug delivery systems, World Journal of Pharmacy and Pharmaceutical Sciences. 2016; 5(9):505-530.
8. Arun Kumar Singh , Anita Singh. Phyto-Phospholipid Complexes: A Potential Novel Carrier System for Improving Bioavailability of Phytoconstituents. Research Journal of Pharmacy and Technology. 2020; 13(2):1059-1066.
9. Viswanathan B, Meeran IS, Subramani A, Sruthi, Ali J, TK shabeer. Historic review on modern herbal nanogel formulation and delivery, International Journal of Pharmacy and Pharmaceutical Sciences. 2018; 10(10):0975-1491.
10. Kabanov AV, Serguei V, Vinogradov. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities, Advanced Drug Delivery Reviews. 2009; 48:5418-29.
11. Kato Y, Onishi H, Machida Y. Application of chitin and chitosan derivatives in the pharmaceutical field, Current Pharmaceutical Biotechnology. 2003; 4(5): 303-9.
12. Shutava TG, Lvov YM. Nano-engineered microcapsules of tannic acid and chitosan for protein encapsulation, Journal of nanoscience and nanotechnology. 2006; 6(6):1655-61.
13. Knapczyk J, Krowczynski L, Krzck J, Brzeski M, Nirnberg E, Schenk D. Requirements of chitosan for pharmaceutical and biomedical applications, Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications. Elsevier, London. 1989: 657-63.
14. Li JK, Wang N, Wu XS, Poly (vinyl alcohol). nanoparticles prepared by freezing–thawing process for protein/peptide drug delivery, Journal of controlled release. 1998; 56(1):117- 26.
15. Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. Journal of pharmaceutical sciences. 1993; 82(9):912-7.
16. Zahoor A, Sharma S, Khuller G. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis, International journal of antimicrobial agents. 2005; 26(4):298-303.
17. Bharali DJ, Sahoo SK, Mozumdar S, Maitra A. Cross-linked polyvinylpyrrolidone nanoparticles: A potential carrier for hydrophilic drugs. Journal of colloid and interface science. 2003; 258(2):415-23.
18. Guowei D, Adriane K, Chen X, Jie C, Yinfeng L. PVP magnetic nanospheres: Biocompatibility, in vitro and in vivo bleomycin release, International journal of pharmaceutics. 2007; 328(1):78-85.
19. Huang G, Gao J, Hu Z, John JVS, Ponder BC, Moro D. Controlled drug release from hydrogel nanoparticle networks, Journal of Controlled Release. 2004; 94(2):303-11.
20. Gan D, Lyon LA. Tunable swelling kinetics in core-shell hydrogel nanoparticles. Journal of the American Chemical Society. 2001; 123(31):7511-7517.
21. Akiyoshi K, Sasaki Y, Sunamoto J. Molecular chaperone-like activity of hydrogel nanoparticles of hydrophobized pullulan: Thermal stabilization with refolding of carbonic anhydrase B. Bioconjugate chemistry. 1999; 10(3):321-4.
22. Akiyoshi K, Kang E-C, Kurumada S, Sunamoto J, Principi T, Winnik FM. Controlled association of amphiphilic polymers in water: Thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly (N-isopropylacrylamides), Macromolecules. 2000; 33(9):3244-9.
23. Nishikawa T, Akiyoshi K, Sunamoto J. Macromolecular complexation between bovine serum albumin and the self-assembled hydrogel nanoparticle of hydrophobized polysaccharides. Journal of the American Chemical Society.1996; 118(26):6110-5.
24. Kuroda K, Fujimoto K, Sunamoto J, Akiyoshi K. Hierarchical self-assembly of hydrophobically modified pullulan in water: Gelation by networks of nanoparticles, Langmuir. 2002; 18(10):3780-6.
25. Khoee S, Asadi H, Nanogels: Chemical Approaches to Preparation. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. 27 Jan 2016: 5266-5293.
26. Yadav HKS, Al Halabi N, Alsalloum GA. Nanogels as Novel Drug Delivery Systems - A Review, Journal of Pharmacy and Pharmaceutical Research. 2017; 1(1:5): 1-8.
27. D Manry, D Gyawali, J Yang. Size optimization of biodegradable fluorescent nanogels for cell imaging. High School Res 2011; 2:1.
28. Deore Samadhan K, Surawase Rajendra K, Maru Avish . Formulation and Evaluation of O/W Nanoemulsion of Ketoconazole. Research Journal of Pharmaceutical Dosage Forms and Technology. 2019; 11(4):269-274.
29. Guha S, Ray B, Mandal BM. Anomalous solubility of polyacrylamide prepared by dispersion (precipitation) polymerization in aqueous tert-butyl alcohol. Journal of Polymer Sciences. A 2001; 39(19):3434–3442.
30. Liu T, Desimone JM, Roberts GW. Continuous precipitation polymerization of acrylic acid in supercritical carbon dioxide: The polymerization rate and the polymer molecular weight, Journal of Polymer Sciences. A 2005; 43(12):2546–2555.
31. Bai F, Yang X, Zhao Y, Huang W. Synthesis of core–shell microspheres with active hydroxyl groups by two-stage precipitation polymerization. Polymer International. 2005; 54(1):168–174.
32. Li W.-H, Stover HDH. Mono- or narrow disperse poly(methacrylate-co-divinylbenzene) microspheres by precipitation polymerization. Journal of Polymer Sciences. A 1999; 37 (15):2899–2907.
33. Duracher D, Elaissari A, Pichot C, Preparation of poly(N-isopropylmethacrylamide) latexes kinetic studies and characterization, Journal of Polymer Sciences, A 1999; 37(12):1823–1837.
34. Hazot P, Chapel JP Pichot C, Elaissari, A, Delair T. Preparation of poly(N-ethyl methacrylamide) particles via an emulsion/precipitation process: The role of the crosslinker. Journal of Polymer Sciences. A 2002; 40(11):1808–1817.
35. H William, Blackburn L, Lyon A. Size-controlled synthesis of monodisperse core/shell nanogels. Colloid Polymer Sciences. 2008; 286(5):563–569.
36. Jones C.D, Lyon, LA. Synthesis and characterization of multiresponsive core-shell microgels. Macromolecules. 2000; 33(22):8301–8306.
37. Jones CD, Lyon LA. Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) core−shell microgels. Macromolecules. 2003; 36(6):1988–1993.
38. Huang X, Lowe TL. Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules. 2005; 6(4):2131–2139.
39. Gaur U, Sahoo SK, De TK, Ghosh PC, Maitra A, Ghosh PK. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. International Journal of Pharmacy. 2000; 202(1–2):1–10.
40. Bharali DJ Sahoo SK, Mozumdar S, Maitra A. Cross-linked polyvinylpyrrolidone nanoparticles: A potential carrier for hydrophilic drugs. Journal Colloid Interface Sciences. 2003; 258(2):415–423.
41. Braunecker WA, Matyjaszewski K. Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science. 2007, 32 (1):93–146.
42. Matyjaszewski K and Xia J. Atom transfer radical polymerization. Chemical Reviews. 2001; 101(9):2921–2990.
43. Sheiko SS, Sumerlin BS, Matyjaszewski K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Progress in Polymer Science. 2008; 33(7):759–785.
44. Yagci Y, Tasdelen MA. Mechanistic transformations involving living and controlled/living polymerization methods. Progress in Polymer Science. 2006; 31(12):1133–1170.
45. Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Macromolecular architectures by living and controlled/ living polymerization. Progress in Polymer Sciences. 2006; 31(12):1068–1132.
46. Kim KH, Kim J, Jo WH, Preparation of hydrogel nanoparticles by atom transfer radical polymerization of N-isopropylacrylamide in aqueous media using PEG macro-initiator, Polymer, 2005; 46(9):2836–2840.
47. Oh JK, Min K, Matyjaszewski K. Preparation of poly(oligo(ethylene glycol) monomethyl ether methacrylate) by homogeneous aqueous AGET ATRP. Macromolecules. 2006; 39(9):3161–3167.
48. Oh JK, Tang CB, Gao HF, Tsarevsky NV, Matyjaszewski K. Inverse miniemulsion ATRP: A new method for synthesis and functionalization of well-defifined water-soluble/cross-linked polymeric particles. Journal of American Chemical Society. 2006; 128(16):5578–5584.
49. An Z, Shi Q, Tang W, Tsung CK, Hawker CJ, Stucky GD. Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined. double hydrophilic block copolymers and nanostructured hydrogels. Journal of the American Chemical Society. 2007; 129(46):14493–14499.
50. Yao Y, Xia M, Wang H, Li G, Shen H et al. Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin. Pharmaceutical sciences. 2016; 30228-7(16):S0928-0987.
51. Avasatthi V, Pawar H, Dora CP, Bansod P, Gill MS, Suresh S. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: Optimization, in vitro and in vivo evaluation. Pharmaceutical development and technology. 2015: 1-9.
52. G Divya, Panonnummal R, Gupta S, R Jayakumar, M Sabitha. Acitretin and Aloe-emodin loaded chitin nanogel for the treatment of psoriasis. European Journal of Pharmaceutics and Biopharmaceutics. 2016; 107:97-109.
53. Parchuri DB, Kumar GS Shantha, Goli D, Karki R. formulation and evaluation of nanoparticulate drug delivery system of acyclovir for topical drug delivery. World Journal of Pharmacy and Pharmaceutical Sciences. 2013; 2(6):5602-5617.
54. Kaur LP, Guleri TK. Topical Gel: A Recent Approach for Novel Drug Delivery. Asian Journal of Biomedical and Pharmaceutical Sciences, 2013; 3(17):01-05.
55. Xin, Hai-Shu L, Thenmozhiyal JC, YC Sui, paul CHO. Inclusion of Acitretin into Cyclodextrins: Phase Solubility, Photostability, and Physicochemical Characterization. Journal of Pharmaceutical Sciences. 9(2003):2449-2457.
56. PR Sarika, Rachel James N. Preparation and characterisation of gelatin–gum arabic aldehyde nanogels via inverse miniemulsion technique. International Journal of Biological Macromolecules. 2015; 76:181-187.
57. Abu-Dalo M, Othman A, Al-Rawashdeh N. International Journal of Electrochem. Sciences. 2012; 7.
58. Chauhan P, Mahajan S, Prasad GBKS. Preparation and characterization of CS-ZnO-NC nanoparticles for imparting anti-diabetic activities in experimental diabetes, Journal of Drug Delivery Science and Technology, 2019; 52:738-747.
59. Hao J, Fang X, Zhou Y et al. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box–Behnken design. International Journal of Nanomedicine. 2011; 6:683–692.
60. Kumar JA, Pullakanda N, Prabu SL et al, Transdermal Drug Delivery System: An Overview. International Journal of Pharmaceutical Sciences. Review and Research 2010; 3 (2):49.
61. Dinda SC. Advances in Pharmaceutical Technology. School of Pharmaceutical Education and Research, 2011: 69-82.
62. Phatak A, Jorwekar P, Chaudhari P. Nanosuspension a promising nanocarrier as a drug delivery system. Research Journal of Pharmaceutical Dosage Forms and Technology. 2011; 3:176.
63. The Merck Index, 13th edition, 2001: 6909.
64. Williams AC, Barry BW. Penetration Enhancers, Advanced Drug Delivery Reviews. 2004; 56:603-18.
65. N Sanoj Rejinold, M Muthunarayanan, VV Divyarani, PR Sreerekha, KP Chennazhi, S V Nair, H Tamura, R Jayakumar, Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery, Journal of Colloid Interface Sciences, 360(2011):39–51.
66. Murray SB, Neville AC. The role of pH, temperature and nucleation in the formation of cholesteric liquid crystal spherulites from chitin and chitosan. International Journal of Biological Macromolecules. 22(1998): 137–144.
67. J Smith, E Wood, M Dornish. Effect of chitosan on epithelial cell tight junctions. Pharmaceutical Research. 2004; 21:43-49.
68. J Gibson, An evaluation of the effects on ProZ92 on proliferation of skin cells in culture. www.proz92.com/psoriasis/research. Cited 2014 January 16.
69. M Sabitha, R N Sanoj, N Amrita, L Vinothkumar, SV Nair, R Jayakumar. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale 2012; 4:239-250.
70. KT Smitha, A Anitha, T Furuike, H Tamura, S V Nair, R Jayakumar. In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids and Surfaces B- Biointerfaces. 2013; 104:245-253.
71. MF Lopes-Virella, P Stone, S Ellis, JA Colwell. Cholesterol determination in high-density lipoproteins separated by three difffferent methods. Clinical Chemistry and laboratory medicine. 1977; 23:882–884 [PMID: 192488].
72. International Journal of Pharmaceutics. 2007; 332:185-191.
73. Tan JP, Tan MB, Tam MK. Application of nanogel systems in the administration of local anesthetics. Local reg. 2010; 3:93-100
74. Vinogradov SV1, Batrakova EV, Kabanov AV, Nanogels for oligonucleotide Delivery to the Brain, Bioconjugate Chemistry, 2004; 15:50–60.
75. Sahu P, Das D, Kashaw V, Iyer AK, Kashaw SK. Nanogels: A New Dawn in Antimicrobial Chemotherapy. Antimicrobial Nanoarchitectonics. 2017: 101-137.
76. Chahrazad Bakka, Ouanissa Smara, Hadjadj Mohamed, Hocine Dendougui, Salha Mahdjar, Benzid Amina . In vitro Anti-inflammatory activity of Pistacia atlantica Desf. extracts. Asian Journal of Research in Chemistry. 2019; 12(6):322-325.
77. Shah PP, Desai PR, Patel AR, Singh M (2012), Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs, Biomaterials, 33: 1607–1617.
78. Ferreira SA1, Gama FM, Vilanova M. Polymeric nanogels as vaccine delivery systems. Nanomedicine 2013; 9:159–173.
79. Phatak AA, Praveen DC, Development and Evaluation of Nanogel as a Carrier for Transdermal Delivery of Aceclofenac. Asian Journal of Pharmaceutical Technology. 2012; 2:125-132.
80. Larsson M, Bergstrand, A, Mesiah, L, Vooren CV, Larsson SA. Nanocomposites of polyacrylic acid nanogels and biodegradable polyhydroxybutyrate for bone regeneration and drug delivery. Journal of Nanomaterials. 2014:1-9.
81. Moya-Ortega MD, Alves TF, Alvarez-Lorenzo C, Concheiro A, Stefánsson E et al. Dexamethasone eye drops containing γ- Cyclodextrin based nanogel. International journal of pharmaceutics. 2013; 441:507-515.
82. HA1 Abd E1-Rehim, Swilem AE, Klingner A, Hegazy el-SA, AA Hamed. Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone-poly[acrylic acid] nanogel dispersions prepared by γ radiation, Biomacromolecules. 2013; 14:688-698.
83. Rezkita Fianza, Kadek, Wibawa G.P, P Alexander. Nugraha. Curcumin loaded Chitosan Nanoparticle for Accelerating the Post Extraction Wound Healing in Diabetes Mellitus Patient: A Review. Research Journal of Pharmacy and Technology. 2020; 13(2):1039-1042.
84. Telrandhe Roshan. Anti-Cancer Potential of Green Synthesized Silver Nanoparticles- A Review. Asian Journal of Pharmacy and Technology. 2019; 9 (4):260-266.
85. D Sushil. Patil, Gupta J Mukul, Kote Kaustubh S. , Mr. Rajendran R. Formulation of Novel Medicated Jellies for Treatment of Mouth Ulcer. Asian Journal of Pharmacy and Technology. 2019; 9(4):241-243.
86. N T. Nistane. Herbal Nanoparticles against Cancer. Research Journal of Pharmaceutical Dosage Forms and Technology.2019; 11(4):247-252
87. Kailas M. Karande, Shivaji P. Gawade. Synthesis of Nanosilver and its Comparative Evaluation of Cytotoxic Activity. Research Journal of Pharmacy and Technology. 2020; 13(2):659-663.
88. Sahu Pooja, Jangade Rajendra. An Updated Review on Mechanism of Novel Carrier System for Wound Healing. Research Journal of Topical and Cosmetic Sciences. 2019; 10(2):65-78.
89. Nukolova NV, Oberoi HS, Cohen SM, Kabanov AV, Bronich TK. Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials. 2011; 32(23):5417-26.
90. Park W, Park S-j, Na K. Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier. Colloids and Surfaces B: Biointerfaces. 2010; 79(2):501-8.
91. Nukolova NV, Oberoi HS, Cohen SM, Kabanov AV, Bronich TK. Folate-decorated nanogels for targeted therapy of ovarian cancer. Biomaterials. 2011; 32(23):5417-26.
92. Wu W, Mitra N, Yan EC, Zhou S. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. Acs Nano. 2010; 4(8):4831-9.
Statistics
0 Views | 0 Downloads
How to Cite
1.
Chouhan C, Rajput RP, Sahu R, Verma P, Sahu S. An Updated Review on Nanoparticle Based Approach for Nanogel Drug Delivery System. JDDT [Internet]. 15Oct.2020 [cited 21Oct.2020];10(5-s):254-66. Available from: http://jddtonline.info/index.php/jddt/article/view/4465