Dendrimers as a Novel Carrier in Anti-HIV Therapy

  • P. Arshad
  • P. Dineshkumar
  • K. Naga Jyothi
  • M. Karthik
  • Govindaraj Saravanan

Abstract

The present treatments for HIV transfection include chemical agents and gene therapies. Although many chemical drugs, peptides and genes have been developed for HIV inhibition, a variety of non-ignorable drawbacks limited the efficiency of these materials. Dendrimers has ability to carrier of antiviral drugs due to some properties such as mono-dispersity, defined structure, amenability for functionalization using diverse ligands and its low-nanometer size. In this review, we discuss the application of dendrimers as both therapeutic agents and non-viral vectors of chemical agents and genes for HIV treatment. In one way, dendrimers with functional end groups combine with the gp120 of HIV and CD4 molecule of host cell to suppress the attachment of HIV to the host cell. In another way, dendrimers are also able to transfer chemical drugs and genes into the host cells, which increase the anti-HIV activity of these materials. Dendrimers as therapeutic tools provide a potential treatment for HIV infection.


Keywords: Dendrimers, Drug release, Drug targeting, gp120, CD4, Antiviral drug

Downloads

Download data is not yet available.

Author Biographies

P. Arshad

Research Center in Pharmaceutics, Hindu College of Pharmacy, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

P. Dineshkumar

Research Center in Pharmaceutics, Hindu College of Pharmacy, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

K. Naga Jyothi

Research Center in Pharmaceutics, Hindu College of Pharmacy, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

M. Karthik

Research Center in Pharmaceutics, Hindu College of Pharmacy, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

Govindaraj Saravanan

Department of Pharmaceutical Chemistry, MNR College of Pharmacy, Fasalwadi, Sangareddy-502294, Telangana, India

References

1. Matthews, O. A., Shipway, A. N. & Stoddart, J. F. (1998). Dendrimers-branching out from curiosities into new technologies. Progress in Polymeric Science 23, 1–56.
2. De Clercq, E. Antiviral therapy for human immunodeficiency virus infections. Clin. Microbiol. Rev. 1995, 8, 200–239.
3. Fréchet, J.M.; Tomalia, D.A. Dendrimers and Other Dendritic Polymers; Wiley: New York, NY, USA, 2001.
4. Jiang, Y.-H.; Emau, P.; Cairns, J.S.; Flanary, L.; Morton, W.R.; McCarthy, T.D.; Tsai, C.-C. SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89. 6P in macaques. AIDS Res. Hum. Retroviruses 2005, 21, 207–213.
5. Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications—Reflections on the field. Adv. Drug Deliv. Rev. 2005, 57, 2106–2129.
6. D'Emanuele, A.; Attwood, D. Dendrimer-Drug interactions. Adv. Drug. Deliv. Rev. 2005, 57, 2147–2162.
7. Grant RM, Hamer D, Hope T, et al. Whither or wither microbicides? Science. 2008;321(5888):532–534.
8. Vanpouille C, Arakelyan A, Margolis L. Microbicides: still a long road to success. Trends Microbiol. 2012;20(8):369–375.
9. Fichorova RN, Tucker LD, Anderson DJ. The molecular basis of nonoxynol9-induced vaginal inflammation and its possible relevance to human immunodeficiency virus type 1 transmission. J Infect Dis. 2001;184(4): 418–428.
10. McCormack S, Ramjee G, Kamali A, et al. PRO2000 vaginal gel for prevention of HIV-1 infection (Microbicides Development Programme 301): a phase 3, randomised, double-blind, parallel-group trial. Lancet. 2010;376(9749):1329–1337.
11. Tsvetkov DE et al. Neoglycoconjugates based on dendrimeric poly(aminoamides). Bioorg Khim 2002; 28: 518–534.
12. Roy R. Synthesis and some applications of chemically defined multivalent glycoconjugates. Curr Opin Struct Biol 1996; 6: 692–702.
13. Matsuoka K et al. Sugar chain-containing carbosilane dendrimer compounds, process for producing the same verotoxin neutralizers and antiviral agents. US Patent 2004/0040554, 2004.
14. Kensinger RD et al. Novel polysulfated galactose-derivatized dendrimers as binding antagonists of human immunodeficiency virus type 1 infection. Antimicrob Agents Chemother 2004; 48: 1614–1623.
15. Gong Y et al. Evidence of dual sites of action of dendrimers: SPL-2999 inhibits both virus entry and late stages of herpes simplex virus replication. Antiviral Res 2002; 55: 319–329.
16. McCarthy TD et al. Dendrimer as drug: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol Pharm 2005; 2: 313–318.
17. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60. • A comprehensive review on liposomal brain drug delivery. [PubMed] [Google Scholar]
18. P. Dinesh Kumar, P.Vijayaraj Kumar, T. Panneer Selvam and K.R.S. Sambasiva Rao “Prolonged Drug Delivery System of PEGylated PAMAM Dendrimers with a Anti-HIV Drug” Research in Pharmacy 2013 ,3(2): 08-17.
19. P. Dinesh Kumar, P.Vijayaraj Kumar, T. Panneer Selvam and K.R.S. Sambasiva Rao, “PEG Conjugated PAMAM Dendrimers with a AntiHIV Drug Stavudine for prolong release”, Research in Biotechnology, 2013,4(2): 10-18.
20. Suneela Pyreddy, Pandurangan Dinesh Kumar, Palanirajan Vijayaraj Kumar, “Polyethylene glycolated PAMAM dendrimers-Efavirenz conjugates”, International Journal of Pharmaceutical Investigation , 2014 , 4 (1).
21. Bezous ka, K. Design, functional evaluation and biomedical applications of carbohydrate dendrimers (glycodendrimers). Reviews in Molecular Biotechnology ,(2002), 90, 269–90.
22. Nagahori, N., Lee, R. T., Nishimura, Inhibition of adhesion of type 1 fimbriated Escherichia coli to highly mannosylated ligands. ChemBioChem, (2002),3, 836–44.
23. Reuter, J. D., Myc, A., Hayes, Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers. Bioconjugate Chemistry (1999) ,10, 271–8.
24. Landers, J. J., Cao, Z., Lee, Prevention of influenza pneumonitis by sialic acid-conjugated dendritic polymers. Journal of Infection Diseases, (2002), 186, 1222–30.
25. Wyatt, R.; Sodroski, J. The HIV-1 envelope glycoproteins: Fusogens, antigens, and immunogens. Science 1998, 280, 1884–1888.
26. Witvrouw, M.; Fikkert, V.; Pluymers, W.; Matthews, B.; Mardel, K.; Schols, D.; Raff, J.; Debyser, Z.; De Clercq, E.; Holan, G. Polyanionic (i.e., polysulfonate) dendrimers can inhibit the replication of human immunodeficiency virus by interfering with both virus adsorption and later steps (reverse transcriptase/integrase) in the virus replicative cycle. Mol. Pharmacol. 2000, 58, 1100–1108.
27. Hug, P.; Lin, H.-M.J.; Korte, T.; Xiao, X.; Dimitrov, D.S.; Wang, J.M.; Puri, A.; Blumenthal, R. Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J. Virol. 2000, 74, 6377–6385.
28. Puri, A.; Hug, P.; Jernigan, K.; Barchi, J.; Kim, H.-Y.; Hamilton, J.; Wiels, J.; Murray, G.J.; Brady, R.O.; Blumenthal, R. The neutral glycosphingolipid globotriaosylceramide promotes fusion mediated by a CD4-dependent CXCR4-utilizing HIV type 1 envelope glycoprotein. Proc. Natl. Acad. Sci. USA 1998, 95, 14435–14440
29. Geijtenbeek, T.B.; van Kooyk, Y. Pathogens target DC‐SIGN to influence their fate DC‐SIGN functions as a pathogen receptor with broad specificity. APMIS 2003, 111, 698–714.
30.Kooyk, Y.V.; Appelmelk, B.; Geijtenbeek, T.B. A fatal attraction:Mycobacterium tuberculosis and HIV-1 target DC-SIGN to escape immune surveillance. Trends Mol. Med. 2003, 9, 153–159.
31. Lozach, P.-Y.; Amara, A.; Bartosch, B.; Virelizier, J.-L.; Arenzana-Seisdedos, F.; Cosset, F.-L.; Altmeyer, R. C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J. Biol. Chem. 2004, 279, 32035–32045
32. Doores, K.J.; Bonomelli, C.; Harvey, D.J.; Vasiljevic, S.; Dwek, R.A.; Burton, D.R.; Crispin, M.; Scanlan, C.N. Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens. Proc. Natl. Acad. Sci. USA 2010, 107, 13800–13805.
33. Christopher, G. Selection of a synthetic glycan oligomer from a library of DNA-templated fragments against DC-SIGN and inhibition of HIV gp120 binding to dendritic cells. Chem. Commun. (Camb.) 2011, 47, 9321–9323.
34. Harouse, J.M.; Collman, R.G.; Gonzalez-Scarano, F. Human immunodeficiency virus type 1 infection of SK-N-MC cells: domains of gp120 involved in entry into a CD4-negative, galactosyl ceramide/3'sulfo-galactosyl ceramide-positive cell line. J. Virol. 1995, 69, 7383–7390.
35. Yahi, N.; Baghdiguian, S.; Moreau, H.; Fantini, J. Galactosyl ceramide (or a closely related molecule) is the receptor for human immunodeficiency virus type 1 on human colon epithelial HT29 cells. J. Virol. 1992, 66, 4848–4854.
36. Popik, W.; Alce, T.M.; Au, W.-C. Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4+ T cells. J. Virol. 2002, 76, 4709–4722.
37. Kensinger, R.D.; Catalone, B.J.; Krebs, F.C.; Wigdahl, B.; Schengrund, C.-L. Novel polysulfated galactose-derivatized dendrimers as binding antagonists of human immunodeficiency virus type 1 infection. Antimicrob. Agents Chemother. 2004, 48, 1614–1623.
38. Han, S.; Yoshida, D.; Kanamoto, T.; Nakashima, H.; Uryu, T.; Yoshida, T. Sulfated oligosaccharide cluster with polylysine core scaffold as a new anti-HIV dendrimer. Carbohydr. Polym. 2010, 80, 1111–1115.
39. Han, S.; Kanamoto, T.; Nakashima, H.; Yoshida, T. Synthesis of a new amphiphilic glycodendrimer with antiviral functionality. Carbohydr. Polym. 2012, 90, 1061–1068.
40. Rosa Borges, A.; Wieczorek, L.; Johnson, B.; Benesi, A.J.; Brown, B.K.; Kensinger, R.D.; Krebs, F.C.; Wigdahl, B.; Blumenthal, R.; Puri, A. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1. Virology 2010, 408, 80–88.
41. Dezzutti, C.S.; James, V.N.; Ramos, A.; Sullivan, S.T.; Siddig, A.; Bush, T.J.; Grohskopf, L.A.; Paxton, L.; Subbarao, S.; Hart, C.E. In vitro comparison of topical microbicides for prevention of human immunodeficiency virus type 1 transmission. Antimicrob. Agents Chemother. 2004, 48, 3834–3844.
42. Bhat, S.; Spitalnik, S.L.; Gonzalez-Scarano, F.; Silberberg, D.H. Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120. Proc. Natl. Acad. Sci. USA 1991, 88, 7131–7134.
43. Pérez-Anes, A.; Stefaniu, C.; Moog, C.; Majoral, J.-P.; Blanzat, M.; Turrin, C.-O.; Caminade, A.-M.; Rico-Lattes, I. Multivalent catanionic GalCer analogs derived from first generation dendrimeric phosphonic acids. Bioorg. Med. Chem. 2010, 18, 242–248.
44. Kensinger, R.D.; Catalone, B.J.; Krebs, F.C.; Wigdahl, B.; Schengrund, C.-L. Novel polysulfated galactose-derivatized dendrimers as binding antagonists of human immunodeficiency virus type 1 infection. Antimicrob. Agents Chemother. 2004, 48, 1614–1623.
45. Lundquist, J.J. The cluster glycoside effect. Chem Rev. 2002, 102, 555–578.
46. Han, S.; Yoshida, D.; Kanamoto, T.; Nakashima, H.; Uryu, T.; Yoshida, T. Sulfated oligosaccharide cluster with polylysine core scaffold as a new anti-HIV dendrimer. Carbohydr. Polym. 2010, 80, 1111–1115.
47. Katsuraya, K.; Ikushima, N.; Takahashi, N.; Shoji, T.; Nakashima, H.; Yamamoto, N.; Yoshida, T.; Uryu, T. Synthesis of sulfated alkyl malto-and laminara-oligosaccharides with potent inhibitory effects on AIDS virus infection. Carbohydr. Res. 1994, 260, 51–61.
48. Han, S.; Kanamoto, T.; Nakashima, H.; Yoshida, T. Synthesis of a new amphiphilic glycodendrimer with antiviral functionality. Carbohydr. Polym. 2012, 90, 1061–1068.
49. Zhao, H.; Li, J.; Xi, F.; Jiang, L. Polyamidoamine dendrimers inhibit binding of Tat peptide to TAR RNA. FEBS Lett. 2004, 563, 241–245.
50. Wang, W.; Guo, Z.; Chen, Y.; Liu, T.; Jiang, L. Influence of Generation 2–5 of PAMAM Dendrimer on the Inhibition of Tat Peptide/TAR RNA Binding in HIV‐1 Transcription. Chem. Biol. Drug. Des. 2006, 68, 314–318.
51. Hamy, F.; Brondani, V.; Flörsheimer, A.; Stark, W.; Blommers, M.J.; Klimkait, T. A new class of HIV-1 Tat antagonist acting through Tat-TAR inhibition. Biochemistry 1998, 37, 5086–5095.
52. Zhao, H.; Dai, D.; Li, J.; Chen, Y.; Jiang, L. Quantitative study of HIV-1 Tat peptide and TAR RNA interaction inhibited by poly (allylamine hydrochloride). Biochem. Biophys. Res. Commun. 2003, 312, 351–354.

53. Asaftei, S.; De Clercq, E. “Viologen” Dendrimers as Antiviral Agents: The effect of charge number and distance. J. Med. Chem. 2010, 53, 3480–3488.
54. Witvrouw, M.; Fikkert, V.; Pluymers, W.; Matthews, B.; Mardel, K.; Schols, D.; Raff, J.; Debyser, Z.; De Clercq, E.; Holan, G. Polyanionic (i.e., polysulfonate) dendrimers can inhibit the replication of human immunodeficiency virus by interfering with both virus adsorption and later steps (reverse transcriptase/integrase) in the virus replicative cycle. Mol. Pharmacol. 2000, 58, 1100–1108.
55. Vinogradov, S.V.; Poluektova, L.Y.; akarov, E.; Gerson, T.; Senanayake, M.T. Nano-NRTIs: efficient inhibitors of HIV type-1 in macrophages with a reduced mitochondrial toxicity. Antivir. Chem. Chemother. 2010, 21, 1.
56. Buckley, D.L.; Corson, T.W.; Aberle, N.; Crews, C.M. HIV protease-mediated activation of sterically capped proteasome inhibitors and substrates. J. Am. Chem. Soc. 2010, 133, 698–700.
57. Pion, M.; Serramia, M.J.; Diaz, L.; Byszewska, M.; Gallart, T.; García, F.; Gómez, R.; de la Mata, F.J.; Muñoz-Fernandez, M.Á. Phenotype and functional analysis of human monocytes-derived dendritic cells loaded with a carbosilane dendrimer. Biomaterials 2010, 31, 8749–8758.
58. Ionov, M.; Ciepluch, K.; Klajnert, B.; Glińska, S.; Gomez-Ramirez, R.; de la Mata, F.J.; Munoz-Fernandez, M.A.; Bryszewska, M. Complexation of HIV derived peptides with carbosilane dendrimers. Colloids Surf. B Biointerfaces. 2012, 101, 236–242.
59. Rinaldo, C., Dendritic cell‐based human immunodeficiency virus vaccine. J. Intern. Med. 2009, 265, 138–158.
60. Rayburn, E.; Wang, W.; Zhang, R.; Wang, H. Antisense approaches in drug discovery and development. In Prog Drug Res.; Springer: Basel, Swizerland, 2005.
61. Chonco, L.; Bermejo-Martín, J.F.; Ortega, P.; Shcharbin, D.; Pedziwiatr, E.; Klajnert, B.; de la Mata, F.J.; Eritja, R.; Gómez, R.; Bryszewska, M. Water-soluble carbosilane dendrimers protect phosphorothioate oligonucleotides from binding to serum proteins. Org. Biomol. Chem. 2007, 5, 1886–1893.
62 Weber, N.; Ortega, P.; Clemente, M.I.; Scharbin, D.; Bryszewska, M.; de la Mata, F.J.; Gómez, R.; Muñoz-Fernández, M. Characterization of carbosilane dendrimers as effective carriers of siRNA to HIV-infected lymphocytes. J. Control Release 2008, 132, 55–64.
63. Zhou, J.; Neff, C.P.; Liu, X.; Zhang, J.; Li H.; Smith, D.D.; Swiderski, P.; Aboellail, T.; Huang, Y.; Du, Q. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol. Ther. 2011, 19, 2228–2238.
Statistics
43 Views | 49 Downloads
How to Cite
Arshad, P., Dineshkumar, P., Naga Jyothi, K., Karthik, M., & Saravanan, G. (2019). Dendrimers as a Novel Carrier in Anti-HIV Therapy. Journal of Drug Delivery and Therapeutics, 9(5-s), 195-200. https://doi.org/10.22270/jddt.v9i5-s.3650

Most read articles by the same author(s)