Formulation and Characterization of Moxifloxacin Nanoparticles with Ion Exchange Resin

  • Jigar Vyas Sigma Institute of Pharmacy, Vadodara-390019, Gujarat, India
  • Kapil Daxini Sigma Institute of Pharmacy, Vadodara-390019, Gujarat, India
  • Jitendra Patel Sigma Institute of Pharmacy, Vadodara-390019, Gujarat, India

Abstract

Moxifloxacin (MOX) is a fluoroquinolone anti-infective drug, indicated for the treatment of bacterial conjunctivitis. The drug is soluble in water but still produces low ocular bioavailability due to biological barriers and so it requires dosing for two/three times a day. The present study was designed to formulate, optimize and characterize polymeric Nanoparticles MOX for ocular administration using Ion Exchange Resin (IER). IER-nanoparticles were prepared by media milling method, formulation/process parameters were optimized based on evaluation parameters such as color of nanosuspension, sedimentation behaviour, particle size and zeta potential. MOX-IER nanosuspensions were prepared at different stoichiometric ratio of MOX and IER and characterized by entrapment efficiency, pH, particle size and zeta potential of nanosuspension. In vitro release study of optimized batch MNIER3 exhibited sustained release pattern which follows Korsmeyer-Peppas model with Fickian diffusion mechanism for drug release. Based on these results optimized batch of MOX-IER nanosuspension formulated in the laboratory was found suitable for ocular delivery.


Keywords: Moxifloxacin; nanoparticles, nanosuspension; media milling; stoichiometric ratio; sedimentation behaviour.

Keywords: nanoparticles, nanosuspension, Moxifloxacin

Downloads

Download data is not yet available.

Author Biographies

Jigar Vyas, Sigma Institute of Pharmacy, Vadodara-390019, Gujarat, India

Sigma Institute of Pharmacy, Vadodara-390019, Gujarat, India

Kapil Daxini, Sigma Institute of Pharmacy, Vadodara-390019, Gujarat, India

Sigma Institute of Pharmacy, Vadodara-390019, Gujarat, India

Jitendra Patel, Sigma Institute of Pharmacy, Vadodara-390019, Gujarat, India

Sigma Institute of Pharmacy, Vadodara-390019, Gujarat, India

References

1. Gumustas M, Sengel-Turk CT, Gumustas A, Ozkan SA, Uslu B, Effect of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems, Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics, 2017; 67–108
2. Azari A and Barney N, Conjunctivitis, The Journal of the American Medical Association, 2010; 310(16):1721
3. Tarabishy A, and Jeng BH, Bacterial conjunctivitis: A review for internists,Cleveland Clinic Journal of Medicine,2008; 75 (7):507–512.
4. Bae, K.E., Bacterial Conjunctivitis. DUR Capsules, West Verginia Department of Health and Human Resources, West Virginia, 2010; USA
5. Scoper SV, Review of third-and fourth-generation fluoroquinolones in ophthalmology: in-vitro and in-vivo efficacy, Advances in Therapy, 2008; 25(10): 979–994
6. Prescribing Information, Moxeza, NDA, Drugs@FDA: FDA, Approved Drug Products, 1999; 22-428 Maryland, USA, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/022428s009lbl.pdf
7. Prescribing Information, Vigamox, NDA 2, Drugs@FDA: FDA, Approved Drug Products, 2003; 21-598 Maryland, USA, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021598s022lbl.pdf
8. Reimondez-Troitiño S., Csaba N. Alonso M and Fuente, M.D.L., Nanotherapies for the treatment of ocular diseases, European Journal of Pharmaceutics and Biopharmaceutics, 2015; 95: 279–293
9. Yorio T. Clark, A.f and Wax M.B, Drug Delivery Systems in Ophthalmic applications, Ocular therapeutics: eye on new discoveries. Amsterdam: Academic, 2008; (2): 18-56
10. Cheng X, Developing organic and inorganic nanomedicine for cancer therapy. Journal of Drug Delivery and Therapeutics 2017; 7(2):1-4
11. Maurice D.M and Mishima, Ocular Pharmacokinetics. In: Sears M.L. (eds) Pharmacology of the Eye, Handbook of Experimental Pharmacology (Continuation of Handbuch der experimentellen Pharmakologie), 69, Springer, Berlin, Heidelberg, 1984
12. Imperiale J. Acosta, G. and Sosnik, A, Polymer-based carriers for ophthalmic drug delivery, Journal of Controlled Release, 2018; 288: 106-141
13. Sánchez-López E. Espina, M. Doktorovova S. Souto E. and García M, Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye – Part I – Barriers and determining factors in ocular delivery, European Journal of Pharmaceutics and Biopharmaceutics, 2017; 110: 70-75
14. Chetoni P. Burgalassi S, Monti D, Tampucci S, Tullio V Cuffini A, Muntoni E, Spagnolo R. Zara, G. and Cavalli R, Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits, European Journal of Pharmaceutics and Biopharmaceutics, 2016; 109: 214-223
15. Wood M, Conjunctivitis: Diagnosis and Management. Community Eye Quinteros D. Ferreira, L. Schaffazick S, Palma S, Allemandi D and Cruz L, Novel Polymeric Nanoparticles Intended for Ophthalmic Administration of Acetazolamide, Journal of Pharmaceutical Sciences, 2016 105(10): 3183-3190
16. Ibrahim M. Abd-Elgawad, A. Soliman O and Jablonski M, Stability and Ocular Pharmacokinetics of Celecoxib-Loaded Nanoparticles Topical Ophthalmic Formulations, Journal of Pharmaceutical Sciences, 2016; 105(12): 3691-3701
17. Sánchez-López. E. Espina, M. Doktorovova S. Souto E and García. M, Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye – Part I – Barriers and determining factors in ocular delivery, European Journal of Pharmaceutics and Biopharmaceutics, 2017; 110: 70-75
18. Chetoni P, Burgalassi S, Monti D, Tampucci S, Tullio V, Cuffini A, Muntoni E, Spagnolo. R, Zara. G and Cavalli. R, Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits, European Journal of Pharmaceutics and Biopharmaceutics, 2016;109: 214-223
19. Wood M., Conjunctivitis: Diagnosis and Management, Community Eye Health, 1999; 12-30
20. Quinteros. D. Ferreira, L. Schaffazick, S. Palma, S. Allemandi. D and Cruz L, Novel Polymeric Nanoparticles Intended for Ophthalmic Administration of Acetazolamide, Journal of Pharmaceutical Sciences, 2016; 105(10): 3183-3190
21. Ibrahim M. Abd-Elgawad, A. Soliman, O and Jablonski M, Stability and Ocular Pharmacokinetics of Celecoxib-Loaded Nanoparticles Topical Ophthalmic Formulations, Journal of Pharmaceutical Sciences, 2016; 105(12): 3691-3701
22. Kalam M and Alshamsan, A, Poly ( d , l -lactide-co-glycolide) nanoparticles for sustained release of tacrolimus in rabbit eyes, Biomedicine & Pharmacotherapy, 2017; 94: 402-411
23. Lee V.H. and Robinson J.R, Topical Ocular Drug Delivery: Recent Developments and Future Challenges, Journal of Ocular Pharmacology and Therapeutics, 1986; 2 (1): 67–108
24. Agban Y. Lian, J. Prabakar, S. Seyfoddin, A and Rupenthal I, Nanoparticle cross-linked collagen shields for sustained delivery of pilocarpine hydrochloride, International Journal of Pharmaceutics, 2016; 501(1-2): 96-101
25. Alvarez-Trabado J. Diebold, Y and Sanchez A, Designing lipid nanoparticles for topical ocular drug delivery, International Journal of Pharmaceutics, 532(1): 204-217
26. Liu T. Müller, R.H and Möschwitzer J.P, Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency, Drug Development and Industrial Pharmacy, 2018; 44 (2): 233–242
27. Luis de Redín, I. Boiero, C. Martínez-Ohárriz, M. Agüeros, M. Ramos, R. Peñuelas, I. Allemandi, D. Llabot J and Irache J, Human serum albumin nanoparticles for ocular delivery of bevacizumab, International Journal of Pharmaceutics, 2018; 541(1-2): 214-223
28. Fahmy H. Saad, E. Sabra, N. El-Gohary, A. Mohamed, F and Gaber M, Treatment merits of Latanoprost/Thymoquinone – Encapsulated liposome for glaucomatus rabbits, International Journal of Pharmaceutics, 2018; 548(1): 597-608
29. Campardelli. R. Trucillo, P and Reverchon E, Supercritical assisted process for the efficient production of liposomes containing antibiotics for ocular delivery, Journal of CO2 Utilization, 2018; 25: 235-241
30. Lidich N. Aserin, A and Garti N, Structural characteristics of oil-poor dilutable fish oil omega-3 microemulsions for ophthalmic applications, Journal of Colloid and Interface Science, 2016; 463: 83–92
31. Guo X. Chang, R.-K and Hussain M.A, Ion-exchange resins as drug delivery carriers, Journal of Pharmaceutical Sciences, 2009; 98 (11): 3886–3902
32. Jeong S.H. and Park K, Drug loading and release properties of ion-exchange resin complexes as a drug delivery matrix, International Journal of Pharmaceutics, 2008;361 (1-2): 26–32
33. Shang R. Liu, C. Quan, P. Zhao, H and Fang L, Effect of drug-ion exchange resin complex in betahistine hydrochloride orodispersible film on sustained release, taste masking and hygroscopicity reduction, International Journal of Pharmaceutics, 2018; 545 (1-2): 63–169
34. Rajesh A.M. and Popat, K.M, Taste masking of azithromycin by resin complex and sustained release through interpenetrating polymer network with functionalized biopolymers, Drug Development and Industrial Pharmacy, 2017; 43 (5): 732–741
35. Alayoubi A Daihom, B. Adhikari, H. Mishra, S. Helms, R and Almoazen H, Development of a taste-masked oral suspension of clindamycin HCl using ion exchange resin Amberlite IRP 69 for use in paediatrics, Drug Development and Industrial Pharmacy, 2016; 42 (10): 1579–1589
36. Kim J.-I., Cho S.-M, Cui J.-H, Cao Q.-R, Oh E and Lee B.-J, In vitro and in vivo correlation of disintegration and bitter taste masking using orally disintegrating tablet containing ion exchange resin-drug complex, International Journal of Pharmaceutics, 2013; 455 (1-2): 31–39
37. Shah R.B Tawakkul, M.A Sayeed, V.A and Khan M.A, Complexation between risperidone and amberlite resin by various methods of preparation and binding study, Drug Development and Industrial Pharmacy, 2009; 35 (12): 1409–1418
38. Pisal S Zainnuddin, R Nalawade, P Mahadik, K and Kadam S, Molecular properties of ciprofloxacin-indion 234 complexes, AAPS PharmSciTech, 2004; 5 (4): 84–91
39. Anand V Kandarapu, R. and Garg S, Ion-exchange resins: carrying drug delivery forward, Drug Discovery Today, 2001;6 (17): 905-914
40. Genari B Ferreira, M.B.C Medeiros, L.F de Freitas, J.S Cioato, S.G da Silva Torres, I.L Pohlmann, A.R. Guterres, S.S, Leitune, V.C.B Collares, F.C.M Samuel, S.M.W, Anti-inflammatory effect of an adhesive resin containing indomethacin-loaded nanocapsules, Archives of Oral Biology, 2017; 84: 106-111.
41. Priyadarshini B.M, Mitali K, Lu T.B, Handral H.K., Dubey N and Fawzy A.S, PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface, Dental Materials, 2017; 33 (7): 830–846
42. Qin F Zeng, L Zhu, Y Cao, J Wang, X and Liu W, Preparation and evaluation of a timolol maleate drug–resin ophthalmic suspension as a sustained-release, 2016; 25(9); 22-59
43. Prescribing Information, Betoptic S, NDA 19845/S-025, Drugs@FDA: FDA Approved Drug Products,1989; https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/019845s025lbl.pdf
44. Kortejärvi H Yliperttula, M Dressman, J Junginger, H Midha, K Shah, V and Barends D, Biowaiver monographs for immediate release solid oral dosage forms: Ranitidine hydrochloride, Journal of Pharmaceutical Sciences, 2005; 94 (8): 1617–1625
45. Kumar D. Worku, Z.A. Gao, Y Kamaraju, V.K Glennon, B Babu, R.P and Healy A.M, Comparison of wet milling and dry milling routes for ibuprofen pharmaceutical crystals and their impact on pharmaceutical and biopharmaceutical properties, Powder Technology, 2018; 330: 228–238
46. Medarević D, Djuriš J Ibrić, S Mitrić M and Kachrimanis K, Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling, International Journal of Pharmaceutics, 2018; 540 (1-2): 150–161
47. Kuroiwa Y, Higashi K Ueda, K Yamamoto, K and Moribe, K, Nano-scale and molecular-level understanding of wet-milled indomethacin/poloxamer 407 nanosuspension with TEM, suspended-state NMR, and Raman measurements, International Journal of Pharmaceutics, 2018; 537 (1-2): 30–39
48. Liu T Müller, R.H and Möschwitzer J.P, Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency, Drug Development and Industrial Pharmacy, 2018; 44 (2): 233–242
49. Toziopoulou. F. Malamatari, M. Nikolakakis, I and Kachrimanis K, Production of aprepitant nanocrystals by wet media milling and subsequent solidification, International Journal of Pharmaceutics, 2017; 533 (2): 324–334
50. Sawant K.K Patel, M.H and Patel K, Cefdinir nanosuspension for improved oral bioavailability by media milling technique: formulation, characterization and in vitro–in vivo evaluations, Drug Development and Industrial Pharmacy, 2016; 42 (5): 758–768
51. Nekkanti V Marwah, A and Pillai R, Media milling process optimization for manufacture of drug nanoparticles using design of experiments (DOE), Drug Development and Industrial Pharmacy, 2015; 41 (1): 124–130
52. Ali N Teixeira, J.A and Addali A, A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties, Journal of Nanomaterials, 2018; 1–33
53. Li X Zhu, D and Wang X, Evaluation on dispersion behavior of the aqueous copper nano-suspensions, Journal of Colloid and Interface Science, 2007; 310 (2): 456–463
54. Wang F, Chen L Zhang, D Jiang S, Shi K Huang, Y Li R, and Xu Q, Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma:In vitroandIn vivostudy, Journal of Drug Targeting, 2014; 22 (9): 849-858
55. Katiyar S Pandit, J Mondal, R.S. Mishra, A.K. Chuttani, K Aqil M, Ali A and Sultana Y, In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma, Carbohydrate Polymers, 2014; 102: 117–124.
56. Wang F, Chen L. Zhang, D Jiang S, Shi K Huang, Y Li R, and Xu, Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma:In vitroandIn vivostudy, Journal of Drug Targeting, 2014; 22 (9): 849-858
57. Yin J Xiang, C and Lu G, Cationic lipid emulsions as potential bioadhesive carriers for ophthalmic delivery of palmatine, Journal of Microencapsulation, 2016; 33 (8): 718-724
58. Tarkase K.N, Admane S.S, Sonkhede N.G, Shejwal, S.R, Development and Validation of UV-Spectrophotometric Methods for Determination of Moxifloxacin HCL in Bulk and Pharmaceutical Formulations, Der Pharma Chemica, 2012; 4 (3): 1180-1185.
59. Liz-Marzan M, Nanometals: formation and color, Materials today,2004; 26-31
60. Gueli A, Bonfiglio G, Pasquale S and Troja S, Effect of particle size on pigments colour, Color Research & Application, 2016; 42 (2): 236-243
61. Simonoska Crcarevska, M Geskovski, N Calis, S Dimchevska, S Kuzmanovska, S Petruševski, G Kajdžanoska, M Ugarkovic S, and Goracinova K, Definition of formulation design space, in vitro bioactivity and in vivo biodistribution for hydrophilic drug loaded PLGA/PEO–PPO–PEO nanoparticles using OFAT experiments, European Journal of Pharmaceutical Sciences, 2013; 49 (1): 65-80.
62. Shah D Murdande S and Dave R, A Review: Pharmaceutical and Pharmacokinetic Aspect of Nanocrystalline Suspensions, Journal of Pharmaceutical Sciences, 2016; 105(1): 10-24.
63. Li. M. Alvarez P and Bilgili E, A microhydrodynamic rationale for selection of bead size in preparation of drug nanosuspensions via wet stirred media milling, International Journal of Pharmaceutics, 2017; 524(1-2): 178-192
64. Sneeringer J, and Giacobelli RJ, Theory and Practice of Nanoparticle Milling, CMC do Brasil, Custom Milling & Consulting, Inc., ABRAFATI (Portuguese for Brazilian Coatings Manufacturers Association, São Paulo, BRAZIL,2017
65. Rabinow BE, Nanosuspensions in drug delivery, Nature Reviews Drug Discovery, 2004; 3 (9): 785–796.
66. Quinteros D, Ferreira L, Schaffazick S, Palma S, Allemandi D and Cruz L, Novel Polymeric Nanoparticles Intended for Ophthalmic Administration of Acetazolamide, Journal of Pharmaceutical Sciences, 2016; 105(10): 3183-3190
67. Singh J Chhabra, G and Pathak. K, Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulatein situgel for sustained ocular delivery:in vitro. ex vivoevaluation and pharmacodynamic study, Drug Development and Industrial Pharmacy, 2013; 40(9): 1223-1232
68. Gouda. R.Baishya. H and Qing Z, Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets, Journal of Developing Drugs, 2017; 06(02): 1-8
69. Qin F. Zeng, L. Zhu, Y. Cao, J. Wang X and Liu. W, Preparation and evaluation of a timolol maleate drug–resin ophthalmic suspension as a sustained-release formulation in vitro and in vivo, Drug Development and Industrial Pharmacy, 2015; 42(4): 535-545
Statistics
19 Views | 49 Downloads
How to Cite
1.
Vyas J, Daxini K, Patel J. Formulation and Characterization of Moxifloxacin Nanoparticles with Ion Exchange Resin. JDDT [Internet]. 15Feb.2020 [cited 31May2020];10(1-s):51-. Available from: http://jddtonline.info/index.php/jddt/article/view/3853