Genetics of Colorectal Cancer: Role of p53

  • Rajashri Champanery Biochemistry Department, Gujarat University, Ahmedabad, Gujarat, India
  • Drashti Joshi Analytical and environmental services, Vadodara, Gujarat India

Abstract

The tumor suppressor TP53 gene is one of the most frequently mutated in different types of human cancer. Particularly in colorectal cancer (CRC), it is believed that TP53 mutations play a role in the adenoma-carcinoma transition of tumors during pathological process. The TP53 mutation is the key step driving the transition from adenoma to adenocarcinoma. The functional roles of TP53 mutation in tumor development have been comprehensively investigated. In this mini review, we comprehensively summarize the p53 mutants in CRC progression and discuss the current strategies for p53 mutants in malignancies.


Keywords: p53 mutants, colorectal cancer, Tp53 mutation

Keywords: p53 mutants, colorectal cancer, Tp53 mutation

Downloads

Download data is not yet available.

Author Biographies

Rajashri Champanery, Biochemistry Department, Gujarat University, Ahmedabad, Gujarat, India

Biochemistry Department, Gujarat University, Ahmedabad, Gujarat, India

Drashti Joshi, Analytical and environmental services, Vadodara, Gujarat India

Analytical and environmental services, Vadodara, Gujarat India

References

1. Midgley R, Kerr D. Colorectal cancer. Lancet (London, England). 1999; 353(9150):391-9.
2. Kinzler KW, Vogelstein B. Lessons from Hereditary Colorectal Cancer. Cell. 1996; 87(2):159-70.
3. Vhora I, Patil S, Bhatt P, Gandhi R, Baradia D, Misra A. Receptor-targeted drug delivery: current perspective and challenges. Ther Deliv. 2014; 5(9):1007-24.
4. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996; 87(2):159-70.
5. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994; 73(8):2013-26.
6. Achim M, Tomuta I, Vlase L, Iuga C, Moldovan M, Leucuta SE. Paclitaxel-loaded poly(lactic-co-glycolic acid) microspheres: preparation and in vitro evaluation. Journal of Drug Delivery Science and Technology. 2008; 18(6):410-6.
7. Nishihara H, Kizaka-Kondoh S, Insel PA, Eckmann L. Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc Natl Acad Sci U S A. 2003; 100(15):8921-6.
8. Abraha AM, Ketema EB. Apoptotic pathways as a therapeutic target for colorectal cancer treatment. World J Gastrointest Oncol. 2016; 8(8):583-91.
9. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science (New York, NY). 1995; 267(5203):1456-62.
10. Angelova A, Garamus VM, Angelov B, Tian Z, Li Y, Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Advances in colloid and interface science. 2017; 249:331-45.
11. Dhanikula AB, Panchagnula R. Localized paclitaxel delivery. International journal of pharmaceutics. 1999; 183(2):85-100.
12. Ilyas M, Straub J, Tomlinson IP, Bodmer WF. Genetic pathways in colorectal and other cancers. European journal of cancer (Oxford, England : 1990). 1999;3 5(3):335-51.
13. Bhatt P, Khatri N, Kumar M, Baradia D, Misra A. Microbeads mediated oral plasmid DNA delivery using polymethacrylate vectors: an effectual groundwork for colorectal cancer. Drug Delivery. 2015; 22(6):849-61.
14. Oake A, Bhatt P, Pathak YV. Understanding Surface Characteristics of Nanoparticles. In: Pathak YV, editor. Surface Modification of Nanoparticles for Targeted Drug Delivery. Cham: Springer International Publishing; 2019. p. 1-17.
15. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. The EMBO journal. 1997; 16(13):3797-804.
16. Martin YC. Exploring QSAR:  Hydrophobic, Electronic, and Steric Constants C. Hansch, A. Leo, and D. Hoekman. American Chemical Society, Washington, DC. 1995. Xix + 348 pp. 22 × 28.5 cm. Exploring QSAR:  Fundamentals and Applications in Chemistry and Biology. C. Hansch and A. Leo. American Chemical Society, Washington, DC. 1995. Xvii + 557 pp. 18.5 × 26 cm. ISBN 0-8412-2993-7 (set). $99.95 (set). Journal of Medicinal Chemistry. 1996; 39(5):1189-90.
17. Seedher N, Bhatia S. Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS PharmSciTech. 2003;4(3):E33-E.
18. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin Nephrotoxicity: A Review. The American Journal of the Medical Sciences. 2007; 334(2):115-24.
19. Ehrlich P, Himmelweit F. The collected papers of Paul Ehrlich : in four volumes, including a complete bibliography. London; New York: Pergamon Press; 1956.
20. Carstens MG, de Jong PH, van Nostrum CF, Kemmink J, Verrijk R, de Leede LG, et al. The effect of core composition in biodegradable oligomeric micelles as taxane formulations. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2008; 68(3):596-606.
21. Lalani R, Misra A, Amrutiya J, Patel H, Bhatt P, Patil SK. Approaches and Recent Trends in Gene Delivery for Treatment of Atherosclerosis. Recent Pat Drug Deliv Formul. 2016; 10(2):141-55.
22. Bae KH, Lee JY, Lee SH, Park TG, Nam YS. Optically Traceable Solid Lipid Nanoparticles Loaded with siRNA and Paclitaxel for Synergistic Chemotherapy with In situ Imaging. Advanced Healthcare Materials. 2013; 2(4):576-84.
23. Bao G, Mitragotri S, Tong S. Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging. Annual Review of Biomedical Engineering. 2013; 15(1):253-82.
24. Patil S, Bhatt P, Lalani R, Amrutiya J, Vhora I, Kolte A, et al. Low molecular weight chitosan–protamine conjugate for siRNA delivery with enhanced stability and transfection efficiency. RSC Advances. 2016; 6(112):110951-63.
25. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nature reviews Cancer. 2009; 9(10):749-58.
26. Bhatt P, Lalani R, Vhora I, Patil S, Amrutiya J, Misra A, et al. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. International Journal of Pharmaceutics. 2018; 536(1):95-107.
27. Siegl-Cachedenier I, Muñoz P, Flores JM, Klatt P, Blasco MA. Deficient mismatch repair improves organismal fitness and survival of mice with dysfunctional telomeres. Genes Dev. 2007; 21(17):2234-47.
28. Zhou J, Atsina K-B, Himes BT, Strohbehn GW, Saltzman WM. Novel delivery strategies for glioblastoma. Cancer J. 2012; 18(1):89-99.
29. Goel A, Baboota S, Sahni JK, Ali J. Exploring targeted pulmonary delivery for treatment of lung cancer. Int J Pharm Investig. 2013; 3(1):8-14.
30. Lalani R, Misra A, Amrutiya J, Patel H, Bhatt P, Patel V. Challenges in Dermal Delivery of Therapeutic Antimicrobial Protein and Peptides. Curr Drug Metab. 2017; 18(5):426-36.
31. Kawai K, Sunami E, Tanaka J, Tanaka T, Kiyomatsu T, Nozawa H, et al. Synchronous colorectal malignancy and abdominal aortic aneurysm treated with endovascular aneurysm repair followed by laparoscopic colectomy. Int Surg. 2015; 100(4):600-3.
32. Xie J, Xiao D, Zhao J, Hu N, Bao Q, Jiang L, et al. Mesoporous Silica Particles as a Multifunctional Delivery System for Pain Relief in Experimental Neuropathy. Adv Healthc Mater. 2016; 5(10):1213-21.
33. Bos JL. ras oncogenes in human cancer: a review. Cancer research. 1989; 49(17):4682-9.
34. Bhatt P, Narvekar P, Lalani R, Chougule MB, Pathak Y, Sutariya V. An in vitro Assessment of Thermo-Reversible Gel Formulation Containing Sunitinib Nanoparticles for Neovascular Age-Related Macular Degeneration. AAPS PharmSciTech. 2019; 20(7):281.
35. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010; 28(6):1075-83.
36. Shahiwala A, Misra A. In-Vitro and In-Vivo Tools in Drug Delivery Research for Optimum Clinical Outcomes2018.
37. Sinicrope FA, Roddey G, McDonnell TJ, Shen Y, Cleary KR, Stephens LC. Increased apoptosis accompanies neoplastic development in the human colorectum. Clinical Cancer Research. 1996; 2(12):1999.
38. Vhora I, Lalani R, Bhatt P, Patil S, Patel H, Patel V, et al. Colloidally Stable Small Unilamellar Stearyl Amine Lipoplexes for Effective BMP-9 Gene Delivery to Stem Cells for Osteogenic Differentiation. AAPS PharmSciTech 2018; 19:3550–3560.
Statistics
42 Views | 32 Downloads
How to Cite
1.
Champanery R, Joshi D. Genetics of Colorectal Cancer: Role of p53. JDDT [Internet]. 15Dec.2020 [cited 21Jan.2021];10(6-s):183-5. Available from: http://jddtonline.info/index.php/jddt/article/view/4423