Inhibition and Exploration of Bisphenol-A in Albino Mice: Endocrine Disrupting Agent

  • Nehal Mohsin Department of Pharmacology, School of Pharmacy, OPJS University, Churu, Rajasthan (India)
  • Anil Kumar Middha Department of Pharmacology, School of Pharmacy, OPJS University, Churu, Rajasthan (India)
  • Vinay Kumar Department of Pharmacology, School of Pharmacy, KIET, Ghaziabad, Uttar Pradesh (India)

Abstract

Bisphenol A (BPA) is an organic compound with the chemical formula C15H16O2 and is made from phenol and acetone. It is a colorless solid that is soluble in organic solvents, but poorly soluble in water, having two phenol functional groups, it is used to make polycarbonate polymers and epoxy resins, along with other materials used to make plastics. Polycarbonate plastic is made by reacting BPA with phosgene. The mitochondrial toxicity was estimated by the assay of mitochondrial marker enzymes, by measuring the level of lipid peroxidation, GSH levels and levels of other antioxidant enzymes such as GPx, GR and SOD. Respiratory function of testicular mitochondria appears particularly susceptible to xenobiotic actions, which can contribute to a decrease in mitochondrial produced ATP and even to predispose cells to undergo mitochondria-mediated cell death. Our study showed that exposure to BPA induces significant oxidative stress in testicular mitochondria in mice and melatonin scavenges the free radicals. Human exposure to BPA is due to its widespread use, along with reproductive and developmental effects reported in animal study have generated considerable attention on this chemical in recent years. These aspects need further investigation in properly conducted studies with a wide dose range of BPA.


Keywords: Bisphenol A, Lipid Peroxidation, Antioxidant enzymes and EDCs.

Downloads

Download data is not yet available.

Author Biographies

Nehal Mohsin, Department of Pharmacology, School of Pharmacy, OPJS University, Churu, Rajasthan (India)

Department of Pharmacology, School of Pharmacy, OPJS University, Churu, Rajasthan (India)

Anil Kumar Middha, Department of Pharmacology, School of Pharmacy, OPJS University, Churu, Rajasthan (India)

Department of Pharmacology, School of Pharmacy, OPJS University, Churu, Rajasthan (India)

Vinay Kumar, Department of Pharmacology, School of Pharmacy, KIET, Ghaziabad, Uttar Pradesh (India)

Department of  Pharmacology, School of Pharmacy, KIET, Ghaziabad, Uttar Pradesh (India)

References

1. Cao Y, Calafat AM, Doerge DR, Umbach DM, Bernbaum JC, Twaddle NC, Ye X, Rogan WJ, 2009. Isoflavones in urine, saliva and blood of infant’sdata from a pilot study on the estrogenic activity of soy formula. J Expo Sci Environ Epidemiol. 19:223–234.
2. Akingbemi BT, Sottas CM, Koulova AI, Klinefelter GR,Hardy MP. 2004. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology 145: 592-603.
3. Alexander HC, Dill DC, Smith LW, Guiney PD, Dorn P. 1988. Bisphenol A: acute aquatic toxicity. Environ. Toxicol. Chem. 7:19-26.
4. Xie, Huaijun, Qining Chen, Jingwen Chen, Chang-Er L. Chen, and Juan Du. "Investigation and application of diffusive gradients in thin-films technique for measuring endocrine disrupting chemicals in seawaters." Chemosphere 200 (2018): 351-357.
5. Jiménez-Díaz, I., F. Vela-Soria, R. Rodríguez-Gómez, A. Zafra-Gómez, O. Ballesteros, and A. Navalón. "Analytical methods for the assessment of endocrine disrupting chemical exposure during human fetal and lactation stages: a review." Analytica chimica acta 892 (2015): 27-48.
6. Adam-Vizi V, Tretter L. 2013. The role of mitochondrial dehydrogenases in the generation of oxidative stress.Neurochem. Int. doi:pii: S0197-0186, 1300015-6.
7. Calafat AM, Needham LL 2007 Human exposures and body burdens of endocrine-disrupting chemicals. In: Gore AC, ed. Endocrine-disrupting chemicals: from basic research to clinical practice. Totowa, NJ: Humana Press; 253–268.
8. Gore AC, Crews D 2009 Environmental endocrine disruption of brain and behavior. In: Pfaff DW, Arnold AP, Etgen A, Fahrbach S, Rubin R, eds. Hormones, Brain and Behavior. San Diego, Academic Press, pp. 1789–1816.
9. Aluru N, Leatherland JF, Vijayan MM. 2010. Bisphenol A in oocytes leads to growth suppression and altered stress performance in juvenile rainbow trout.PLoS One. 5: 10722-10741.
10. Andrady AL, Neal MA. 2009. Applications and societal benefits of plastics. Phil. Trans. R. Soc. B 364:1977- 1984.
11. Babu S, Uppu S, Claville MO, Uppu RM. 2013. Prooxidant actions of bisphenol A (BPA) phenoxyl radicals: implications to BPA-related oxidative stress and toxicity. Toxicol. Mech. Methods, 2: 241-267.
12. Babu S, Vellore NA, Kasibotla AV, Dwayne HJ, Stubblefield MA, Uppu RM. 2012. Molecular docking of bisphenol A and its nitrated and chlorinated metabolites onto human estrogen-relatedreceptor-gamma. Biochem. Biophys. Res. Commun. 426:215-220.
13. Flint S, Markle T, Thompson S, Wallace E 2012. Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manag 104:19–34.
14. Brede C, Fjeldal P, Skjevrak I, Herikstad H. 2003. Increased Migration Levels of Bisphenol A from Polycarbonate Baby Bottles After Dishwashing, Boiling and Brushing. Food Addit. Contam. 20: 684-689.
15. Commission E 2008. European Union risk assessment report. vol 37, EUR 20843 EN edn. European Commission, European Commission Joint Research Centre Brussels, Belgium.
16. Lewis JB, Rueggeberg FA, Lapp CA, Ergle JW, Schuster GS 1999. Identification and characterization of estrogen-like components in commercial resin-based dental restorative materials. Clin Oral Investig 3:107–113.
17. Doerge DR, Twaddle NC, Vanlandingham M, Brown RP, Fisher JW. 2011. Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague-Dawley rats. Toxicol. Appl. Pharmacol. 255:261-70.
18. Gillette JW. 1983. A comprehensive prebiological screen for ecotoxicological effects. Environ. Toxicol. Chem. 2:463-476.
19. Sayeed I, Parvez S, Winkler-Stuck K,Seitz G, Trieu I, Wallesch CW, Schonfeld P, Siemen D. 2006. Patch clamp reveals powerful blockade of the mitochondrial permeability transition pore by the D2-receptor agonist pramipexole.FASEB J 20:556–558.
20. Flohe L, Gunzler WA. 1984. Assays of glutathione peroxidase. Methods Enzymol.105:114-121.
21. Flohe L, Otting F. 1984. Superoxide dismutase assays. Methods enzymol. 105:93-104.
22. McFarland VA, Inouye LS, Lutz CH, Jarvis AS, Clarke JU, McCant DD. 1999. Biomarkers of oxidative stress and genotoxicity in livers of field-collected brown bullhead, Ameiurus nebulosus. Arch. Environ. Contam. Toxicol. 37:236-241.
23. Flohe L, Otting F. 1984. Superoxide dismutase assays. Methods enzymol. 105:93-104.
24. Hissin PJ, Hilf RA. 1976. Fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 74:214–226.
25. Buege JA, Aust SD. 1978. Microsomal lipid peroxidation. Methods Enzymol. 52:302-310.
26. Takayanagi S, Tokunaga T, Liu X, Okada H, Matsushima A, Shimohigashi Y. 2006. Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicol. Lett. 167:95-105.
27. Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K. 2002. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin. Endocrinol. Metab. 87:5185-190.
28. Kawai K, Murakami S, Senba E, Yamanaka T, Fujiwara Y, Arimura C, Nozaki T, Takii M, Kubo C. 2007. Changes in estrogen receptors alpha and beta expression in the brain of mice exposed prenatally to bisphenol A. Regul. Toxicol. Pharmacol. 47:166-170.
29. Nakagawa Y, Tayama S. 2000. Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch. Toxicol. 74:99-105.
30. Babior BM. 1992. The respiratory burst oxidase. Adv. Enzy-mol. Related Areas Mol. Biol. 65: 49-65.
31. Bartsch H, Nair J. 2000. Ultrasensitive and specific detection methods for exocyclic DNA adducts: markers for lipid peroxidation and oxidative stress. Toxicology 153:105-114.
32. Sun Y. 1990. Free radicals, antioxidant enzymes, and carcinogenesis. Free Radical Biol. Med. 8:583-599.
33. Kayanoki Y, Fuji J, Islam KN, Kawata S, Matsuzawa Y, Taniguchi N. 1996. The protective role of glutathione peroxidase in apoptosis induced by reactive oxygen species. J Biochem. 119:817-822.
34. Song L, Xia W, Zhou Z, Li Y, Lin Y, Wei J, Wei Z, Xu B, Shen J, Li W, Xu S. 2012. Low-level phenolic estrogen pollutants impair islet morphology and β-cell function in isolated rat islets. J Endocrinol. 215:303-311.
35. Huc L, Lemarie A, Gueraud F, Helies-Toussaint C. 2012. Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells.Toxicol. In Vitro. 26:709-717.
36. Tachibana T, Wakimoto Y, Nakamuta N, Phichitraslip T, Wakitani S, Kusakabe K, Hondo E, Kiso Y. 2007. Effects of bisphenol A (BPA) on placentation and survival of the neonates in mice. J. Reprod. Dev. 53:509–514.
37. Sajiki J, Yonekubo J. 2004. Leaching of Bisphenol A (BPA) from Polycarbonate Plastic to Water Containing Amino Acids and Its Degradation by Radical Oxygen Species. Chemosphere 55: 861-867.
38. Sajiki J. 2001. Decomposition of bisphenol A by radical oxygen. Environ. Int. 27:315-320.
39. Atkinson A, Roy D. 1995. In vitro conversion of environmental estrogenic chemical bisphenol to DNA binding metabolite(s). Biochem. Biophys. Res. Commun. 210:424–433.
40. Papa S, Skulachev VP. 1997. Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell. Biochem.174:305–319.
41. Madathil KS, Karuppagounder SS, Haobam R, Varghese M, Rajamma U, Mohanakumar KP.. 2013. Nitric oxide synthase inhibitors protect against rotenone-induced, oxidative stress mediated Parkinsonism in rats. Neurochem. Int. doi: 10.1016/j.neuint.2013.01.007.
42. Komada M, Asai Y, Morii M, Matsuki M, Sato M, Nagao T. 2012. Maternal bisphenol A oral dosing relates to the acceleration of neurogenesis in the developing neocortex of mouse fetuses.Toxicology 295:31-38.
43. Tiwari D, Kamble J, Chilgunde S, Patil P, Maru G, Kawle D, Bhartiya U, Joseph L, Vanage G. 2012. Clastogenic and mutagenic effects of bisphenol A: an endocrine disruptor. Mutat. Res. 743:83-90.
44. Chitta KR, Landero Figueroa JA, Caruso JA, Merino EJ. 2013. Selenium mediated arsenic toxicity modifies cytotoxicity, reactive oxygen species and phosphorylated proteins. Metallomics.
45. Tirmenstein MA, Reed DJ. 1988. Characterization of glutathione-dependent inhibition of lipid peroxidation of isolated rat liver nuclei. Arch. Biochem. Biophys. 261:1-11.
46. Cadenas E. 2004. Mitochondrial free radical production and cell signaling. Mol. Aspects Med. 25:17–26.
47. Moon MK, Kim MJ, Jung IK, Koo YD, Ann HY, Lee KJ, Kim SH, Yoon YC, Cho BJ, Park KS, Jang HC, Park YJ. 2012. Bisphenol A impairs mitochondrial function in the liver at doses below the no observed adverse effect level. J Korean Med. Sci. 27:644-652.
48. Hassan ZK, Elobeid MA, Virk P, Omer SA, ElAmin M, Daghestani MH, AlOlayan EM. 2012. Bisphenol A induces hepatotoxicity through oxidative stress in rat model.Oxid. Med. Cell Longev. 2012:194829.
49. Turrens JF. 1997. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17: 3-8.
50. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12:913-922.
51. Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels DC, Raes M, Zachary D, Ramacle J, 1990. Glutathione peroxidase, superoxide dismutase and catalase inactivation by peroxides and oxygen derived free radicals. Mech. Ageing Dev. 51:283-290.
52. MacLatchy DL, Van Der Kraak GJ. 1995. The phytoestrogen b-sitosterol alters the reproductive endocrine status of goldfish. Toxicol. Appl. Pharmacol. 134:305–312.
53. Ashby J, Tinwell H. 1998. Uterotrophic activity of bisphenol A in the immature rat. Environ. Health Perspect. 106:719–720.
54. Fernandez M, Rivas A, Pulgar R, Olea N. 2001. Human exposure to endocrine disrupting chemicals: the case of bisphenols. In: Nicolopoulo-Stamati P, Hens L, Howard CV. (eds.), Endocrine Disrupters. Environmental Health and Policies. Kluwer Academic Publishers, pp. 149–165.
55. Wang Q, Zhao XF, Ji YL, Wang H, Liu P, Zhang C, Zhang Y, Xu DX. 2010. Mitochondrial signaling pathway is also involved in bisphenol A induced germ cell apoptosis in testes. Toxicol. Lett. 199:129-135.
56. Toyama Y, Suzuki-Toyota F, Maekawa M, Ito C, Toshimori K. 2004. Adverse effects of bisphenol A to spermiogenesis in mice and rats. Arch. Histol. Cytol. 67:373-381.
57. Toyama Y, Yuasa S. 2004. Effects of neonatal administration of 17 β-estradiol, β-estradiol, 3-benzoate, or bisphenol A on mouse and rat spermatogenesis. Reprod. Toxicol. 19:181-188.
58. Andriana BB, Tay TW, Hiramatsu R, Awal MA, Kanai Y, Kurohmaru M, Hayashi Y. 2004. Bisphenol A-induced morphological alterations in Sertoli and spermatogenic cells of immature Shiba goats in vitro: An ultrastructural study. Reprod. Med. Biol.3:205–210.
59. Kashiwagi A, Utsumi K, Kashiwagi K, Ohta S, Sugihara K, Hanada H, Kitamura S. 2008. Effects of endocrine disrupting chemicals on amphibian metamorphosis and mitochondrial membrane permeability transition. J. Health Sci. 54:273-280.
60. Nakagawa Y, Tayama S. 2000. Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch. Toxicol. 74:99-105.
61. Perkins GA,Scott R,Perez A,Ellisman MH,Johnson JE,Fox DA. 2012. Bcl-xL-mediated remodeling of rod and cone synaptic mitochondria after postnatal lead exposure: Electron microscopy, tomography and oxygen consumption.Mol. Vis.18:3029-3048.
62. Arunachalam C, Doohan FM. 2013. Trichothecene toxicity in eukaryotes: cellular and molecular mechanisms in plants and animals. Toxicol. Lett. 217:149-158.
Statistics
36 Views | 81 Downloads
How to Cite
Mohsin, N., Middha, A. K., & Kumar, V. (2019). Inhibition and Exploration of Bisphenol-A in Albino Mice: Endocrine Disrupting Agent. Journal of Drug Delivery and Therapeutics, 9(3-s), 482-489. https://doi.org/10.22270/jddt.v9i3-s.3088