Targeted Based Drug Delivery System for Colon Cancer

  • Veerpal Kaur Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
  • Amandeep Singh Amandeep Singh Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
  • Kirandeep Kaur Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
  • Goutam Rath Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar-751003, Odisha, India


Regardless of so many advancements in the treatment, colon cancer still stands third in cancer-related deaths worldwide. Toxicity associated with conventional drugs is one of the major problems associated with chemotherapy. Targeted delivery works by concentrating the medication in the tissues of interest and reducing the concentration in remaining tissues. This delivery system helps the drug molecule to reach preferably to the desired site. The targeting will lower the requirement of a higher dose of the drug thus reducing the dosage frequency. The present review focuses on the various parameters of targeted drug delivery including the criteria for selection of drug and factors affecting the targeted drug delivery and also includes the brief discussion about different targeted drug deliveries for colon cancer therapies.

Keywords: colon cancer, targeted drug delivery, chemotherapies


Download data is not yet available.


1. Kapur BN. The fruits of long endeavors–200 years of oncology. Medical journal, Armed Forces India. 2014;70(2):95.
2. Sudhakar A. History of cancer, ancient and modern treatment methods. Journal of cancer science & therapy. 2009;1(2):1.
3. Bonica JJ, Ekstrom JL. SYSTEMIC OPIOIDS FOR THE MANAGEMENT OF CANCER PAIN-AN UPDATED REVIEW. Advances in pain research and therapy. 1990;14:425-46.
4. Rao DN, Ganesh B. Estimate of cancer incidence in India in 1991. Indian journal of cancer. 1998;35(1):10-8.
5. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Molecular cell biology 4th edition. National Center for Biotechnology Information, Bookshelf. 2000.
6. Macdonald F, Ford C, Casson A. Molecular biology of cancer. Taylor & Francis; 2004.
7. Agrawal D. Diagnosis and treatment of colorectal cancer: a review. Journal of Drug Delivery and Therapeutics. 2012;2(3).
8. Yang IP, Tsai HL, Miao ZF, Huang CW, Kuo CH, Wu JY, Wang WM, Juo SH, Wang JY. Development of a deregulating microRNA panel for the detection of early relapse in postoperative colorectal cancer patients. Journal of translational medicine. 2016;14(1):108.
9. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clinics in colon and rectal surgery. 2009;22(4):191.
10. Kinzler KW, Vogelstein B. Colorectal tumors. In: Vogelstein B, Kinzler KW, eds. The genetic basis of human cancer. 2nd ed. New York: McGraw-Hill, 2002:583-612.
11. Fearon ER, Bommer GT. Molecular biology of colorectal cancer. In: DeVita VT Jr, Lawrence TS, Rosenberg SA, eds. DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology. Vol. 1. Philadelphia: Lippincott Williams & Wilkins, 2008:1218-31.
12. Goss KH, Groden J. Biology of the adenomatous polyposis coli tumor suppressor. J Clin Oncol 2000;18:1967-79.
13. Bilbao-Sieyro C, Ramírez-Moreno R, Rodríguez-González G, Falcón O, León L, Torres S, Fernández L, Alonso S, Díaz-Chico N, Perucho M, Díaz-Chico JC. Microsatellite instability and ploidy status define three categories with distinctive prognostic impact in endometrioid endometrial cancer. Oncotarget. 2014;5(15):6206.
14. Chakravarthi S, Krishnan B, Madhavan M. Apoptosis and expression of p53 in colorectal neoplasms. Indian J Med Res. 1999;86(7):95-102.
15. Khalek FJ, Gallicano GI, Mishra L. Colon cancer stem cells. Gastrointestinal cancer research: GCR. 2010(Suppl 1):S16.
16. Korinek V, Barker N, Morin PJ, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 1997;275:1784-7.
17. Markowitz SD, Bertagnolli MM. Molecular basis of colorectal cancer. New England Journal of Medicine. 2009;361(25):2449-60.
18. Tariq K, Ghias K. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer biology & medicine. 2016;13(1):120.
19. Pancione M, Remo A, Colantuoni V. Genetic and epigenetic events generate multiple pathways in colorectal cancer progression. Pathology research international. 2012;2012.
20. Ewing I, Hurley JJ, Josephides E, Millar A. The molecular genetics of colorectal cancer. Frontline gastroenterology. 2014;5(1):26-30.
21. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Smits AM, Bos JL. Genetic alterations during colorectal-tumor development. New England Journal of Medicine. 1988;319(9):525-32.
22. De Rosa M, Pace U, Rega D, Costabile V, Duraturo F, Izzo P, Delrio P. Genetics, diagnosis and management of colorectal cancer. Oncology reports. 2015;34(3):1087-96.
23. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759-67.
24. Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, Garner RC, Steele RJ, Wolf CR. Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proceedings of the National Academy of Sciences. 2002;99(14):9433-8.
25. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, Koh H. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature genetics. 2006;38(7):787.
26. East JE, Saunders BP, Jass JR. Sporadic and syndromic hyperplastic polyps and serrated adenomas of the colon: classification, molecular genetics, natural history, and clinical management. Gastroenterology Clinics. 2008;37(1):25-46.
27. Sameer AS, Nissar S, Fatima K. Mismatch repair pathway: molecules, functions, and role in colorectal carcinogenesis. European Journal of Cancer Prevention. 2014;23(4):246-57.
28. Lynch HT, De la Chapelle A. Hereditary colorectal cancer. New England Journal of Medicine. 2003;348(10):919-32.
29. Lao VV, Grady WM. Epigenetics and colorectal cancer. Nature Reviews Gastroenterology and Hepatology. 2011;8(12):686.
30. Burt RW. Colon cancer screening. Gastroenterology. 2000;119(3):837-53.
31. Jasperson KW, Tuohy TM, Neklason DW, Burt RW. Hereditary and familial colon cancer. Gastroenterology. 2010;138(6):2044-58.
32. Duraturo F, Liccardo R, Cavallo A, Rosa MD, Grosso M, Izzo P. Association of low‐risk MSH3 and MSH2 variant alleles with Lynch syndrome: Probability of synergistic effects. International journal of cancer. 2011;129(7):1643-50.
33. Rustgi AK. The genetics of hereditary colon cancer. Genes & development. 2007;21(20):2525-38.
34. Ehrlich PR, Marquardt M, Dale HH. The collected papers of Paul Ehrlich: in four volumes including a complete bibliography.. 1. Histology, biochemistry and pathology. Pergamon Press; 1956.
35. Fahmy TM, Fong PM, Goyal A, Saltzman WM. Targeted for drug delivery. Materials Today. 2005;8(8):18-26.
36. Manish G, Vimukta S. Targeted drug delivery system: a review. Res J Chem Sci. 2011;1(2):135-8.
37. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600-3.
38. Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N. Carbohydrate‐mediated cell adhesion in cancer metastasis and angiogenesis. Cancer science. 2004;95(5):377-84.
39. Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs–a review of drug nanocrystal technology and lipid nanoparticles. Journal of biotechnology. 2004;113(1-3):151-70.
40. Rani K, Paliwal S. A review on targeted drug delivery: Its entire focus on advanced therapeutics and diagnostics. Sch. J. App. Med. Sci. 2014;2(1C):328-31.
41. Philip AK, Dabas S, Pathak K. Optimized prodrug approach: A means for achieving enhanced anti-inflammatory potential in experimentally induced colitis. Journal of drug targeting. 2009;17(3):235-41.
42. Odeku OA, Fell JT. In‐vitro evaluation of khaya and albizia gums as compression coatings for drug targeting to the colon. Journal of Pharmacy and Pharmacology. 2005;57(2):163-8.
43. Chourasia MK, Jain SK. Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Pharm Sci. 2003;6(1):33-66.
44. Basit A, Bloor J. Prespectives on colonic drug delivery, Business briefing. Pharmaceutical Technology. 2003:185-90.
45. Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman medical journal. 2010;25(2):79.
46. Sreelatha D, Brahma CK. Colon targeted drug delivery–a review on primary and novel approaches. Journal of Global Trends in Pharmaceutical Sciences. 2013;4(3):1174-83.
47. Watts PJ, Lllum L. Colonic drug delivery. Drug development and industrial pharmacy. 1997;23(9):893-913.
48. Vyas SP, Khar RK. Controlled drug delivery concepts and advances. vallabh prakashan. 2002;1:411-47.
49. Antonin KH, Rak R, Bieck PR, Preiss R, Schenker U, Hastewell J, Fox R, Mackay M. The absorption of human calcitonin from the transverse colon of man. International journal of pharmaceutics. 1996;130(1):33-9.
50. Prescott LF. Novel drug delivery and its therapeutic application. John Wiley & Sons; 1989.
51. Mackay M, Tomlinson E. Colonic delivery of therapeutic peptides and proteins. Drugs and the pharmaceutical sciences. 1993;60:159-76.
52. Challa T, Vynala V, Allam KV. Colon specific drug delivery systems: A review on primary and novel approaches. International Journal of Pharmaceutical Sciences Review and Research. 2011;7(2):171-81.
53. Reddy RD, Malleswari K, Prasad G, Pavani G. Colon targeted drug delivery system: a review. International Journal of Pharmaceutical Sciences and Research. 2013;4(1):42.
54. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale research letters. 2013;8(1):102.
55. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale research letters. 2013;8(1):102.
56. Pereira S, Egbu R, Jannati G. Docetaxel-loaded liposomes: The effect of lipid composition and purification on drug encapsulation and in vitro toxicity. International journal of pharmaceutics. 2016;514(1):150-9.
57. Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine. 2013;8(9):1509-28.
58. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Molecular cancer. 2015;14(1):48.
59. Baigi MG, Brault L, Néguesque A, Beley M, El Hilali R, Gaüzère F, Bagrel D. Apoptosis/necrosis switch in two different cancer cell lines: influence of benzoquinone-and hydrogen peroxide-induced oxidative stress intensity, and glutathione. Toxicology in Vitro. 2008;22(6):1547-54.
60. Higuchi M, Honda T, Proske RJ, Yeh ET. Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene. 1998;17(21):2753.
61. Zhang N, Yin Y, Xu SJ, Chen WS. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules. 2008;13(8):1551-69.
62. Yadav AK, Agarwal A, Rai G, Mishra P, Jain S, Mishra AK, Agrawal H, Agrawal GP. Development and characterization of hyaluronic acid decorated PLGA nanoparticles for delivery of 5-fluorouracil. Drug delivery. 2010;17(8):561-72.
63. de Mattos AC, Altmeyer C, Tominaga TT, Khalil NM, Mainardes RM. Polymeric nanoparticles for oral delivery of 5-fluorouracil: Formulation optimization, cytotoxicity assay and pre-clinical pharmacokinetics study. European Journal of Pharmaceutical Sciences. 2018;84:83-91.
64. Sharma A, Kaur A, Jain UK, Chandra R, Madan J. Stealth recombinant human serum albumin nanoparticles conjugating 5-fluorouracil augmented drug delivery and cytotoxicity in human colon cancer, HT-29 cells. Colloids and Surfaces B: Biointerfaces. 2017;155:200-8.
65. Diasio RB, Beavers TL, Carpenter JT. Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. The Journal of clinical investigation. 1988;81(1):47-51.
66. Pillai G, Ceballos-Coronel ML. Science and technology of the emerging nanomedicines in cancer therapy: A primer for physicians and pharmacists. SAGE open medicine. 2013;1:2050312113513759.
67. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release. 2000;65(1-2):271-84.
68. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Advanced drug delivery reviews. 2011;63(3):131-5.
69. Schiffelers RM, Fens MH, Janssen AP, Molema G, Storm G. Liposomal targeting of angiogenic vasculature. Current drug delivery. 2005;2(4):363-8.
70. Sylvester B, Porfire A, Muntean DM, Vlase L, Lupuţ L, Licarete E, Sesarman A, Alupei MC, Banciu M, Achim M, Tomuţă I. Optimization of prednisolone-loaded long-circulating liposomes via application of Quality by Design (QbD) approach. Journal of liposome research. 2018;28(1):49-61.
71. Patras L, Sylvester B, Luput L, Sesarman A, Licarete E, Porfire A, Muntean D, Drotar DM, Rusu AD, Nagy AL, Catoi C. Liposomal prednisolone phosphate potentiates the antitumor activity of liposomal 5-fluorouracil in C26 murine colon carcinoma in vivo. Cancer biology & therapy. 2017;18(8):616-26.
72. Elmeshad AN, Mortazavi SM, Mozafari MR. Formulation and characterization of nanoliposomal 5-fluorouracil for cancer nanotherapy. Journal of liposome research. 2014;24(1):1-9.
73. Waheed A, Bibi Y, Nisa S, Chaudhary FM, Sahreen S, Zia M. Inhibition of human breast and colorectal cancer cells by Viburnum foetens L. extracts in vitro. Asian Pacific journal of tropical disease. 2013;3(1):32.
74. Chan KK, Oza AM, Siu LL. The statins as anticancer agents. Clinical cancer research. 2003 Jan 1;9(1):10-9.
75. Licarete E, Sesarman A, Banciu M. Exploitation of pleiotropic actions of statins by using tumour-targeted delivery systems. Journal of microencapsulation. 2015;32(7):619-31.
76. Luput L, Licarete E, Drotar DM, Nagy AL, Sesarman A, Patras L, Rauca VF, Porfire A, Muntean D, Achim M, Tomuta I. In Vivo Double Targeting of C26 Colon Carcinoma Cells and Microenvironmental Protumor Processes Using Liposomal Simvastatin. Journal of Cancer. 2018;9(2):440.
77. Lee JK, Chan AT. Molecular prognostic and predictive markers in colorectal cancer: current status. Current colorectal cancer reports. 2011;7(2):136-44.
78. Seow HF, Yip WK, Fifis T. Advances in targeted and immunobased therapies for colorectal cancer in the genomic era. OncoTargets and therapy. 2016;9:1899.
79. Prenen H, Vecchione L, Van Cutsem E. Role of targeted agents in metastatic colorectal cancer. Targeted oncology. 2013;8(2):83-96.
80. Bijnsdorp IV, Peters GJ, Temmink OH, Fukushima M, Kruyt FA. Differential activation of cell death and autophagy results in an increased cytotoxic potential for trifluorothymidine compared to 5‐fluorouracil in colon cancer cells. International journal of cancer. 2010;126(10):2457-68.
81. Blocker SJ, Douglas KA, Polin LA, Lee H, Hendriks BS, Lalo E, Chen W, Shields AF. Liposomal 64Cu-PET Imaging of Anti-VEGF Drug Effects on Liposomal Delivery to Colon Cancer Xenografts. Theranostics. 2017;7(17):4229.
82. Kothawade PD, Gangurde HH, Surawase RK, Wagh MA, Tamizharasi S. Conventional and novel approaches for colon specific drug delivery.
83. Nair L, Jagadeeshan S, Nair SA, Kumar GV. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. International journal of nanomedicine. 2011;6:1685.
84. Chen Y, Liu J, Angelov B, Drechsler M, Garamus VM, Willumeit-Römer R, Zou A. Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting. Colloids and Surfaces B: Biointerfaces. 2016;140:74-82.
85. Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine. 2013;8(9):1509-28.
86. Le VM, Wang JJ, Yuan M, Yin GF, Zheng YH, Shi WB, Lang MD, Xu LM, Liu JW. An investigation of antitumor efficiency of novel sustained and targeted 5-fluorouracil nanoparticles. European journal of medicinal chemistry. 2015;92:882-9.
87. Varshosaz J, Hassanzadeh F, Sadeghi-Aliabadi H, Firozian F. Uptake of etoposide in CT-26 cells of colorectal cancer using folate targeted dextran stearate polymeric micelles. BioMed research international. 2014;2014.
88. Moghimipour E, Rezaei M, Ramezani Z, Kouchak M, Amini M, Angali KA, Dorkoosh FA, Handali S. Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. European Journal of Pharmaceutical Sciences. 2018;114:166-74.
89. Abd-Rabou AA, Shalby AB, Ahmed HH. Selenium Nanoparticles Induce the Chemo-Sensitivity of Fluorouracil Nanoparticles in Breast and Colon Cancer Cells. Biological trace element research. 2018:1-2.
90. Sharma A, Kim EJ, Shi H, Lee JY, Chung BG, Kim JS. Development of a theranostic prodrug for colon cancer therapy by combining ligand-targeted delivery and enzyme-stimulated activation. Biomaterials. 2018;155:145-51.
91. Grifantini R, Taranta M, Gherardini L, Naldi I, Parri M, Grandi A, Giannetti A, Tombelli S, Lucarini G, Ricotti L, Campagnoli S. Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer. Journal of Controlled Release. 2018.
92. Kumar SU, Gopinath P, Negi YS. Synthesis and bio-evaluation of xylan-5-fluorouracil-1-acetic acid conjugates as prodrugs for colon cancer treatment. Carbohydrate polymers. 2017;157:1442-50.
30 Views | 33 Downloads
How to Cite
Kaur V, Amandeep Singh AS, Kaur K, Rath G. Targeted Based Drug Delivery System for Colon Cancer. JDDT [Internet]. 15Jan.2020 [cited 29Mar.2020];10(1):111-22. Available from:

Most read articles by the same author(s)