In Vitro Antidiabetic Effect of Neohesperidin

  • Durgeshnandani Sinha
  • Trilochan Satapathy
  • Parag Jain
  • Jhakeshwar Prasad Chandel CSVTU
  • Divya Sahu
  • Bhavna Sahu
  • Abhishek Verma
  • Shalini Singh
  • Khushboo Verma
  • Rahul Rathore

Abstract

Objective: The present study was performed to determine in vitro antidiabetic effect of neohesperidin. To evaluate inhibitory effect of neohesperidin on α-amylase and α-glucosidase diabetes causing enzyme.


Methods and Materials: Invitro carbohydrate metabolizing enzyme based inhibitory methods were used to determine antidiabetic effect of neohesperidin. Alpha (α)-amylase inhibitory assay was performed using different sources i.e. wheat alpha (α)-amylase enzyme, salivary alpha (α)-amylase and fungal alpha (α)-amylase assay. Alpha (α)-glucosidase inhibitory assay was performed using alpha (α)-glucosidase (B. stearothermophil), alpha (α)-glucosidase rat intestine and alpha (α)-glucosidase from baker’s yeast. Sucrase inhibitory assay from rat small intestine.


Result: Neohesperidin possess a potent anti-diabetic by significantly inhibiting alpha amylase activity.


Conclusion: It was concluded that enzyme inhibitory activity of neohesperidin shown a significantly higher inhibitory activity on alpha-amylase in comparision to alpha-glucosidase & Sucrase enzymes.


Keywords: Neohespiridin, acarbose, alpha-amylase, alpha-glucosidase

Downloads

Download data is not yet available.

References

1. Joshi S.R., “Metabolic syndrome-emerging clusters of the Indian phenotype,” Journal of Association of Physicians of India, 2013, vol. 51, pp. 445–446X.
2. Pullaiah T., Naidu Chandrasekhar K., Anti-diabetic Plants in India and Herbal based Anti-diabetic research, New Delhi-2012.
3. Mouly, P. P., Arzouyan, C. R., Gaydou, E. M., & Estienne, J. M. (1994). Differentiation of citrus juices by factorial discriminant analysis using liquid chromatography of flavanone glycosides. Journal of Agricultural and Food Chemistry, 42, 70–79.
4. Nishiura, M., Kamiya, S., & Esaki, S. (1971). Flavonoids in Citrus and related genera: III. Flavonoid pattern and Citrus taxonomy. Agricultural and Biological Chemistry, 35, 1691–1706.
5. Rouseff, R. L., Martin, S. F., & Youtsey, C. O. (1987). Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. Journal of Agricultural and Food Chemistry, 35, 1027–1030.
6. Tripoli, E., Guardia, M. L., Giammanco, S., Majo, D. D., & Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chemistry, 104, 466–479.
7. Siddhuraju Perumal, Abirami Arumugam, Nagarani Gunasekaran, In vitro antioxidant, anti-diabetic, cholinesterase and tyrosinase inhibitory potential of fresh juice from Citrus hystrix and C. maxima fruits, Food Science and Human Wellness 3 (2014) 16–25.
8. Vanamala J., Reddivari L., Yoo K.S., et al., Variation in the content of bioactive flavonoid in different brand of orange and greape fruit, J. Food Comp. Anal. 19 (2006) 157–166.
9. Xu G., Liu D., Chen J., et al., Juice components and antioxidant capacity of citrus varieties cultivated in China, Food Chem. 106 (2008) 545–551.
10. Pichaiyongvongdee S., Haruenkit R., Investigation of limonoids, flavanones, total polyphenol content and antioxidant activity in seven thaipummelo cultivars, Kasetsart J. Nat. Sci. 43 (2009) 458–466.
11. Bhandurge P., Rajarajeshwari N., Alagawadi K. R., et al., Antidiabeticand hyperlipaemic effects of Citrus maxima Linn fruits on alloxan-induced diabetic rats, Int. J. Drug Dev. Res. 2 (2) (2010) 273–278.
12. Breksa A. P., Kahn T., Zukas A. A., et al., Limonoid content of sour orangevarieties, J. Sci. Food Agric. 91 (2011) 1789–1794.
13. Oyedepo T. A., Effect of Citrus maxima (Merr.) fruit juice in alloxan-induced diabetic wistar rats, Sci. J. Med. Clin. Trial. 2012 (2012) 1–8.
14. Xian Li, Sheng Jia, Ying Hu, Wenna Zhang, Xiaoyong Zhao, Yanhong Chen, Chongde Sun, and Kunsong Chen, Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-Ay mice, Food Funct., 2015, 6, 878–886.
15. Zollner R.L., Colomeu T.C., Figueiredo D., Cazarin C. B. B., Schumacher N.S.G., Maróstica Jr. M.R.,MelettiL.M.M., Antioxidant and anti-diabetic potential of Passifloraalata Curtis aqueous leaves extract in type 1 diabetes mellitus (NOD-mice), International Immuno-pharmacology 18 (2014) 106–115.
16. Myung-Sook Choi, Un Ju Jung, Mi-Kyung Lee, Yong Bok Park, Mi Ae Kangc, Effect of citrus flavonoids on lipid metabolism andglucose-regulating enzyme mRNA levels in type-2 diabetic mice, The International Journal of Biochemistry & Cell Biology 38 (2006) 1134–1145.
17. Hae-Dong Jang, Gyo-Nam Kim, Jung-Geun Shin, Antioxidant and antidiabetic activity of Dangyuja (Citrus grandis Osbeck) extract treated with Aspergillussaitoi, Food Chemistry 117 (2009) 35–41.
18. Parle Milind and Chaturvedi Dev, Orange: Range of Benefits, International Research Journal of Pharmacy,IRJP 2012, 3 (7).
19. Haiqing Ju, Robert J Rosen and Chitang Ho, Anti-inflammatory activity of polymethoxy flavones in sweet orange (Citrus sinensis) peel and Metabotites study of Nobiletin. 2004; 337-344.
20. Sandhya S, SaiKumar P, Vinod KR, David Banji and Kumar K, plants as potent anti-diabetic and wound healing agents. Hygeia J. D. Med. 2011; 3: 11-19.
21. Julius Oben, Ebangha Enonchong, Shil Kothari, Walter Chambliss, Robert Garrison and Deanne Dolnick, Phellodendron and Citrus extracts benefit joint health in osteoarthritis patients: a pilot, double-blind, placebo-controlled Study, Biomed central 2009; 1: 8-38.
22. Wink Michael, El-Readi Mahmoud Zaki, Hamdan Dalia, Farrag Nawal, El-Shazly Assem, Inhibition of P-glycoprotein activity by limonin and other secondary metabolites from Citrus species in human colon and leukaemia cell lines European Journal of Pharmacology 626 (2010) 139–145.
23. Parle Milind and Chaturvedi Dev, Orange: Range of Benefits, International Research Journal of Pharmacy, IRJP 2012, 3 (7).
24. Strange R.R., Miland S.L., Eckert J.W. and Sims J.J., An antifungal compound produced by grapefruit and valencia orange after wounding of the peel. Journal of Natural Products 1993; 56: 1627-1629.
25. Xian Li, Jiukai Zhang, Chongde Sun, Youyou Yan, Qingjun Chen, Fenglei Luo, Xiaoyan Zhu, Kunsong Chen, Purification of naringin and neohesperidin from Huyou (Citrus chang shanensis),fruit and their effects on glucose consumption in human HepG2 cells, Food Chemistry 135 (2012) 1471–1478.
26. PatelI AK; Madhavan K., Nampoothiri SR; Chandran S, Pandey A, Alpha amylase from a fungal culture grown on oil cakes and its properties, Braz. arch. biol. technol. 200447(2).
27. Shinde J, Taldone T, Barletta M, Kunaparaju N, Hu B, Kumar S, Placido J, Zito SW. α-Glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto–Kakizaki (GK) rats. Carbohydrate Research. 2008 May 19; 343(7):1278-81.
Statistics
53 Views | 93 Downloads
How to Cite
Sinha, D., Satapathy, T., Jain, P., Chandel, J., Sahu, D., Sahu, B., Verma, A., Singh, S., Verma, K., & Rathore, R. (2019). In Vitro Antidiabetic Effect of Neohesperidin. Journal of Drug Delivery and Therapeutics, 9(6), 102-109. https://doi.org/10.22270/jddt.v9i6.3633