Interferon: Role in health, current trends and therapeutic potentials

  • Ikenna Kingsley Uchendu Department of Medical Laboratory Science, College of Medicine, University of Nigeria, Enugu, Nigeria
  • Nkiruka Peace Ojiako Department of Medical Laboratory Science, College of Medicine, University of Nigeria, Enugu, Nigeria

Abstract

This mini review presents the current trends and topical issues on interferon. This article illustrates the theoretical background and details about interferon, its mechanism of action or roles in the prevention of microbial- or pathogenic disease progression, types and classes, and their therapeutic potentials. All the reported applications have shown that interferon has found its application in gene manipulation and expression of gene products; immunological techniques, viral disease treatment and in the treatment of cancers.


Keywords: Interferon, cancers, cancer therapy, viral infection, viral disease treatment.

Keywords: Interferon, cancers, cancer therapy, viral infection

Downloads

Download data is not yet available.

Author Biographies

Ikenna Kingsley Uchendu, Department of Medical Laboratory Science, College of Medicine, University of Nigeria, Enugu, Nigeria

Department of Medical Laboratory Science, College of Medicine, University of Nigeria, Enugu, Nigeria

Nkiruka Peace Ojiako, Department of Medical Laboratory Science, College of Medicine, University of Nigeria, Enugu, Nigeria

Department of Medical Laboratory Science, College of Medicine, University of Nigeria, Enugu, Nigeria

References

1. Marco Túlio R. Gomes, Daiane M. Cerqueira, Erika S. Guimarães, Priscila C. Campos and Sergio C. Oliveira, Guanylate‐binding proteins at the crossroad of noncanonical inflammasome activation during bacterial infections, Journal of Leukocyte Biology. 2019; 106(3):553-562.
2. Kang S, Brown HM, Hwang S. Direct Antiviral Mechanisms of Interferon-Gamma. Immune Network. 2018; 18(5):e33.
3. Raftery N, Stevenson NJ. Advances in anti-viral immune defence: revealing the importance of the IFN JAK/STAT pathway. Cellular Molecular Life Science. 2017, 74(14):2525-2535
4. Galani IE, Triantafyllia V, Eleminiadou E, Koltsida O, Stavropoulos A, Manioudaki M, Thanos D, Doyle SE, Kotenko SV, Thanopoulou K, Andreakos E. Interferon-λ Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infection without Compromising Host Fitness. Immunity. 2017 46(5):875-890.e6
5. Beuckelaer AD, Grooten J, Koker SD. Type I Interferons Modulate CD8+ T Cell Immunity to mRNA Vaccines. Trend in Molecular Medicine. 2017; 23(3):216-226.
6. Yang T, Yang Y, Wang D, Li C, Qu Y, Guo J, Shi T, Bo W, Sun Z, Asakawa T . The clinical value of cytokines in chronic fatigue syndrome. Journal of Translational Medicine. 2019; 17:213
7. Hoffmann HH, Schneider WM, Rice CM. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends in Immunology. 2015: 36(3):124-138.
8. De Andrea M, Gariglio M, Gioia D, Landolfo S, Ravera R. The interferon system: an overview. European Journal of Paediatric Neurology. 2002; 6A(6):A41-58.
9. Ivashkiv LB, Kalliolias GD. Overview of the biology of type I interferons. Arthritis Research & Therapy. 2010; 12(1): S1.
10. De Weerd NA, Samarajiwa SA, Hertzog PJ. Type I interferon receptors: biochemistry and biological functions. Journal of Biological Chemistry. 2007; 282(28):20053-20057.
11. Kursunel MA, Esendagli G. The untold story of IFN-γ in cancer biology. Cytokine & Growth Factor Reviews. 2016; 31:73-81.
12. Parker, B., Rautela, J, Hertzog, P. Antitumour actions of interferons: implications for cancer therapy. Nature Reviews Cancer 2016; 16:131-144.
13. Sang Y, Bergkamp J, Blecha F. Molecular evolution of the porcine type I interferon family: subtype-specific expression and antiviral activity. PLoS One. 2014; 9(11):e112378.
14. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proceedings of the Royal Society B: Biological Sciences. 1957; 147(927):258-267.
15. Lopušná K, Režuchová I, Betakova T, Skovranova L, Tomašková J, Lukáčiková L, Kabat P. Interferons lambda, new cytokines with antiviral activity. Acta Virologica. 2013; 57(2):171-179.
16. Zaidi MR, Merlino G. The two faces of interferon-γ in cancer. Clinical cancer research. 2011; 17(19):6118-6124.
17. Tau G, Rothman P. Biologic functions of the IFN-gamma receptors. Allergy. 1999; 54(12):1233-1251.
18. Niedelman W, Gold DA, Rosowski EE, Sprokholt JK, Lim D, Arenas AF, Melo MB, Spooner E, Yaffe MB, Saeij JP. The rhoptry proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the murine, but not the human, interferon-gamma response. PLoS pathogens. 2012; 8(6):e1002784.
19. Kim K, Cho SK, Sestak A, Namjou B, Kang C, Bae SC. Interferon-gamma gene polymorphisms associated with susceptibility to systemic lupus erythematosus. Annals of the rheumatic diseases. 2010; 69(6):1247-1250.
20. Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR. Lambda interferon (IFN-λ), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. Journal of virology. 2006; 80(9):4501-4509.
21. Vilcek J. Novel interferons. Nature immunology. 2003; 4(1):8-9.
22. Markey KA, MacDonald KPA, Hill GR. Cytokines in graft-versus-host disease and graft-versus-leukemia. Immune Biology of Allogeneic Hematopoietic Stem Cell Transplantation. 2013; (2013):357-391.
23. Pawlotsky JM, Feld JJ, Zeuzem S, Hoofnagle JH. From non-A, non-B hepatitis to hepatitis C virus cure. Journal of hepatology. 2015; 62(1):S87-99.
24. Zoulim F, Durantel D. Antiviral therapies and prospects for a cure of chronic hepatitis B. Cold Spring Harbor perspectives in medicine. 2015; 5(4):a021501.
25. Ely A, Arbuthnot P. Differing prospects for the future of using gene therapy to treat infections with hepatitis B virus and hepatitis C virus. Discovery medicine. 2015; 20(109):137-143.
26. Reder AT, Feng X. How type I interferons work in multiple sclerosis and other diseases: some unexpected mechanisms. Journal of Interferon and Cytokine Research. 2014; 34(8):589-599.
27. Axtell RC, Raman C, Steinman L. Interferon-β exacerbates Th17-mediated inflammatory disease. Trends in immunology. 2011; 32(6):272-277.
28. Killestein J, Polman CH. Determinants of interferon β efficacy in patients with multiple sclerosis. Nature reviews Neurology. 2011; 7(4):221-228.
29. Köker MY, Camcıoğlu Y, van Leeuwen K, Kılıç SŞ, Barlan I, Yılmaz M, Metin A, de Boer M, Avcılar H, Patıroğlu T, Yıldıran A. Clinical, functional, and genetic characterization of chronic granulomatous disease in 89 Turkish patients. Journal of allergy and clinical immunology. 2013; 132(5):1156-1163.
30. Marciano BE, Wesley R, De Carlo ES, Anderson VL, Barnhart LA, Darnell D, Malech HL, Gallin JI, Holland SM. Long-term interferon-γ therapy for patients with chronic granulomatous disease. Clinical infectious diseases. 2004; 39(5):692-699.
31. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E, Melero I. Cytokines in clinical cancer immunotherapy. British journal of cancer. 2019; 120(1):6-15.
32. Bank S, Andersen PS, Burisch J, Pedersen N, Roug S, Galsgaard J, Turino SY, Brodersen JB, Rashid S, Rasmussen BK, Avlund S. Genetically determined high activity of IL-12 and IL-18 in ulcerative colitis and TLR5 in Crohns disease were associated with non-response to anti-TNF therapy. The pharmacogenomics journal. 2018; 18(1):87-97.
33. Shen J, Xiao Z, Zhao Q, Li M, Wu X, Zhang L, Hu W, Cho CH. Anti‐cancer therapy with TNF α and IFN γ: A comprehensive review. Cell proliferation. 2018; 51(4):e12441.
34. Dierckx T, Khouri R, Menezes SM, Decanine D, Farre L, Bittencourt A, Vandamme AM, Van Weyenbergh J. IFN-β induces greater antiproliferative and proapoptotic effects and increased p53 signaling compared with IFN-α in PBMCs of Adult T-cell Leukemia/Lymphoma patients. Blood cancer journal. 2017; 7(1):e519-.
35. Chiantore MV, Mangino G, Iuliano M, Zangrillo MS, De Lillis I, Vaccari G, Accardi R, Tommasino M, Fiorucci G, Romeo G. IFN-β antiproliferative effect and miRNA regulation in Human Papilloma Virus E6-and E7-transformed keratinocytes. Cytokine. 2017; 89:235-238.
36. Müller L, Aigner P, Stoiber D. Type I interferons and natural killer cell regulation in cancer. Frontiers in immunology. 2017; 8:304.
37. Padilla-Quirarte HO, Trejo-Moreno C, Fierros-Zarate G, Castañeda JC, Palma-Irizarry M, Hernández-Márquez E, Burguete-Garcia AI, Peralta-Zaragoza O, Madrid-Marina V, Torres-Poveda K, Bermúdez-Morales VH. Interferon-Tau has antiproliferative effects, represses the expression of E6 and E7 oncogenes, induces apoptosis in cell Lines transformed with HPV16 and inhibits tumor growth in vivo. Journal of Cancer. 2016; 7(15):2231-2240.
38. Ningrum RA, Wisnuwardhani PH, Santoso A, Herawati N. Antiproliferative activity of recombinant human interferon alpha2B on estrogen positive human breast cancer MCF-7 cell line. Indonesian Journal of Pharmacy. 2015; 26(2):86.
39. Buttmann M, Rieckmann P. Interferon-β1b in multiple sclerosis. Expert review of neurotherapeutics. 2007; 7(3):227-239.
40. Maier K, Kuhnert AV, Taheri N, Sättler MB, Storch MK, Williams SK, Bähr M, Diem R. Effects of glatiramer acetate and interferon-β on neurodegeneration in a model of multiple sclerosis: a comparative study. The American journal of pathology. 2006; 169(4):1353-1364.
41. Limmroth V. The interferon beta therapies for treatment of relapsing–remitting multiple sclerosis: are they equally efficacious? A comparative review of open-label studies evaluating the efficacy, safety, or dosing of different interferon beta formulations alone or in combination. Therapeutic Advances in Neurological Disorders. 2011; 4(5):281-296.
42. Samuel CE. Interferons, interferon receptors, signal transducer and transcriptional activators, and interferon regulatory factors. Journal of Biological Chemistry. 2007; 282(28):20045-20046.
43. De Weerd NA, Nguyen T. The interferons and their receptors—distribution and regulation. Immunology and cell biology. 2012; 90(5):483-491.
44. Au-Yeung N, Mandhana R, Horvath CM. Transcriptional regulation by STAT1 and STAT2 in the interferon JAK-STAT pathway. Jak-stat. 2013; 2(3):e23931.
45. Silver-Morse L, Li WX. JAK-STAT in heterochromatin and genome stability. Jak-Stat. 2013; 2(3):e26090.
46. Zhao GN, Jiang DS, Li H. Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2015; 1852(2):365-378.
47. Smith GL, Benfield CT, de Motes CM, Mazzon M, Ember SW, Ferguson BJ, Sumner RP. Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. Journal of General Virology. 2013; 94(11):2367-2392.
48. George PM, Badiger R, Alazawi W, Foster GR, Mitchell JA. Pharmacology and therapeutic potential of interferons. Pharmacology & therapeutics. 2012; 135(1):44-53.
49. Shibinskaya MO, Lyakhov SA, Mazepa AV, Andronati SA, Turov AV, Zholobak NM, Spivak NY. Synthesis, cytotoxicity, antiviral activity and interferon inducing ability of 6-(2-aminoethyl)-6H-indolo [2, 3-b] quinoxalines. European journal of medicinal chemistry. 2010; 45(3):1237-1243.
50. Lin FC, Young HA. Interferons: success in anti-viral immunotherapy. Cytokine & growth factor reviews. 2014; 25(4):369-376.
Statistics
28 Views | 20 Downloads
How to Cite
1.
Uchendu IK, Ojiako NP. Interferon: Role in health, current trends and therapeutic potentials. JDDT [Internet]. 15May2020 [cited 1Jun.2020];10(3):227-30. Available from: http://jddtonline.info/index.php/jddt/article/view/4005