Tirosyne Kinase Inhibithors (TKIs) in the Treatment of Non –Small Cell Lung Cancer (NSCLC), Practical Pharmacological Aspects

  • Alexandru C. Grigorescu The Oncological Institute of Bucharest, 252 Sos. Fundeni, Bucuresti, Romania
  • Laura Mihaela Teodorescu V. Babes Diagnostic and Treatment Center, 281 Sos M. Bravu, 143308 Bucharest, Romania

Abstract

Tyrosine Kinase Inhibitors are new drugs developed in the last decade. For Non-Small Cell Lung Cancer this drug brought more hope for patients with this disease. Also TKIs are better tolerated then chemotherapy. The efficacy of TKIs is dependent of the presence of Epidermal Grows Factor Receptor gene mutation. This mutation account for about 9% of patients with lung cancer in Europe. This short review try to give the minimal knowledge to clinicians, especially medical oncologists, about mechanism of action, pharmacokinetics of TKIs used in the treatment NSCLC.

Keywords: Tyrosine Kinase Inhibitors (TKI); Non -Small Cell Lung Cancer; Pharmacokinetics aspects

Keywords: Tyrosine Kinase Inhibitors, Non -Small Cell Lung Cancer, Pharmacokinetics aspects

Downloads

Download data is not yet available.

References

1.https://www.wcrf.org/dietandcancer/cancer-trends/lung-cancer-statistics
2. https://en.wikipedia.org/wiki/Tyrosine_kinase_inhibitor
3. https://www.who.int/cancer/country.../rou_en.pdf
4. Ciardiello, F. and Tortora, G. EGFR antagonists in cancer treatment. N Engl J Med. 2008; 358: 1160–1174
5.https://www.google.com/search?q=tki+pharmacology+chemical+formula&tbm=isch&source=univ&sa=X&ved=2ahUKEwiMpb7Fj4fkAhUDlYsKHbW-DxkQsAR6BAgJEAE&biw=1138&bih=512
6. Foluso Ogunleye, MD; Mohammed Ibrahim, MD; Michael Stender, MD; Gregory Kalemkerian, MD; Ishmael Jaiyesimi, Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Advanced Non-Small Cell Lung Cancer A paradigm shift in stage IV non-small cell lung cancer treatment
https://www.gotoper.com/publications/ajho/2015/2015jan/epidermal-growth-factor-receptor-tyrosine-kinase-inhibitors-in-advanced-non-small-cell-lung-cancer
[7] Kitagawa D, Yokota K, Gouda M, et al. Activity-based kinase profiling ofapproved tyrosine kinase inhibitors. Genes Cells 2013;18:110–22.
[8] Li D, Ambrogio L, Shimamura T, et al. BIBW2992, an irreversible EGFR/HER2inhibitor highly effective in preclinical lung cancer models. Oncogene2008;27:4702–11.
[9] Solca F, Dahl G, Zoephel A, et al. Target binding properties and cellular activityof afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol ExpTher 2012;343:342–50.
[10]Engelman JA, Zejnullahu K, Gale CM, et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2mutations that are resistant to gefitinib. Cancer Res 2007;67:11924–32.
11. Solange Petersa, Stefan Zimmermanna, Alex A. Adjeib, Oral epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer: comparative pharmacokinetics and drug-drug interactions. Cancer Treat Rev. 2014 Sep;40(8):917-26. doi: 10.1016/j.ctrv.2014.06.010.
12. Niels Eckstein, Lea Röper, Bodo Haas, Henrike Potthast, Ulrike Hermes, Christoph Unkrig,1 Frauke Naumann-Winter,1 and Harald Enzmann1, Clinical pharmacology of tyrosine kinase inhibitors becoming generic drugs: the regulatory perspective, doi: 10.1186/1756-9966-33-15, J Exp Clin Cancer Res. 2014; 33(1): 15.
13. Swaisland H, Laight A, Stafford L, et al. Pharmacokinetics and tolerability of the orally active selective epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in healthy volunteers, Clin Pharmacokinet, 40 (2001), 297-306
14. Swaisland HC, Smith RP, Laight A, et al. Single-dose clinical pharmacokinetic studies of European Medicines Agency. Iressa (gefitinib) Assessment Report, July 2009. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/001016/WC500036361.pdf 20 02 2014.
15. Frohna P, Lu J, Eppler S, et al.Evaluation of the absolute oral bioavailability and bioequivalence of erlotinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in a randomized, crossover study in healthy subjects,J Clin Pharmacol, 46 (2006), pp. 282-290
16 Boehringer Ingelheim. Gilotrif [prescribing information] (2014) Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT. http://www.gilotrif.com/. 17 05 2014.
17. Giri N, LaBadie RR, Liang Y, et al. Absolute bioavailability of dacomitinib (PF-00299804): Comparison of oral and intravenous administration in healthy volunteers. Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5–9; San Diego, CA. Philadelphia (PA): Abstract CT208.
18. Jänne PA, Boss DS, Camidge DR, et al. Phase I dose-escalation study of the pan-HER inhibitor, PF299804, in patients with advanced malignant solid tumors, Clin Cancer Res, 17 (2011), 1131-1139
19. Ruiz-Garcia A, Masters JC, LaBadie RR, et al.Effect of food and antacid treatment on bioavailability of 45 mg tablet of dacomitinib relative to dacomitinib administration under fasted conditions (abstract PII-007),Clin Pharmacol Ther, 95 (2014), S63
20. European Medicines Agency. Giotrif. Summary of Product Characteristics, 16 October 2013. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-Product_Information/human/002280/WC500152392.pdf. 20 02 2014].
21. Bello, C.L., Smith, E., Ruiz-Garcia, A. et al. A phase I, open-label, mass balance study of [14C] dacomitinib (PF-00299804) in healthy male volunteers. Cancer Chemother Pharmacol. 2013; 72: 379–385
22.Lu, J.F., Eppler, S.M., Wolf, J. et al. Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther. 2006; 80: 136–145|
24.Schnell D, Buschke S, Fuchs H, et al. Pharmacokinetics of afatinib in subjects with mild or moderate hepatic impairment. Cancer Chemother Pharmacol 2014;Jun 7. [Epub ahead of print].
25. D. McKillop, A.D. McCormick, A. Millar, et al.Cytochrome P450-dependent metabolism of gefitinib Xenobiotica, 35 (2005), 39-50
26. H.C. Swaisland, R.P. Smith, A. Laight, et al.Single-dose clinical pharmacokinetic studies of gefitinib, Clin Pharmacokinet, 44 (2005),1165-1177
27. J. Ling, K.A. Johnson, Z. Miao, et al.Metabolism and excretion of erlotinib, a small molecule inhibitor of epidermal growth factor receptor tyrosine kinase, in healthy male volunteers Drug Metab Dispos, 34 (2006),420-426
28. Li J, Zhao M, He P, Hidalgo M, Baker SD, Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes, Clin Cancer Res, 13 (2007) 3731-3737
29. Hamilton M, Wolf JL, Rusk J, et al.Effects of smoking on the pharmacokinetics of erlotinib Clin Cancer Res, 12 (2006), 2166-2171
30. Bello CL, Smith E, Ruiz-Garcia A, et al.A phase I, open-label, mass balance study of [14C] dacomitinib (PF-00299804) in healthy male volunteers Cancer Chemother Pharmacol, 72 (2013),379-385
31. Stopfer P, Marzin K, Narjes H, et al.Afatinib pharmacokinetics and metabolism after oral administration to healthy male volunteers Cancer Chemother Pharmacol, 69 (2012), pp. 1051-1061
32. Grande E, Harvey RD, You B, Batlle JF, Galbraith H, Sarantopoulos J, Ramalingam SS1, Mann H, So K, Johnson M, Vishwanathan K. Pharmacokinetic Study of Osimertinib in Cancer Patients with Mild or Moderate Hepatic Impairment. J Pharmacol Exp Ther. 2019 May;369(2):291-299. doi: 10.1124/jpet.118.255919. Epub 2019 Mar 14.
33.https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208065s008lbl.pdf
34. Kris MG, Camidge DR, Giaccone G, et al. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann Oncol 2015;26:1421-7. 10.1093/annonc/mdv186
35. De Grève J, Moran T, Graas MP, et al. Phase II study of afatinib, an irreversible ErbB family blocker, in demographically and genotypically defined lung adenocarcinoma. Lung Cancer 2015;88:63-9. 10.1016/j.lungcan.2015.01.013
36. De Grève J, Teugels E, Geers C, et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer 2012;76:123-7. 10.1016/j.lungcan.2012.01.008
37. Park K, Tan EH, O’Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase IIB, open-label, randomised controlled trial. Lancet Oncol 2016;17:577-89. 10.1016/S1470-2045(16)30033-X
38. Wu YL, Cheng Y, Zhou X, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol 2017;18:1454-66. 10.1016/S1470-2045(17)30608-3
39. Cross DA, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014;4:1046-61. 10.1158/2159-8290.CD-14-0337
40.https://www.astrazeneca.com/media-centre/press-releases/2019/tagrisso-significantly-improves-overall-survival-in-the-phase-iii-flaura-trial-for-1st-line-egfr-mutated-non-small-cell-lung-cancer-09082019.html
Statistics
247 Views | 338 Downloads
How to Cite
1.
Grigorescu AC, Teodorescu LM. Tirosyne Kinase Inhibithors (TKIs) in the Treatment of Non –Small Cell Lung Cancer (NSCLC), Practical Pharmacological Aspects. JDDT [Internet]. 15Jan.2020 [cited 26Jan.2022];10(1):135-8. Available from: http://jddtonline.info/index.php/jddt/article/view/3830