Food constituents for inhibition of BabA of Helicobacter pylori

  • Zahra M. Al-Khafaji Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Iraq
  • Aaisha B. Mahmood Ministry of Agriculture, Veterinary Directorate, Baghdad Veterinary Hospital, Al-Dora Hospital, Iraq
  • Marium B. Mahmood Financial Affairs Dept., Computer Science, University of Baghdad, Iraq

Abstract

Helicobacter pylori causes several gastric pathogeneses to human, nowadays the bacterium developed incredible drug and antibiotic resistance. The bacterium starts its activities by attachment to gastric epithelia via BabA as the main player in the\is process. The study was carried out to find/discover food constituents as inhibitors. Five molecules were obtained from the screening process, 2_3_4_5_6_Penta_O_acetyl_D_glucose, N2_N2_Dimethylguanosine, 5__Methylthioadenosine, Glyceryl_5_hydroxydecanoate, Monoisopropyl_citrate , in addition to two drugs Rivoglitazone and Tiapirinol not used for  Helicobacter pylori before. The molecules were docked with considerable binding affinities with different types of interactions. The molecules were checked for the safety of different aspects, they are of good synthetic accessibility and in agreement with the Lipinski rule of 5 which is essential for Helicobacter therapy.


Keywords: Helicobacter pylori, food constituents, BabA inhibition, SBDD

Keywords: Helicobacter pylori, food constituents, BabA inhibition, SBDD

Downloads

Download data is not yet available.

Author Biographies

Zahra M. Al-Khafaji, Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Iraq

Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Iraq

Aaisha B. Mahmood, Ministry of Agriculture, Veterinary Directorate, Baghdad Veterinary Hospital, Al-Dora Hospital, Iraq

Ministry of Agriculture, Veterinary Directorate, Baghdad Veterinary Hospital, Al-Dora Hospital, Iraq

Marium B. Mahmood, Financial Affairs Dept., Computer Science, University of Baghdad, Iraq

Financial Affairs Dept., Computer Science, University of Baghdad, Iraq

References

1. Wang G, Pang J, Hu X Nie T Lu X, Li X. Daphnetin: A Novel Anti-Helicobacter pylori Agent Int J Mol Sci. 2019; 20:850: 1-13.
2. Shen L, Zhou T, Wang J, Sang X, Lan L, Luo L, et al. Daphnetin reduces endotoxin lethality in mice and decreases LPS-induced inflammation in raw 264.7 cells via suppressing JAK/STATs activation and ROS production. Inflamm Res. 2017; 66:579–589.
3. Bugaytsova JA, Chernov YA, Gideonsson P, Björnham O, Henriksson S, Mendez M. Adaption of Helicobacter pylori to chronic infection and gastric disease by pH-responsive BabA-mediated adherence. Cell Host Microbe. 2017; 8:376–389.
4. De Falco M, Lucariello A, Iaquinto S, Esposito V, Guerra G, De Luca AA. Molecular mechanisms of Helicobacter pylori pathogenesis. J Cell Physiol. 2015; 8:1702-1707.
5. Wang F, Meng W, Wang B, Qiao L.. Helicobacter pylori-induced gastric inflammation, and gastric cancer. Cancer Lett. 2014; 345:196–202.
6. Huang Y, Wang Q, Cheng D, Xu W Lu N. Adhesion and Invasion of gastric mucosa epithelial cells by Helicobacter pylori. Front. Cell. Infect. Microbiol. 2016; 6:159-170.
7. Ansari S, Yamaoka Y. Helicobacter pylori BabA in adaptation for gastric colonization. World J Gastroenterol. 2017; 23:4158-4169.
8. Nagai S, Mimuro H, Yamada T, Baba Y, Moro K, Nochi T, et al. Role of Peyer's patches in the induction of Helicobacter pylori-induced gastritis. Proc. Natl. Acad. Sci. U.S.A. 2007; 104:8971–8976.
9. Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, Trust TJ. Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect Immun. 2000; 68:4155–4168.
10. Odenbreit S, Swoboda K, Barwig I, Ruhl S, Bore´n T, Koletzko S, et al . Outer membrane protein expression profile in Helicobacter pylori clinical isolates. Infect Immun. 2009; 77:3782–3790.
11. Suerbaum S , Smith JM, Bapumia K, Morelli G, Smith J, Kunstmann E, et al. Free recombination within Helicobacter pylori. Proc. Natl. Acad. Sci. USA 1998; 95:12619–12624.
12. Wang G , Humayun MZ, Taylor DE. Mutation as an origin of genetic variability in Helicobacter pylori. Trends Microbiol. 1999; 7:488–493.
13 . Wang D, Guo Q, Yuan Y, Gong Y, The antibiotic resistance of Helicobacter pylori to five antibiotics and influencing factors in an area of China with a high risk of gastric cancer. BMC Microbiol. 2019; 19:152, 1-10.
14. Pellicano R, Ribaldone DG, Caviglia GP. Strategies for Helicobacter pylori eradication in the year 2020. Saudi J Gastroenterol. 2020; 26:63–65.
15. Vilaichonea R, Aumpana N, Ratanachu-eked T, Uchida T, Tsheringf L, Mahachaib V,. A population-based study of Helicobacter pylori infection and antibiotic resistance in Bhutan. Int J Infect Dis. 2020; 97:1-6.
16. Messing J, Tho¨le C, Niehues M, Shevtsova A, Glocker E, et al. Antiadhesive properties of Abelmoschus esculentus (Okra) immature fruit extract against Helicobacter pylori adhesion. PLoS ONE 2014; 9:e84836.
17. Kusters JG, van Vliet AH, Kuipers E . Pathogenesis of Helicobacter pylori Infection. Clin Microbiol Rev . 2006; 19:449–490.
18. Waskito LA, Salama NR, Yamaoka Y. Pathogenesis of Helicobacter pylori infection. Helicobacter, 2018; 23:1-6.
19. Aspholm-Hurtig M, Dailide G, Lahmann M, Kalia A, Ilver D, Roche N, et al. Functional adaptation of BabA, the H. pylori ABO blood group antigen-binding adhesin. Science. 2004; 305:519–522.
20. Imberty A, Mitchell EP, Wimmerova M. Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. Curr Opin Struct Biol. 2005; 15:525–534.
21. Sweeney EG, Guillemin K. H. pylori's BabA embraces change. Cell Host Microbe. 2016; 13:5-7.
22. Chang W, Yeh Y, Sheu B. The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J Biomed Sci. 2018; 25: 1-9.
23. Zhang XS, Tegtmeyer N, Traube L, Jindal S, Perez-Perez G, Sticht H, et al. A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions. PLoS pathogens. 2015; 11:e1004621.
24. Wu H, Nakano T, Matsuzaki Y, Ooi Y, Kohno T, Ishihara S, et al. A new type of intrabacterial nanotransportation system for VacA in Helicobacter pylori. Med Mol Morphol. 2014; 47:224–232.
25. Kirschner DE, Blaser MJ. The dynamics of Helicobacter pylori infection of the human stomach. J Theor Biol. 1995; 176:281–290.
26. Tan S, Tompkins LS, Amieva MR. Helicobacter pylori usurp cell polarity to turn the cell surface into a replicative niche. PLOS Pathog. 2009; 5:e1000407.
27. Liu Q, Meng X, Li Y, Zhao C, Tang G, Li S, et al. Natural products for the prevention and management of Helicobacter pylori infection. Compr Rev Food Sci Food Saf. 2018; 17: 937-952.
28. O’Mahony R, Al-Khtheeri H, Weerasekera D, Fernando N, Vaira D, Holton J, et al. Bactericidal and anti-adhesive properties of culinary and medicinal plants against Helicobacter pylori. World J Gastroenterol. 2005; 11:7499-7507.
29. Makrynitsa G, Michail L, Spyroulias GA, Matsoukas, Minos-Timotheos M. In silico Drug Design. In: eLS. John Wiley & Sons, Ltd: Chichester.( 2018 ).
30. Batool M, Ahmad B Choi S. A Structure-Based Drug Discovery Paradigm. Int. J. Mol. Sci. 2019; 20:1-18.
31. Mountain, V. Astex, Structural Genomix, and Syrrx. Chem Biol 2003; 10:95–98.
32. Al-Khafaji ZM, Mahmood AM, Mahmood MB. Inhibitors for attachment protein BabA of Helicobacter pylori. World J Microbiol. 2020; 5:146-154.
33. Wanga X, Songa K, Lia L, Chen L. Structure-based drug design strategies and challenges. Curr Top Med Chem, 2018; 18:998-1006.
34. Blaney, J. A very short history of structure-based design: How did we get here and where do we need to go? J Comput Aided Mol Des. 2012; 26:13–14.
35. Mandal S, Moudgil M, Mandal SK. Rational drug design. Eur J Pharm. 2009; 625:90–100.
36. Labb ´ e´ C, Rey J, Lagorce D, Vavrusa M, Becot J, Sperandio O. MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Res. 2015; 43: W448–W454.
37. Sulistyo Dwi P, Arindra Trisna W, Vindri Catur W, Erna W, Mochammad I. Virtual screening using MTiOpenScreen and PyRx 0,8 revealed ZINC95486216 as a human acetylcholinesterase inhibitor candidate. AIP Conference Proceedings, Volume 1718, 2016. AIP Conference Proceedings 1718, 060001 (2016); https://doi.org/10.1063/1.4943323.
38. Lipinski C, Lombardo F, Dominy B, Feeney P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997 ; 23:3–25.
39. Verlinde CL, Hol W. Structure-based drug design: progress, results and challenges. Structure 1994; 2:577-587.
40. Anderson AC. The Process of Structure-Based Drug Design. Chem Biol. 2003 ; 10: 787–797.
41. Taylor RD, Jewsbury PJ, Essex JW. A review of protein-small molecule docking methods. J. Comput Aided Mol Des. 2002; 16: 151-166.
42. Halperin I, Ma B, Wolfson H, Nussinov R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins: Struct Funct Genet. 2002; 47:409-443.
43. Abagyan R, Totrov M. High-throughput docking for lead generation. Curr. Opin. Chem. Biol. 2001; 5:375-382.
44. Stakera B, Buchkoa GW, Myler PJ. Recent contributions of Structure-Based Drug Design to the development of antibacterial compounds. Curr Opin Microbiol. 2015; 27:133–138.
45. Ritchie TJ, Macdonald SJF. Physicochemical descriptors of aromatic character and their use in drug discovery. J Med Chem 2014; 57:7206-7215.
46. Taylor RD, Maccoss M, Lawson ADG. Rings in drugs. J Med Chem. 2014; 24:5845-5859.
47. Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP. General Theory of Van der Waals’ forces. Sov. Phys. Uspekhi. IOP Publishing, 1961; 28:153–176.
48. Messing J , Niehues M, Shevtsova A, Borén T, Hensel A. Antiadhesive properties of arabinogalactan protein from Ribes nigrum seeds against bacterial adhesion of Helicobacter pylori. Molecules , 2014; 19: 3696-3717.
49. Kaelin W. Choosing anticancer drug targets in the post-genomic era. J Clin Invest. 1999; 104:1503–1506.
50. Hu Y, Zhu Y, Lu N-H. Novel and effective therapeutic regimens for Helicobacter pylori in an era of increasing antibiotic resistance. Front Cell Infect Microbiol. 2017; 7:168 , 1-20.
51. Takeuchi H, Trang VT, Morimoto N, Nishida Y, Matsumura Y, Sugiura T. Natural products and food components with anti-Helicobacter pylori activities. World J Gastroenterol. 2014; 20:8971-8978.
Statistics
0 Views | 0 Downloads
How to Cite
1.
Al-Khafaji ZM, Mahmood AB, Mahmood MB. Food constituents for inhibition of BabA of Helicobacter pylori. JDDT [Internet]. 15Oct.2020 [cited 21Oct.2020];10(5-s):152-63. Available from: http://jddtonline.info/index.php/jddt/article/view/4358